vp-digi/Src/drivers/modem.c

712 wiersze
20 KiB
C

/*
Copyright 2020-2023 Piotr Wilkon
This file is part of VP-Digi.
VP-Digi is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
VP-Digi is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with VP-Digi. If not, see <http://www.gnu.org/licenses/>.
*/
#include "drivers/modem.h"
#include "drivers/systick.h"
#include "ax25.h"
#include "stm32f1xx.h"
#include <math.h>
#include <stdlib.h>
#include "common.h"
/*
* Configuration for PLL-based data carrier detection
* DCD_MAXPULSE is the maximum value of the DCD pulse counter
* DCD_THRES is the threshold value of the DCD pulse counter. When reached the input signal is assumed to be valid
* DCD_MAXPULSE and DCD_THRES difference sets the DCD "inertia" so that the DCD state won't change rapidly when a valid signal is present
* DCD_DEC is the DCD pulse counter decrementation value when symbol changes too far from PLL counter zero
* DCD_INC is the DCD pulse counter incrementation value when symbol changes near the PLL counter zero
* DCD_PLLTUNE is the DCD timing coefficient when symbol changes, pll_counter = pll_counter * DCD_PLLTUNE
* The DCD mechanism is described in afsk_demod().
* All values were selected by trial and error
*/
#define DCD_MAXPULSE 100
#define DCD_THRES 30
#define DCD_DEC 1
#define DCD_INC 7
#define DCD_PLLTUNE 0
#define N 8 //samples per symbol
#define DAC_SINE_SIZE 32 //DAC sine table size
#define PLLINC 536870912 //PLL tick increment value
#define PLLLOCKED 0.74 //PLL adjustment value when locked
#define PLLNOTLOCKED 0.50 //PLL adjustment value when not locked
#define PTT_ON GPIOB->BSRR = GPIO_BSRR_BS7
#define PTT_OFF GPIOB->BSRR = GPIO_BSRR_BR7
#define DCD_ON (GPIOC->BSRR = GPIO_BSRR_BR13)
#define DCD_OFF (GPIOC->BSRR = GPIO_BSRR_BS13)
struct ModemDemodConfig ModemConfig;
static enum ModemTxTestMode txTestState; //current TX test mode
static uint16_t dacSine[DAC_SINE_SIZE]; //sine samples for DAC
static uint8_t dacSineIdx; //current sine sample index
static uint16_t samples[4]; //very raw received samples, filled directly by DMA
static uint8_t currentSymbol; //current symbol for NRZI encoding
static uint8_t markFreq; //mark frequency (inter-sample interval)
static uint8_t spaceFreq; //space frequency (inter-sample interval)
static uint16_t baudRate; //baudrate
static int32_t coeffHiI[N], coeffLoI[N], coeffHiQ[N], coeffLoQ[N]; //correlator IQ coefficients
static uint8_t dcd = 0; //multiplexed DCD state from both demodulators
/**
* @brief BPF filter with 2200 Hz tone 6 dB preemphasis (it actually attenuates 1200 Hz tone by 6 dB)
*/
static const int16_t bpfCoeffs[8] =
{
728,
-13418,
-554,
19493,
-554,
-13418,
728,
2104
};
/**
* @brief BPF filter with 2200 Hz tone 6 dB deemphasis
*/
static const int16_t invBpfCoeffs[8] =
{
-10513,
-10854,
9589,
23884,
9589,
-10854,
-10513,
-879
};
#define BPF_TAPS (sizeof(bpfCoeffs) / sizeof(*bpfCoeffs) > sizeof(invBpfCoeffs) / sizeof(*invBpfCoeffs) ? \
sizeof(bpfCoeffs) / sizeof(*bpfCoeffs) : sizeof(invBpfCoeffs) / sizeof(*invBpfCoeffs))
/**
* @brief Output LPF filter to remove data faster than 1200 baud
* It actually is a 600 Hz filter: symbols can change at 1200 Hz, but it takes 2 "ticks" to return to the same symbol - that's why it's 600 Hz
*/
static const int16_t lpfCoeffs[15] =
{
-6128,
-5974,
-2503,
4125,
12679,
21152,
27364,
29643,
27364,
21152,
12679,
4125,
-2503,
-5974,
-6128
};
#define LPF_TAPS (sizeof(lpfCoeffs) / sizeof(*lpfCoeffs))
struct DemodState
{
enum ModemEmphasis emphasis; //preemphasis/deemphasis
uint8_t rawSymbols; //raw, unsynchronized symbols
uint8_t syncSymbols; //synchronized symbols
int16_t rawSample[BPF_TAPS]; //input (raw) samples
int32_t rxSample[BPF_TAPS]; //rx samples after pre/deemphasis filter
uint8_t rxSampleIdx; //index for the array above
int64_t lpfSample[LPF_TAPS]; //rx samples after final filtering
uint8_t dcd : 1; //DCD state
uint64_t RMSenergy; //frame energy counter (sum of samples squared)
uint32_t RMSsampleCount; //number of samples for RMS
int32_t pll; //bit recovery PLL counter
int32_t lastPll; //last bit recovery PLL counter value
int32_t dcdPll; //DCD PLL main counter
uint8_t dcdLastSymbol; //last symbol for DCD
uint8_t dcdCounter; //DCD "pulse" counter (incremented when RX signal is correct)
};
static volatile struct DemodState demodState[MODEM_DEMODULATOR_COUNT];
static void decode(uint8_t symbol, uint8_t demod);
static int32_t demodulate(int16_t sample, struct DemodState *dem);
static void setPtt(uint8_t state);
uint8_t ModemDcdState(void)
{
return dcd;
}
uint8_t ModemIsTxTestOngoing(void)
{
if(txTestState != TEST_DISABLED)
return 1;
return 0;
}
void ModemClearRMS(uint8_t modem)
{
demodState[modem].RMSenergy = 0;
demodState[modem].RMSsampleCount = 0;
}
uint16_t ModemGetRMS(uint8_t modem)
{
return sqrtf((float)demodState[modem].RMSenergy / (float)demodState[modem].RMSsampleCount);
}
enum ModemEmphasis ModemGetFilterType(uint8_t modem)
{
return demodState[modem].emphasis;
}
/**
* @brief Set DCD LED
* @param[in] state 0 - OFF, 1 - ON
*/
static void setDcd(uint8_t state)
{
if(state)
{
GPIOC->BSRR = GPIO_BSRR_BR13;
GPIOB->BSRR = GPIO_BSRR_BS5;
}
else
{
GPIOC->BSRR = GPIO_BSRR_BS13;
GPIOB->BSRR = GPIO_BSRR_BR5;
}
}
/**
* @brief ISR for demodulator
* Called at 9600 Hz by DMA
*/
void DMA1_Channel2_IRQHandler(void) __attribute__ ((interrupt));
void DMA1_Channel2_IRQHandler(void)
{
if(DMA1->ISR & DMA_ISR_TCIF2)
{
DMA1->IFCR |= DMA_IFCR_CTCIF2;
int32_t sample = ((samples[0] + samples[1] + samples[2] + samples[3]) >> 1) - 4095; //calculate input sample (decimation)
uint8_t partialDcd = 0;
for(uint8_t i = 0; i < MODEM_DEMODULATOR_COUNT; i++)
{
uint8_t symbol = (demodulate(sample, (struct DemodState*)&demodState[i]) > 0); //demodulate sample
decode(symbol, i); //recover bits, decode NRZI and call higher level function
if(demodState[i].dcd)
partialDcd |= 1;
}
if(partialDcd) //DCD on any of the demodulators
{
dcd = 1;
setDcd(1);
}
else //no DCD on both demodulators
{
dcd = 0;
setDcd(0);
}
}
}
/**
* @brief ISR for pushing DAC samples
*/
void TIM1_UP_IRQHandler(void) __attribute__ ((interrupt));
void TIM1_UP_IRQHandler(void)
{
TIM1->SR &= ~TIM_SR_UIF;
if(ModemConfig.usePWM)
{
TIM4->CCR1 = dacSine[dacSineIdx];
}
else
{
GPIOB->ODR &= ~0xF000; //zero 4 oldest bits
GPIOB->ODR |= (dacSine[dacSineIdx] << 12); //write sample to 4 oldest bits
}
dacSineIdx++;
dacSineIdx &= (DAC_SINE_SIZE - 1);
}
/**
* @brief ISR for baudrate generator timer. NRZI encoding is done here.
*/
void TIM3_IRQHandler(void) __attribute__ ((interrupt));
void TIM3_IRQHandler(void)
{
TIM3->SR &= ~TIM_SR_UIF;
if(txTestState == TEST_DISABLED) //transmitting normal data
{
if(Ax25GetTxBit() == 0) //get next bit and check if it's 0
{
currentSymbol ^= 1; //change symbol - NRZI encoding
}
//if 1, no symbol change
}
else //transmit test mode
{
currentSymbol ^= 1; //change symbol
}
TIM1->CNT = 0;
if(currentSymbol) //current symbol is space
TIM1->ARR = spaceFreq;
else //mark
TIM1->ARR = markFreq;
}
/**
* @brief Demodulate received sample (4x oversampling)
* @param[in] sample Received sample
* @param[in] *dem Demodulator state
* @return Current tone (0 or 1)
*/
static int32_t demodulate(int16_t sample, struct DemodState *dem)
{
dem->RMSenergy += ((sample >> 1) * (sample >> 1)); //square the sample and add it to the sum
dem->RMSsampleCount++; //increment number of samples
if(dem->emphasis != EMPHASIS_NONE) //preemphasis/deemphasis is used
{
int32_t out = 0; //filtered output
for(uint8_t i = BPF_TAPS - 1; i > 0; i--)
dem->rawSample[i] = dem->rawSample[i - 1]; //shift old samples
dem->rawSample[0] = sample; //store new sample
for(uint8_t i = 0; i < BPF_TAPS; i++)
{
if(dem->emphasis == PREEMPHASIS)
out += bpfCoeffs[i] * dem->rawSample[i]; //use preemphasis
else
out += invBpfCoeffs[i] * dem->rawSample[i]; //use deemphasis
}
dem->rxSample[dem->rxSampleIdx] = (out >> 15); //store filtered sample
}
else //no pre/deemphasis
{
dem->rxSample[dem->rxSampleIdx] = sample; //store incoming sample
}
dem->rxSampleIdx = (dem->rxSampleIdx + 1) % BPF_TAPS; //increment sample pointer and wrap around if needed
int64_t outLoI = 0, outLoQ = 0, outHiI = 0, outHiQ = 0; //output values after correlating
for(uint8_t i = 0; i < N; i++) {
int32_t t = dem->rxSample[(dem->rxSampleIdx + i) % BPF_TAPS]; //read sample
outLoI += t * coeffLoI[i]; //correlate sample
outLoQ += t * coeffLoQ[i];
outHiI += t * coeffHiI[i];
outHiQ += t * coeffHiQ[i];
}
uint64_t hi = 0, lo = 0;
hi = ((outHiI >> 12) * (outHiI >> 12)) + ((outHiQ >> 12) * (outHiQ >> 12)); //calculate output tone levels
lo = ((outLoI >> 12) * (outLoI >> 12)) + ((outLoQ >> 12) * (outLoQ >> 12));
//DCD using PLL
//PLL is running nominally at 1200 Hz (= baudrate)
//PLL timer is counting up and eventually overflows to a minimal negative value
//so it crosses zero in the middle
//tone change should happen somewhere near this zero-crossing (in ideal case of exactly same TX and RX baudrates)
//nothing is ideal, so we need to have some region around zero where tone change is expected
//if tone changed inside this region, then we add something to the DCD pulse counter (and adjust counter phase for the counter to be closer to 0)
//if tone changes outside this region, then we subtract something from the DCD pulse counter
//if some DCD pulse threshold is reached, then we claim that the incoming signal is correct and set DCD flag
//when configured properly, it's generally immune to noise, as the detected tone changes much faster than 1200 baud
//it's also important to set some maximum value for DCD counter, otherwise the DCD is "sticky"
dem->dcdPll = (signed)((unsigned)(dem->dcdPll) + ((unsigned)PLLINC)); //keep PLL ticking at the frequency equal to baudrate
uint8_t dcdSymbol = (hi > lo); //get current symbol
if(dcdSymbol != dem->dcdLastSymbol) //tone changed
{
if(abs(dem->dcdPll) < PLLINC) //tone change occurred near zero
dem->dcdCounter += DCD_INC; //increase DCD counter
else //tone change occurred far from zero
{
if(dem->dcdCounter >= DCD_DEC) //avoid overflow
dem->dcdCounter -= DCD_DEC; //decrease DCD counter
}
dem->dcdPll = (int)(dem->dcdPll * DCD_PLLTUNE); //adjust PLL
}
dem->dcdLastSymbol = dcdSymbol; //store last symbol for symbol change detection
if(dem->dcdCounter > DCD_MAXPULSE) //maximum DCD counter value reached
dem->dcdCounter = DCD_MAXPULSE; //avoid "sticky" DCD and counter overflow
if(dem->dcdCounter > DCD_THRES) //DCD threshold reached
dem->dcd = 1; //DCD!
else //below DCD threshold
dem->dcd = 0; //no DCD
//filter out signal faster than 1200 baud
int64_t out = 0;
for(uint8_t i = LPF_TAPS - 1; i > 0; i--)
dem->lpfSample[i] = dem->lpfSample[i - 1];
dem->lpfSample[0] = (int64_t)hi - (int64_t)lo;
for(uint8_t i = 0; i < LPF_TAPS; i++)
{
out += lpfCoeffs[i] * dem->lpfSample[i];
}
return out > 0;
}
/**
* @brief Decode received symbol: bit recovery, NRZI decoding and pass the decoded bit to higher level protocol
* @param[in] symbol Received symbol
* @param demod Demodulator index
*/
static void decode(uint8_t symbol, uint8_t demod)
{
struct DemodState *dem = (struct DemodState*)&demodState[demod];
//This function provides bit/clock recovery and NRZI decoding
//Bit recovery is based on PLL which is described in the function above (DCD PLL)
//Current symbol is sampled at PLL counter overflow, so symbol transition should occur at PLL counter zero
dem->lastPll = dem->pll; //store last clock state
dem->pll = (signed)((unsigned)(dem->pll) + (unsigned)PLLINC); //keep PLL running
dem->rawSymbols <<= 1; //store received unsynchronized symbol
dem->rawSymbols |= (symbol & 1);
if ((dem->pll < 0) && (dem->lastPll > 0)) //PLL counter overflow, sample symbol, decode NRZI and process in higher layer
{
dem->syncSymbols <<= 1; //shift recovered (received, synchronized) bit register
uint8_t t = dem->rawSymbols & 0x07; //take last three symbols for sampling. Seems that 1 symbol is not enough, but 3 symbols work well
if(t == 0b111 || t == 0b110 || t == 0b101 || t == 0b011) //if there are 2 or 3 ones, then the received symbol is 1
{
dem->syncSymbols |= 1; //push to recovered symbols register
}
//if there 2 or 3 zeros, no need to add anything to the register
//NRZI decoding
if (((dem->syncSymbols & 0x03) == 0b11) || ((dem->syncSymbols & 0x03) == 0b00)) //two last symbols are the same - no symbol transition - decoded bit 1
{
Ax25BitParse(1, demod);
}
else //symbol transition - decoded bit 0
{
Ax25BitParse(0, demod);
}
}
if(((dem->rawSymbols & 0x03) == 0b10) || ((dem->rawSymbols & 0x03) == 0b01)) //if there was a symbol transition, adjust PLL
{
if(Ax25GetRxStage(demod) != RX_STAGE_FRAME) //not in a frame
{
dem->pll = (int)(dem->pll * PLLNOTLOCKED); //adjust PLL faster
}
else //in a frame
{
dem->pll = (int)(dem->pll * PLLLOCKED); //adjust PLL slower
}
}
}
void ModemTxTestStart(enum ModemTxTestMode type)
{
if(txTestState != TEST_DISABLED) //TX test is already running
ModemTxTestStop(); //stop this test
setPtt(1); //PTT on
txTestState = type;
//DAC timer
TIM1->PSC = 17; //72/18=4 MHz
TIM1->DIER = TIM_DIER_UIE; //enable interrupt
TIM1->CR1 |= TIM_CR1_CEN; //enable timer
TIM2->CR1 &= ~TIM_CR1_CEN; //disable RX timer
NVIC_DisableIRQ(DMA1_Channel2_IRQn); //disable RX DMA interrupt
NVIC_EnableIRQ(TIM1_UP_IRQn); //enable timer 1 for PWM
if(type == TEST_MARK)
{
TIM1->ARR = markFreq;
} else if(type == TEST_SPACE)
{
TIM1->ARR = spaceFreq;
}
else //alternating tones
{
//enable baudrate generator
TIM3->PSC = 71; //72/72=1 MHz
TIM3->DIER = TIM_DIER_UIE; //enable interrupt
TIM3->ARR = baudRate; //set timer interval
TIM3->CR1 = TIM_CR1_CEN; //enable timer
NVIC_EnableIRQ(TIM3_IRQn); //enable interrupt in NVIC
}
}
void ModemTxTestStop(void)
{
txTestState = TEST_DISABLED;
TIM3->CR1 &= ~TIM_CR1_CEN; //turn off timers
TIM1->CR1 &= ~TIM_CR1_CEN;
TIM2->CR1 |= TIM_CR1_CEN; //enable RX timer
NVIC_DisableIRQ(TIM3_IRQn);
NVIC_DisableIRQ(TIM1_UP_IRQn);
NVIC_EnableIRQ(DMA1_Channel2_IRQn);
setPtt(0); //PTT off
}
void ModemTransmitStart(void)
{
setPtt(1); //PTT on
TIM1->PSC = 17;
TIM1->DIER |= TIM_DIER_UIE;
TIM3->PSC = 71;
TIM3->DIER |= TIM_DIER_UIE;
TIM3->ARR = baudRate;
TIM3->CR1 = TIM_CR1_CEN;
TIM1->CR1 = TIM_CR1_CEN;
TIM2->CR1 &= ~TIM_CR1_CEN;
NVIC_DisableIRQ(DMA1_Channel2_IRQn);
NVIC_EnableIRQ(TIM1_UP_IRQn);
NVIC_EnableIRQ(TIM3_IRQn);
}
/**
* @brief Stop TX and go back to RX
*/
void ModemTransmitStop(void)
{
TIM2->CR1 |= TIM_CR1_CEN;
TIM3->CR1 &= ~TIM_CR1_CEN;
TIM1->CR1 &= ~TIM_CR1_CEN;
NVIC_DisableIRQ(TIM1_UP_IRQn);
NVIC_DisableIRQ(TIM3_IRQn);
NVIC_EnableIRQ(DMA1_Channel2_IRQn);
setPtt(0);
TIM4->CCR1 = 44; //set around 50% duty cycle
}
/**
* @brief Controls PTT output
* @param[in] state 0 - PTT off, 1 - PTT on
*/
static void setPtt(uint8_t state)
{
if(state)
PTT_ON;
else
PTT_OFF;
}
/**
* @brief Initialize AFSK module
*/
void ModemInit(void)
{
/**
* TIM1 is used for pushing samples to DAC (R2R or PWM) at 4 MHz
* TIM3 is the baudrate generator for TX running at 1 MHz
* TIM4 is the PWM generator with no software interrupt
* TIM2 is the RX sampling timer with no software interrupt, but it directly calls DMA
*/
RCC->APB2ENR |= RCC_APB2ENR_IOPBEN;
RCC->APB2ENR |= RCC_APB2ENR_IOPCEN;
RCC->APB2ENR |= RCC_APB2ENR_IOPAEN;
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN;
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN;
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
GPIOC->CRH |= GPIO_CRH_MODE13_1; //DCD LED on PC13
GPIOC->CRH &= ~GPIO_CRH_MODE13_0;
GPIOC->CRH &= ~GPIO_CRH_CNF13;
GPIOB->CRH &= ~0xFFFF0000; //R2R output on PB12-PB15
GPIOB->CRH |= 0x22220000;
GPIOA->CRL &= ~GPIO_CRL_CNF0; //ADC input on PA0
GPIOA->CRL &= ~GPIO_CRL_MODE0;
GPIOB->CRL |= GPIO_CRL_MODE7_1; //PTT output on PB7
GPIOB->CRL &= ~GPIO_CRL_MODE7_0;
GPIOB->CRL &= ~GPIO_CRL_CNF7;
GPIOB->CRL |= GPIO_CRL_MODE5_1; //2nd DCD LED on PB5
GPIOB->CRL &= ~GPIO_CRL_MODE5_0;
GPIOB->CRL &= ~GPIO_CRL_CNF5;
RCC->CFGR |= RCC_CFGR_ADCPRE_1; //ADC prescaler /6
RCC->CFGR &= ~RCC_CFGR_ADCPRE_0;
ADC1->CR2 |= ADC_CR2_CONT; //continuous conversion
ADC1->CR2 |= ADC_CR2_EXTSEL;
ADC1->SQR1 &= ~ADC_SQR1_L; //1 conversion
ADC1->SMPR2 |= ADC_SMPR2_SMP0_2; //41.5 cycle sampling
ADC1->SQR3 &= ~ADC_SQR3_SQ1; //channel 0 is first in the sequence
ADC1->CR2 |= ADC_CR2_ADON; //ADC on
ADC1->CR2 |= ADC_CR2_RSTCAL; //calibrate ADC
while(ADC1->CR2 & ADC_CR2_RSTCAL)
;
ADC1->CR2 |= ADC_CR2_CAL;
while(ADC1->CR2 & ADC_CR2_CAL)
;
ADC1->CR2 |= ADC_CR2_EXTTRIG;
ADC1->CR2 |= ADC_CR2_SWSTART; //start ADC conversion
//prepare DMA
DMA1_Channel2->CCR |= DMA_CCR_MSIZE_0; //16 bit memory region
DMA1_Channel2->CCR &= ~DMA_CCR_MSIZE_1;
DMA1_Channel2->CCR |= DMA_CCR_PSIZE_0;
DMA1_Channel2->CCR &= ~DMA_CCR_PSIZE_1;
DMA1_Channel2->CCR |= DMA_CCR_MINC | DMA_CCR_CIRC| DMA_CCR_TCIE; //circular mode, memory increment and interrupt
DMA1_Channel2->CNDTR = 4; //4 samples
DMA1_Channel2->CPAR = (uint32_t)&(ADC1->DR); //ADC data register address
DMA1_Channel2->CMAR = (uint32_t)samples; //sample buffer address
DMA1_Channel2->CCR |= DMA_CCR_EN; //enable DMA
NVIC_EnableIRQ(DMA1_Channel2_IRQn);
TIM2->PSC = 17; //72/18=4 MHz
TIM2->DIER |= TIM_DIER_UDE; //enable calling DMA on timer tick
TIM2->ARR = 103; //4MHz / 104 =~38400 Hz (4*9600 Hz for 4x oversampling)
TIM2->CR1 |= TIM_CR1_CEN; //enable timer
markFreq = 4000000 / (DAC_SINE_SIZE * (uint32_t)MODEM_MARK_FREQUENCY) - 1; //set mark frequency
spaceFreq = 4000000 / (DAC_SINE_SIZE * (uint32_t)MODEM_SPACE_FREQUENCY) - 1; //set space frequency
baudRate = 1000000 / (uint32_t)MODEM_BAUDRATE - 1; //set baudrate
for(uint8_t i = 0; i < N; i++) //calculate correlator coefficients
{
coeffLoI[i] = 4095.f * cosf(2.f * 3.1416f * (float)i / (float)N * MODEM_MARK_FREQUENCY / MODEM_BAUDRATE);
coeffLoQ[i] = 4095.f * sinf(2.f * 3.1416f * (float)i / (float)N * MODEM_MARK_FREQUENCY / MODEM_BAUDRATE);
coeffHiI[i] = 4095.f * cosf(2.f * 3.1416f * (float)i / (float)N * MODEM_SPACE_FREQUENCY / MODEM_BAUDRATE);
coeffHiQ[i] = 4095.f * sinf(2.f * 3.1416f * (float)i / (float)N * MODEM_SPACE_FREQUENCY / MODEM_BAUDRATE);
}
for(uint8_t i = 0; i < DAC_SINE_SIZE; i++) //calculate DAC sine samples
{
if(ModemConfig.usePWM)
dacSine[i] = ((sinf(2.f * 3.1416f * (float)i / (float)DAC_SINE_SIZE) + 1.f) * 45.f);
else
dacSine[i] = ((7.f * sinf(2.f * 3.1416f * (float)i / (float)DAC_SINE_SIZE)) + 8.f);
}
if(ModemConfig.flatAudioIn) //when used with flat audio input, use deemphasis and flat modems
{
demodState[0].emphasis = EMPHASIS_NONE;
demodState[1].emphasis = DEEMPHASIS;
}
else //when used with normal (filtered) audio input, use flat and preemphasis modems
{
demodState[0].emphasis = EMPHASIS_NONE;
demodState[1].emphasis = PREEMPHASIS;
}
if(ModemConfig.usePWM)
{
RCC->APB1ENR |= RCC_APB1ENR_TIM4EN; //configure timer
GPIOB->CRL |= GPIO_CRL_CNF6_1; //configure pin for PWM
GPIOB->CRL |= GPIO_CRL_MODE6;
GPIOB->CRL &= ~GPIO_CRL_CNF6_0;
//set up PWM generation
TIM4->PSC = 7; //72MHz/8=9MHz
TIM4->ARR = 90; //9MHz/90=100kHz
TIM4->CCMR1 |= TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2;
TIM4->CCER |= TIM_CCER_CC1E;
TIM4->CCR1 = 44; //initial duty cycle
TIM4->CR1 |= TIM_CR1_CEN;
}
}
/**
* @}
*/