#include #include #include #include "pico/stdlib.h" #include "libraries/pico_graphics/pico_graphics.hpp" #include "cosmic_unicorn.hpp" using namespace pimoroni; PicoGraphics_PenRGB888 graphics(32, 32, nullptr); CosmicUnicorn cosmic_unicorn; // HSV Conversion expects float inputs in the range of 0.00-1.00 for each channel // Outputs are rgb in the range 0-255 for each channel void from_hsv(float h, float s, float v, uint8_t &r, uint8_t &g, uint8_t &b) { float i = floor(h * 6.0f); float f = h * 6.0f - i; v *= 255.0f; uint8_t p = v * (1.0f - s); uint8_t q = v * (1.0f - f * s); uint8_t t = v * (1.0f - (1.0f - f) * s); switch (int(i) % 6) { case 0: r = v; g = t; b = p; break; case 1: r = q; g = v; b = p; break; case 2: r = p; g = v; b = t; break; case 3: r = p; g = q; b = v; break; case 4: r = t; g = p; b = v; break; case 5: r = v; g = p; b = q; break; } } void text(std::string t, Point p, float s = 1.0f, float a = 1.0f) { int w = graphics.measure_text(t, s); p.x += (53 / 2) - (w / 2); p.y += (11 / 2); graphics.text(t, Point(p.x, p.y), -1, s, a); //graphics.text(t, Point(p.x + 1, p.y), -1, s, a); //graphics.text(t, Point(p.x + 1, p.y + 1), -1, s, a); //graphics.text(t, Point(p.x, p.y + 1), -1, s, a); } struct star_t { float dx, dy, x, y, a; uint8_t brightness() { int b = a / 5; return b > 15 ? 15 : b; } }; void init_star(star_t &s) { s.x = ((rand() % 100) / 5.0f) - 10.0f; s.y = ((rand() % 100) / 10.0f) - 5.0f; s.dx = s.x / 10.0f; s.dy = s.y / 10.0f; s.a = 0; } void step_star(star_t &s) { s.x += s.dx; s.y += s.dy; s.a++; if(s.a > 100) { init_star(s); } } int main() { stdio_init_all(); uint8_t hue_map[53][3]; for(int i = 0; i < 53; i++) { from_hsv(i / 53.0f, 1.0f, 1.0f, hue_map[i][0], hue_map[i][1], hue_map[i][2]); } star_t stars[100]; for(int i = 0; i < 100; i++) { init_star(stars[i]); stars[i].a = i; } gpio_set_function(28, GPIO_FUNC_SIO); gpio_set_dir(28, GPIO_OUT); for(int i = 0; i < 10; i++) { gpio_put(28, !gpio_get(28)); sleep_ms(100); } sleep_ms(1000); gpio_put(28,true); cosmic_unicorn.init(); float i = 0; float hue_offset = 0.0f; bool animate = true; float stripe_width = 3.0f; float speed = 1.0f; float curve = 0.0f; while(true) { if(animate) { i += speed; } if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_VOLUME_UP)) { curve += 0.05; if(hue_offset > 1.0f) hue_offset = 1.0f; } if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_VOLUME_DOWN)) { curve -= 0.05; if(hue_offset < 0.0f) hue_offset = 0.0f; } if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_BRIGHTNESS_UP)) { cosmic_unicorn.adjust_brightness(+0.01); } if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_BRIGHTNESS_DOWN)) { cosmic_unicorn.adjust_brightness(-0.01); } if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_SLEEP)) { animate = false; } if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_A)) { speed += 0.05f; speed = speed >= 10.0f ? 10.0f : speed; animate = true; } if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_B)) { speed -= 0.05f; speed = speed <= 0.0f ? 0.0f : speed; animate = true; } if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_C)) { stripe_width += 0.05f; stripe_width = stripe_width >= 10.0f ? 10.0f : stripe_width; } if(cosmic_unicorn.is_pressed(cosmic_unicorn.SWITCH_D)) { stripe_width -= 0.05f; stripe_width = stripe_width <= 1.0f ? 1.0f : stripe_width; } for(int x = 0; x < 32; x++) { for(int y = 0; y < 32; y++) { int v = ((sin((x + y) / stripe_width + (sin((y * 3.1415927f * 2.0f) / 11.0f) * curve) + i / 15.0f) + 1.5f) / 2.5f) * 255.0f; uint8_t r = (hue_map[x][0] * v) / 256; uint8_t g = (hue_map[x][1] * v) / 256; uint8_t b = (hue_map[x][2] * v) / 256; graphics.set_pen(r, g, b); graphics.pixel(Point(x, y)); } } cosmic_unicorn.update(&graphics); printf("%d\n", cosmic_unicorn.light()); sleep_ms(20); } printf("done\n"); return 0; }