pimoroni-pico/examples/cosmic_unicorn/cosmic_rainbow.cpp

185 wiersze
4.2 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "pico/stdlib.h"
#include "libraries/pico_graphics/pico_graphics.hpp"
#include "cosmic_unicorn.hpp"
using namespace pimoroni;
PicoGraphics_PenRGB888 graphics(32, 32, nullptr);
CosmicUnicorn cosmic_unicorn;
// HSV Conversion expects float inputs in the range of 0.00-1.00 for each channel
// Outputs are rgb in the range 0-255 for each channel
void from_hsv(float h, float s, float v, uint8_t &r, uint8_t &g, uint8_t &b) {
float i = floor(h * 6.0f);
float f = h * 6.0f - i;
v *= 255.0f;
uint8_t p = v * (1.0f - s);
uint8_t q = v * (1.0f - f * s);
uint8_t t = v * (1.0f - (1.0f - f) * s);
switch (int(i) % 6) {
case 0: r = v; g = t; b = p; break;
case 1: r = q; g = v; b = p; break;
case 2: r = p; g = v; b = t; break;
case 3: r = p; g = q; b = v; break;
case 4: r = t; g = p; b = v; break;
case 5: r = v; g = p; b = q; break;
}
}
void text(std::string t, Point p, float s = 1.0f, float a = 1.0f) {
int w = graphics.measure_text(t, s);
p.x += (53 / 2) - (w / 2);
p.y += (11 / 2);
graphics.text(t, Point(p.x, p.y), -1, s, a);
//graphics.text(t, Point(p.x + 1, p.y), -1, s, a);
//graphics.text(t, Point(p.x + 1, p.y + 1), -1, s, a);
//graphics.text(t, Point(p.x, p.y + 1), -1, s, a);
}
struct star_t {
float dx, dy, x, y, a;
uint8_t brightness() {
int b = a / 5;
return b > 15 ? 15 : b;
}
};
void init_star(star_t &s) {
s.x = ((rand() % 100) / 5.0f) - 10.0f;
s.y = ((rand() % 100) / 10.0f) - 5.0f;
s.dx = s.x / 10.0f;
s.dy = s.y / 10.0f;
s.a = 0;
}
void step_star(star_t &s) {
s.x += s.dx;
s.y += s.dy;
s.a++;
if(s.a > 100) {
init_star(s);
}
}
int main() {
stdio_init_all();
uint8_t hue_map[53][3];
for(int i = 0; i < 53; i++) {
from_hsv(i / 53.0f, 1.0f, 1.0f, hue_map[i][0], hue_map[i][1], hue_map[i][2]);
}
star_t stars[100];
for(int i = 0; i < 100; i++) {
init_star(stars[i]);
stars[i].a = i;
}
gpio_set_function(28, GPIO_FUNC_SIO);
gpio_set_dir(28, GPIO_OUT);
for(int i = 0; i < 10; i++) {
gpio_put(28, !gpio_get(28));
sleep_ms(100);
}
sleep_ms(1000);
gpio_put(28,true);
cosmic_unicorn.init();
float i = 0;
float hue_offset = 0.0f;
bool animate = true;
float stripe_width = 3.0f;
float speed = 1.0f;
float curve = 0.0f;
while(true) {
if(animate) {
i += speed;
}
if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_VOLUME_UP)) {
curve += 0.05;
if(hue_offset > 1.0f) hue_offset = 1.0f;
}
if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_VOLUME_DOWN)) {
curve -= 0.05;
if(hue_offset < 0.0f) hue_offset = 0.0f;
}
if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_BRIGHTNESS_UP)) {
cosmic_unicorn.adjust_brightness(+0.01);
}
if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_BRIGHTNESS_DOWN)) {
cosmic_unicorn.adjust_brightness(-0.01);
}
if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_SLEEP)) {
animate = false;
}
if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_A)) {
speed += 0.05f;
speed = speed >= 10.0f ? 10.0f : speed;
animate = true;
}
if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_B)) {
speed -= 0.05f;
speed = speed <= 0.0f ? 0.0f : speed;
animate = true;
}
if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_C)) {
stripe_width += 0.05f;
stripe_width = stripe_width >= 10.0f ? 10.0f : stripe_width;
}
if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_D)) {
stripe_width -= 0.05f;
stripe_width = stripe_width <= 1.0f ? 1.0f : stripe_width;
}
for(int x = 0; x < 32; x++) {
for(int y = 0; y < 32; y++) {
int v = ((sin((x + y) / stripe_width + (sin((y * 3.1415927f * 2.0f) / 11.0f) * curve) + i / 15.0f) + 1.5f) / 2.5f) * 255.0f;
uint8_t r = (hue_map[x][0] * v) / 256;
uint8_t g = (hue_map[x][1] * v) / 256;
uint8_t b = (hue_map[x][2] * v) / 256;
graphics.set_pen(r, g, b);
graphics.pixel(Point(x, y));
}
}
cosmic_unicorn.update(&graphics);
printf("%d\n", cosmic_unicorn.light());
sleep_ms(20);
}
printf("done\n");
return 0;
}