/* Copyright 2020-2023 Piotr Wilkon This file is part of VP-Digi. VP-Digi is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. VP-Digi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with VP-Digi. If not, see . */ #include "drivers/modem.h" #include "drivers/systick.h" #include "ax25.h" #include "stm32f1xx.h" #include #include #include "common.h" /* * Configuration for PLL-based data carrier detection * DCD_MAXPULSE is the maximum value of the DCD pulse counter * DCD_THRES is the threshold value of the DCD pulse counter. When reached the input signal is assumed to be valid * DCD_MAXPULSE and DCD_THRES difference sets the DCD "inertia" so that the DCD state won't change rapidly when a valid signal is present * DCD_DEC is the DCD pulse counter decrementation value when symbol changes too far from PLL counter zero * DCD_INC is the DCD pulse counter incrementation value when symbol changes near the PLL counter zero * DCD_PLLTUNE is the DCD timing coefficient when symbol changes, pll_counter = pll_counter * DCD_PLLTUNE * The DCD mechanism is described in afsk_demod(). * All values were selected by trial and error */ #define DCD_MAXPULSE 100 #define DCD_THRES 30 #define DCD_DEC 1 #define DCD_INC 7 #define DCD_PLLTUNE 0 #define N 8 //samples per symbol #define DAC_SINE_SIZE 32 //DAC sine table size #define PLLINC 536870912 //PLL tick increment value #define PLLLOCKED 0.74 //PLL adjustment value when locked #define PLLNOTLOCKED 0.50 //PLL adjustment value when not locked #define PTT_ON GPIOB->BSRR = GPIO_BSRR_BS7 #define PTT_OFF GPIOB->BSRR = GPIO_BSRR_BR7 #define DCD_ON (GPIOC->BSRR = GPIO_BSRR_BR13) #define DCD_OFF (GPIOC->BSRR = GPIO_BSRR_BS13) struct ModemDemodConfig ModemConfig; static enum ModemTxTestMode txTestState; //current TX test mode static uint16_t dacSine[DAC_SINE_SIZE]; //sine samples for DAC static uint8_t dacSineIdx; //current sine sample index static uint16_t samples[4]; //very raw received samples, filled directly by DMA static uint8_t currentSymbol; //current symbol for NRZI encoding static uint8_t markFreq; //mark frequency (inter-sample interval) static uint8_t spaceFreq; //space frequency (inter-sample interval) static uint16_t baudRate; //baudrate static int32_t coeffHiI[N], coeffLoI[N], coeffHiQ[N], coeffLoQ[N]; //correlator IQ coefficients static uint8_t dcd = 0; //multiplexed DCD state from both demodulators /** * @brief BPF filter with 2200 Hz tone 6 dB preemphasis (it actually attenuates 1200 Hz tone by 6 dB) */ static const int16_t bpfCoeffs[8] = { 728, -13418, -554, 19493, -554, -13418, 728, 2104 }; /** * @brief BPF filter with 2200 Hz tone 6 dB deemphasis */ static const int16_t invBpfCoeffs[8] = { -10513, -10854, 9589, 23884, 9589, -10854, -10513, -879 }; #define BPF_TAPS (sizeof(bpfCoeffs) / sizeof(*bpfCoeffs) > sizeof(invBpfCoeffs) / sizeof(*invBpfCoeffs) ? \ sizeof(bpfCoeffs) / sizeof(*bpfCoeffs) : sizeof(invBpfCoeffs) / sizeof(*invBpfCoeffs)) /** * @brief Output LPF filter to remove data faster than 1200 baud * It actually is a 600 Hz filter: symbols can change at 1200 Hz, but it takes 2 "ticks" to return to the same symbol - that's why it's 600 Hz */ static const int16_t lpfCoeffs[15] = { -6128, -5974, -2503, 4125, 12679, 21152, 27364, 29643, 27364, 21152, 12679, 4125, -2503, -5974, -6128 }; #define LPF_TAPS (sizeof(lpfCoeffs) / sizeof(*lpfCoeffs)) struct DemodState { enum ModemEmphasis emphasis; //preemphasis/deemphasis uint8_t rawSymbols; //raw, unsynchronized symbols uint8_t syncSymbols; //synchronized symbols int16_t rawSample[BPF_TAPS]; //input (raw) samples int32_t rxSample[BPF_TAPS]; //rx samples after pre/deemphasis filter uint8_t rxSampleIdx; //index for the array above int64_t lpfSample[LPF_TAPS]; //rx samples after final filtering uint8_t dcd : 1; //DCD state uint64_t RMSenergy; //frame energy counter (sum of samples squared) uint32_t RMSsampleCount; //number of samples for RMS int32_t pll; //bit recovery PLL counter int32_t lastPll; //last bit recovery PLL counter value int32_t dcdPll; //DCD PLL main counter uint8_t dcdLastSymbol; //last symbol for DCD uint8_t dcdCounter; //DCD "pulse" counter (incremented when RX signal is correct) }; static volatile struct DemodState demodState[MODEM_DEMODULATOR_COUNT]; static void decode(uint8_t symbol, uint8_t demod); static int32_t demodulate(int16_t sample, struct DemodState *dem); static void setPtt(uint8_t state); uint8_t ModemDcdState(void) { return dcd; } uint8_t ModemIsTxTestOngoing(void) { if(txTestState != TEST_DISABLED) return 1; return 0; } void ModemClearRMS(uint8_t modem) { demodState[modem].RMSenergy = 0; demodState[modem].RMSsampleCount = 0; } uint16_t ModemGetRMS(uint8_t modem) { return sqrtf((float)demodState[modem].RMSenergy / (float)demodState[modem].RMSsampleCount); } enum ModemEmphasis ModemGetFilterType(uint8_t modem) { return demodState[modem].emphasis; } /** * @brief Set DCD LED * @param[in] state 0 - OFF, 1 - ON */ static void setDcd(uint8_t state) { if(state) { GPIOC->BSRR = GPIO_BSRR_BR13; GPIOB->BSRR = GPIO_BSRR_BS5; } else { GPIOC->BSRR = GPIO_BSRR_BS13; GPIOB->BSRR = GPIO_BSRR_BR5; } } /** * @brief ISR for demodulator * Called at 9600 Hz by DMA */ void DMA1_Channel2_IRQHandler(void) __attribute__ ((interrupt)); void DMA1_Channel2_IRQHandler(void) { if(DMA1->ISR & DMA_ISR_TCIF2) { DMA1->IFCR |= DMA_IFCR_CTCIF2; int32_t sample = ((samples[0] + samples[1] + samples[2] + samples[3]) >> 1) - 4095; //calculate input sample (decimation) uint8_t partialDcd = 0; for(uint8_t i = 0; i < MODEM_DEMODULATOR_COUNT; i++) { uint8_t symbol = (demodulate(sample, (struct DemodState*)&demodState[i]) > 0); //demodulate sample decode(symbol, i); //recover bits, decode NRZI and call higher level function if(demodState[i].dcd) partialDcd |= 1; } if(partialDcd) //DCD on any of the demodulators { dcd = 1; setDcd(1); } else //no DCD on both demodulators { dcd = 0; setDcd(0); } } } /** * @brief ISR for pushing DAC samples */ void TIM1_UP_IRQHandler(void) __attribute__ ((interrupt)); void TIM1_UP_IRQHandler(void) { TIM1->SR &= ~TIM_SR_UIF; if(ModemConfig.usePWM) { TIM4->CCR1 = dacSine[dacSineIdx]; } else { GPIOB->ODR &= ~0xF000; //zero 4 oldest bits GPIOB->ODR |= (dacSine[dacSineIdx] << 12); //write sample to 4 oldest bits } dacSineIdx++; dacSineIdx &= (DAC_SINE_SIZE - 1); } /** * @brief ISR for baudrate generator timer. NRZI encoding is done here. */ void TIM3_IRQHandler(void) __attribute__ ((interrupt)); void TIM3_IRQHandler(void) { TIM3->SR &= ~TIM_SR_UIF; if(txTestState == TEST_DISABLED) //transmitting normal data { if(Ax25GetTxBit() == 0) //get next bit and check if it's 0 { currentSymbol ^= 1; //change symbol - NRZI encoding } //if 1, no symbol change } else //transmit test mode { currentSymbol ^= 1; //change symbol } TIM1->CNT = 0; if(currentSymbol) //current symbol is space TIM1->ARR = spaceFreq; else //mark TIM1->ARR = markFreq; } /** * @brief Demodulate received sample (4x oversampling) * @param[in] sample Received sample * @param[in] *dem Demodulator state * @return Current tone (0 or 1) */ static int32_t demodulate(int16_t sample, struct DemodState *dem) { dem->RMSenergy += ((sample >> 1) * (sample >> 1)); //square the sample and add it to the sum dem->RMSsampleCount++; //increment number of samples if(dem->emphasis != EMPHASIS_NONE) //preemphasis/deemphasis is used { int32_t out = 0; //filtered output for(uint8_t i = BPF_TAPS - 1; i > 0; i--) dem->rawSample[i] = dem->rawSample[i - 1]; //shift old samples dem->rawSample[0] = sample; //store new sample for(uint8_t i = 0; i < BPF_TAPS; i++) { if(dem->emphasis == PREEMPHASIS) out += bpfCoeffs[i] * dem->rawSample[i]; //use preemphasis else out += invBpfCoeffs[i] * dem->rawSample[i]; //use deemphasis } dem->rxSample[dem->rxSampleIdx] = (out >> 15); //store filtered sample } else //no pre/deemphasis { dem->rxSample[dem->rxSampleIdx] = sample; //store incoming sample } dem->rxSampleIdx = (dem->rxSampleIdx + 1) % BPF_TAPS; //increment sample pointer and wrap around if needed int64_t outLoI = 0, outLoQ = 0, outHiI = 0, outHiQ = 0; //output values after correlating for(uint8_t i = 0; i < N; i++) { int32_t t = dem->rxSample[(dem->rxSampleIdx + i) % BPF_TAPS]; //read sample outLoI += t * coeffLoI[i]; //correlate sample outLoQ += t * coeffLoQ[i]; outHiI += t * coeffHiI[i]; outHiQ += t * coeffHiQ[i]; } uint64_t hi = 0, lo = 0; hi = ((outHiI >> 12) * (outHiI >> 12)) + ((outHiQ >> 12) * (outHiQ >> 12)); //calculate output tone levels lo = ((outLoI >> 12) * (outLoI >> 12)) + ((outLoQ >> 12) * (outLoQ >> 12)); //DCD using PLL //PLL is running nominally at 1200 Hz (= baudrate) //PLL timer is counting up and eventually overflows to a minimal negative value //so it crosses zero in the middle //tone change should happen somewhere near this zero-crossing (in ideal case of exactly same TX and RX baudrates) //nothing is ideal, so we need to have some region around zero where tone change is expected //if tone changed inside this region, then we add something to the DCD pulse counter (and adjust counter phase for the counter to be closer to 0) //if tone changes outside this region, then we subtract something from the DCD pulse counter //if some DCD pulse threshold is reached, then we claim that the incoming signal is correct and set DCD flag //when configured properly, it's generally immune to noise, as the detected tone changes much faster than 1200 baud //it's also important to set some maximum value for DCD counter, otherwise the DCD is "sticky" dem->dcdPll = (signed)((unsigned)(dem->dcdPll) + ((unsigned)PLLINC)); //keep PLL ticking at the frequency equal to baudrate uint8_t dcdSymbol = (hi > lo); //get current symbol if(dcdSymbol != dem->dcdLastSymbol) //tone changed { if(abs(dem->dcdPll) < PLLINC) //tone change occurred near zero dem->dcdCounter += DCD_INC; //increase DCD counter else //tone change occurred far from zero { if(dem->dcdCounter >= DCD_DEC) //avoid overflow dem->dcdCounter -= DCD_DEC; //decrease DCD counter } dem->dcdPll = (int)(dem->dcdPll * DCD_PLLTUNE); //adjust PLL } dem->dcdLastSymbol = dcdSymbol; //store last symbol for symbol change detection if(dem->dcdCounter > DCD_MAXPULSE) //maximum DCD counter value reached dem->dcdCounter = DCD_MAXPULSE; //avoid "sticky" DCD and counter overflow if(dem->dcdCounter > DCD_THRES) //DCD threshold reached dem->dcd = 1; //DCD! else //below DCD threshold dem->dcd = 0; //no DCD //filter out signal faster than 1200 baud int64_t out = 0; for(uint8_t i = LPF_TAPS - 1; i > 0; i--) dem->lpfSample[i] = dem->lpfSample[i - 1]; dem->lpfSample[0] = (int64_t)hi - (int64_t)lo; for(uint8_t i = 0; i < LPF_TAPS; i++) { out += lpfCoeffs[i] * dem->lpfSample[i]; } return out > 0; } /** * @brief Decode received symbol: bit recovery, NRZI decoding and pass the decoded bit to higher level protocol * @param[in] symbol Received symbol * @param demod Demodulator index */ static void decode(uint8_t symbol, uint8_t demod) { struct DemodState *dem = (struct DemodState*)&demodState[demod]; //This function provides bit/clock recovery and NRZI decoding //Bit recovery is based on PLL which is described in the function above (DCD PLL) //Current symbol is sampled at PLL counter overflow, so symbol transition should occur at PLL counter zero dem->lastPll = dem->pll; //store last clock state dem->pll = (signed)((unsigned)(dem->pll) + (unsigned)PLLINC); //keep PLL running dem->rawSymbols <<= 1; //store received unsynchronized symbol dem->rawSymbols |= (symbol & 1); if ((dem->pll < 0) && (dem->lastPll > 0)) //PLL counter overflow, sample symbol, decode NRZI and process in higher layer { dem->syncSymbols <<= 1; //shift recovered (received, synchronized) bit register uint8_t t = dem->rawSymbols & 0x07; //take last three symbols for sampling. Seems that 1 symbol is not enough, but 3 symbols work well if(t == 0b111 || t == 0b110 || t == 0b101 || t == 0b011) //if there are 2 or 3 ones, then the received symbol is 1 { dem->syncSymbols |= 1; //push to recovered symbols register } //if there 2 or 3 zeros, no need to add anything to the register //NRZI decoding if (((dem->syncSymbols & 0x03) == 0b11) || ((dem->syncSymbols & 0x03) == 0b00)) //two last symbols are the same - no symbol transition - decoded bit 1 { Ax25BitParse(1, demod); } else //symbol transition - decoded bit 0 { Ax25BitParse(0, demod); } } if(((dem->rawSymbols & 0x03) == 0b10) || ((dem->rawSymbols & 0x03) == 0b01)) //if there was a symbol transition, adjust PLL { if(Ax25GetRxStage(demod) != RX_STAGE_FRAME) //not in a frame { dem->pll = (int)(dem->pll * PLLNOTLOCKED); //adjust PLL faster } else //in a frame { dem->pll = (int)(dem->pll * PLLLOCKED); //adjust PLL slower } } } void ModemTxTestStart(enum ModemTxTestMode type) { if(txTestState != TEST_DISABLED) //TX test is already running ModemTxTestStop(); //stop this test setPtt(1); //PTT on txTestState = type; //DAC timer TIM1->PSC = 17; //72/18=4 MHz TIM1->DIER = TIM_DIER_UIE; //enable interrupt TIM1->CR1 |= TIM_CR1_CEN; //enable timer TIM2->CR1 &= ~TIM_CR1_CEN; //disable RX timer NVIC_DisableIRQ(DMA1_Channel2_IRQn); //disable RX DMA interrupt NVIC_EnableIRQ(TIM1_UP_IRQn); //enable timer 1 for PWM if(type == TEST_MARK) { TIM1->ARR = markFreq; } else if(type == TEST_SPACE) { TIM1->ARR = spaceFreq; } else //alternating tones { //enable baudrate generator TIM3->PSC = 71; //72/72=1 MHz TIM3->DIER = TIM_DIER_UIE; //enable interrupt TIM3->ARR = baudRate; //set timer interval TIM3->CR1 = TIM_CR1_CEN; //enable timer NVIC_EnableIRQ(TIM3_IRQn); //enable interrupt in NVIC } } void ModemTxTestStop(void) { txTestState = TEST_DISABLED; TIM3->CR1 &= ~TIM_CR1_CEN; //turn off timers TIM1->CR1 &= ~TIM_CR1_CEN; TIM2->CR1 |= TIM_CR1_CEN; //enable RX timer NVIC_DisableIRQ(TIM3_IRQn); NVIC_DisableIRQ(TIM1_UP_IRQn); NVIC_EnableIRQ(DMA1_Channel2_IRQn); setPtt(0); //PTT off } void ModemTransmitStart(void) { setPtt(1); //PTT on TIM1->PSC = 17; TIM1->DIER |= TIM_DIER_UIE; TIM3->PSC = 71; TIM3->DIER |= TIM_DIER_UIE; TIM3->ARR = baudRate; TIM3->CR1 = TIM_CR1_CEN; TIM1->CR1 = TIM_CR1_CEN; TIM2->CR1 &= ~TIM_CR1_CEN; NVIC_DisableIRQ(DMA1_Channel2_IRQn); NVIC_EnableIRQ(TIM1_UP_IRQn); NVIC_EnableIRQ(TIM3_IRQn); } /** * @brief Stop TX and go back to RX */ void ModemTransmitStop(void) { TIM2->CR1 |= TIM_CR1_CEN; TIM3->CR1 &= ~TIM_CR1_CEN; TIM1->CR1 &= ~TIM_CR1_CEN; NVIC_DisableIRQ(TIM1_UP_IRQn); NVIC_DisableIRQ(TIM3_IRQn); NVIC_EnableIRQ(DMA1_Channel2_IRQn); setPtt(0); TIM4->CCR1 = 44; //set around 50% duty cycle } /** * @brief Controls PTT output * @param[in] state 0 - PTT off, 1 - PTT on */ static void setPtt(uint8_t state) { if(state) PTT_ON; else PTT_OFF; } /** * @brief Initialize AFSK module */ void ModemInit(void) { /** * TIM1 is used for pushing samples to DAC (R2R or PWM) at 4 MHz * TIM3 is the baudrate generator for TX running at 1 MHz * TIM4 is the PWM generator with no software interrupt * TIM2 is the RX sampling timer with no software interrupt, but it directly calls DMA */ RCC->APB2ENR |= RCC_APB2ENR_IOPBEN; RCC->APB2ENR |= RCC_APB2ENR_IOPCEN; RCC->APB2ENR |= RCC_APB2ENR_IOPAEN; RCC->APB1ENR |= RCC_APB1ENR_TIM2EN; RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; RCC->AHBENR |= RCC_AHBENR_DMA1EN; GPIOC->CRH |= GPIO_CRH_MODE13_1; //DCD LED on PC13 GPIOC->CRH &= ~GPIO_CRH_MODE13_0; GPIOC->CRH &= ~GPIO_CRH_CNF13; GPIOB->CRH &= ~0xFFFF0000; //R2R output on PB12-PB15 GPIOB->CRH |= 0x22220000; GPIOA->CRL &= ~GPIO_CRL_CNF0; //ADC input on PA0 GPIOA->CRL &= ~GPIO_CRL_MODE0; GPIOB->CRL |= GPIO_CRL_MODE7_1; //PTT output on PB7 GPIOB->CRL &= ~GPIO_CRL_MODE7_0; GPIOB->CRL &= ~GPIO_CRL_CNF7; GPIOB->CRL |= GPIO_CRL_MODE5_1; //2nd DCD LED on PB5 GPIOB->CRL &= ~GPIO_CRL_MODE5_0; GPIOB->CRL &= ~GPIO_CRL_CNF5; RCC->CFGR |= RCC_CFGR_ADCPRE_1; //ADC prescaler /6 RCC->CFGR &= ~RCC_CFGR_ADCPRE_0; ADC1->CR2 |= ADC_CR2_CONT; //continuous conversion ADC1->CR2 |= ADC_CR2_EXTSEL; ADC1->SQR1 &= ~ADC_SQR1_L; //1 conversion ADC1->SMPR2 |= ADC_SMPR2_SMP0_2; //41.5 cycle sampling ADC1->SQR3 &= ~ADC_SQR3_SQ1; //channel 0 is first in the sequence ADC1->CR2 |= ADC_CR2_ADON; //ADC on ADC1->CR2 |= ADC_CR2_RSTCAL; //calibrate ADC while(ADC1->CR2 & ADC_CR2_RSTCAL) ; ADC1->CR2 |= ADC_CR2_CAL; while(ADC1->CR2 & ADC_CR2_CAL) ; ADC1->CR2 |= ADC_CR2_EXTTRIG; ADC1->CR2 |= ADC_CR2_SWSTART; //start ADC conversion //prepare DMA DMA1_Channel2->CCR |= DMA_CCR_MSIZE_0; //16 bit memory region DMA1_Channel2->CCR &= ~DMA_CCR_MSIZE_1; DMA1_Channel2->CCR |= DMA_CCR_PSIZE_0; DMA1_Channel2->CCR &= ~DMA_CCR_PSIZE_1; DMA1_Channel2->CCR |= DMA_CCR_MINC | DMA_CCR_CIRC| DMA_CCR_TCIE; //circular mode, memory increment and interrupt DMA1_Channel2->CNDTR = 4; //4 samples DMA1_Channel2->CPAR = (uint32_t)&(ADC1->DR); //ADC data register address DMA1_Channel2->CMAR = (uint32_t)samples; //sample buffer address DMA1_Channel2->CCR |= DMA_CCR_EN; //enable DMA NVIC_EnableIRQ(DMA1_Channel2_IRQn); TIM2->PSC = 17; //72/18=4 MHz TIM2->DIER |= TIM_DIER_UDE; //enable calling DMA on timer tick TIM2->ARR = 103; //4MHz / 104 =~38400 Hz (4*9600 Hz for 4x oversampling) TIM2->CR1 |= TIM_CR1_CEN; //enable timer markFreq = 4000000 / (DAC_SINE_SIZE * (uint32_t)MODEM_MARK_FREQUENCY) - 1; //set mark frequency spaceFreq = 4000000 / (DAC_SINE_SIZE * (uint32_t)MODEM_SPACE_FREQUENCY) - 1; //set space frequency baudRate = 1000000 / (uint32_t)MODEM_BAUDRATE - 1; //set baudrate for(uint8_t i = 0; i < N; i++) //calculate correlator coefficients { coeffLoI[i] = 4095.f * cosf(2.f * 3.1416f * (float)i / (float)N * MODEM_MARK_FREQUENCY / MODEM_BAUDRATE); coeffLoQ[i] = 4095.f * sinf(2.f * 3.1416f * (float)i / (float)N * MODEM_MARK_FREQUENCY / MODEM_BAUDRATE); coeffHiI[i] = 4095.f * cosf(2.f * 3.1416f * (float)i / (float)N * MODEM_SPACE_FREQUENCY / MODEM_BAUDRATE); coeffHiQ[i] = 4095.f * sinf(2.f * 3.1416f * (float)i / (float)N * MODEM_SPACE_FREQUENCY / MODEM_BAUDRATE); } for(uint8_t i = 0; i < DAC_SINE_SIZE; i++) //calculate DAC sine samples { if(ModemConfig.usePWM) dacSine[i] = ((sinf(2.f * 3.1416f * (float)i / (float)DAC_SINE_SIZE) + 1.f) * 45.f); else dacSine[i] = ((7.f * sinf(2.f * 3.1416f * (float)i / (float)DAC_SINE_SIZE)) + 8.f); } if(ModemConfig.flatAudioIn) //when used with flat audio input, use deemphasis and flat modems { demodState[0].emphasis = EMPHASIS_NONE; demodState[1].emphasis = DEEMPHASIS; } else //when used with normal (filtered) audio input, use flat and preemphasis modems { demodState[0].emphasis = EMPHASIS_NONE; demodState[1].emphasis = PREEMPHASIS; } if(ModemConfig.usePWM) { RCC->APB1ENR |= RCC_APB1ENR_TIM4EN; //configure timer GPIOB->CRL |= GPIO_CRL_CNF6_1; //configure pin for PWM GPIOB->CRL |= GPIO_CRL_MODE6; GPIOB->CRL &= ~GPIO_CRL_CNF6_0; //set up PWM generation TIM4->PSC = 7; //72MHz/8=9MHz TIM4->ARR = 90; //9MHz/90=100kHz TIM4->CCMR1 |= TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2; TIM4->CCER |= TIM_CCER_CC1E; TIM4->CCR1 = 44; //initial duty cycle TIM4->CR1 |= TIM_CR1_CEN; } } /** * @} */