micropython/py/compile2.c

3505 wiersze
125 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/scope.h"
#include "py/emit.h"
#include "py/compile.h"
#include "py/runtime.h"
#include "py/asmbase.h"
#if MICROPY_ENABLE_COMPILER && MICROPY_USE_SMALL_HEAP_COMPILER
#if MICROPY_PY_ASYNC_AWAIT
#error "async/await syntax not implemented with this parser/compiler"
#endif
// TODO need to mangle __attr names
#define INVALID_LABEL (0xffff)
typedef enum {
// define rules with a compile function
#define DEF_RULE(rule, comp, kind, ...) PN_##rule,
#define DEF_RULE_NC(rule, kind, ...)
#include "py/grammar.h"
#undef DEF_RULE
#undef DEF_RULE_NC
PN_const_object, // special node for a constant, generic Python object
// define rules without a compile function
#define DEF_RULE(rule, comp, kind, ...)
#define DEF_RULE_NC(rule, kind, ...) PN_##rule,
#include "py/grammar.h"
#undef DEF_RULE
#undef DEF_RULE_NC
} pn_kind_t;
#define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE
#if NEED_METHOD_TABLE
// we need a method table to do the lookup for the emitter functions
#define EMIT(fun) (comp->emit_method_table->fun(comp->emit))
#define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__))
#define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.fast(comp->emit, qst, local_num))
#define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst))
#else
// if we only have the bytecode emitter enabled then we can do a direct call to the functions
#define EMIT(fun) (mp_emit_bc_##fun(comp->emit))
#define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__))
#define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_fast(comp->emit, qst, local_num))
#define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst))
#endif
#if MICROPY_EMIT_INLINE_ASM
// define macros for inline assembler
#if MICROPY_EMIT_INLINE_THUMB
#define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb
#define ASM_EMITTER(f) emit_inline_thumb_##f
#elif MICROPY_EMIT_INLINE_XTENSA
#define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa
#define ASM_EMITTER(f) emit_inline_xtensa_##f
#else
#error "unknown asm emitter"
#endif
#endif
#define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm))
#define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__))
// elements in this struct are ordered to make it compact
typedef struct _compiler_t {
qstr source_file;
uint8_t is_repl;
uint8_t pass; // holds enum type pass_kind_t
uint8_t have_star;
// try to keep compiler clean from nlr
mp_obj_t compile_error; // set to an exception object if there's an error
size_t compile_error_line; // set to best guess of line of error
uint next_label;
uint16_t num_dict_params;
uint16_t num_default_params;
uint16_t break_label; // highest bit set indicates we are breaking out of a for loop
uint16_t continue_label;
uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT
uint16_t break_continue_except_level;
mp_uint_t *co_data;
size_t num_scopes;
scope_t **scopes;
scope_t *scope_cur;
emit_t *emit; // current emitter
#if NEED_METHOD_TABLE
const emit_method_table_t *emit_method_table; // current emit method table
#endif
#if MICROPY_EMIT_INLINE_ASM
emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm
const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm
#endif
} compiler_t;
STATIC void compile_error_set_line(compiler_t *comp, const byte *p) {
// if the line of the error is unknown then try to update it from the parse data
if (comp->compile_error_line == 0 && p != NULL && pt_is_any_rule(p)) {
size_t rule_id, src_line;
const byte *ptop;
pt_rule_extract(p, &rule_id, &src_line, &ptop);
comp->compile_error_line = src_line;
}
}
STATIC void compile_syntax_error(compiler_t *comp, const byte *p, const char *msg) {
// only register the error if there has been no other error
if (comp->compile_error == MP_OBJ_NULL) {
comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
compile_error_set_line(comp, p);
}
}
STATIC void compile_trailer_paren_helper(compiler_t *comp, const byte *p_arglist, bool is_method_call, int n_positional_extra);
STATIC void compile_comprehension(compiler_t *comp, const byte *p, scope_kind_t kind);
STATIC const byte *compile_node(compiler_t *comp, const byte *p);
STATIC uint comp_next_label(compiler_t *comp) {
return comp->next_label++;
}
STATIC void compile_increase_except_level(compiler_t *comp) {
comp->cur_except_level += 1;
if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
comp->scope_cur->exc_stack_size = comp->cur_except_level;
}
}
STATIC void compile_decrease_except_level(compiler_t *comp) {
assert(comp->cur_except_level > 0);
comp->cur_except_level -= 1;
}
STATIC void scope_new_and_link(compiler_t *comp, size_t scope_idx, scope_kind_t kind, const byte *p, uint emit_options) {
scope_t *scope = scope_new(kind, p, comp->source_file, emit_options);
scope->parent = comp->scope_cur;
comp->scopes[scope_idx] = scope;
}
typedef void (*apply_list_fun_t)(compiler_t *comp, const byte *p);
STATIC void apply_to_single_or_list(compiler_t *comp, const byte *p, pn_kind_t pn_list_kind, apply_list_fun_t f) {
if (pt_is_rule(p, pn_list_kind)) {
const byte *ptop;
p = pt_rule_extract_top(p, &ptop);
while (p != ptop) {
f(comp, p);
p = pt_next(p);
}
} else if (!pt_is_null(p)) {
f(comp, p);
}
}
STATIC void compile_generic_all_nodes(compiler_t *comp, const byte *p, const byte *ptop) {
while (p != ptop) {
//printf("NODE: %02x %02x %02x %02x\n", p[0], p[1], p[2], p[3]);
p = compile_node(comp, p);
}
}
STATIC void compile_load_id(compiler_t *comp, qstr qst) {
if (comp->pass == MP_PASS_SCOPE) {
mp_emit_common_get_id_for_load(comp->scope_cur, qst);
} else {
#if NEED_METHOD_TABLE
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst);
#else
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst);
#endif
}
}
STATIC void compile_store_id(compiler_t *comp, qstr qst) {
if (comp->pass == MP_PASS_SCOPE) {
mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
} else {
#if NEED_METHOD_TABLE
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst);
#else
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst);
#endif
}
}
STATIC void compile_delete_id(compiler_t *comp, qstr qst) {
if (comp->pass == MP_PASS_SCOPE) {
mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
} else {
#if NEED_METHOD_TABLE
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst);
#else
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst);
#endif
}
}
STATIC void c_tuple(compiler_t *comp, const byte *p, const byte *p_list, const byte *p_list_top) {
int total = 0;
if (p != NULL) {
compile_node(comp, p);
total += 1;
}
while (p_list != p_list_top) {
p_list = compile_node(comp, p_list);
total += 1;
}
EMIT_ARG(build_tuple, total);
}
STATIC void compile_generic_tuple(compiler_t *comp, const byte *p, const byte *ptop) {
// a simple tuple expression
c_tuple(comp, NULL, p, ptop);
}
STATIC bool node_is_const_false(const byte *p) {
return pt_is_tok(p, MP_TOKEN_KW_FALSE)
|| (pt_is_small_int(p) && pt_small_int_value(p) == 0);
}
STATIC bool node_is_const_true(const byte *p) {
return pt_is_tok(p, MP_TOKEN_KW_TRUE)
|| (pt_is_small_int(p) && pt_small_int_value(p) != 0);
}
STATIC const byte *c_if_cond(compiler_t *comp, const byte *p, bool jump_if, int label) {
if (node_is_const_false(p)) {
if (jump_if == false) {
EMIT_ARG(jump, label);
}
return pt_next(p);
} else if (node_is_const_true(p)) {
if (jump_if == true) {
EMIT_ARG(jump, label);
}
return pt_next(p);
} else if (pt_is_any_rule(p)) {
const byte *ptop;
const byte *p2 = pt_rule_extract_top(p, &ptop);
if (pt_is_rule(p, PN_or_test)) {
if (jump_if == false) {
and_or_logic1:;
uint label2 = comp_next_label(comp);
while (pt_next(p2) != ptop) {
p2 = c_if_cond(comp, p2, !jump_if, label2);
}
p2 = c_if_cond(comp, p2, jump_if, label);
EMIT_ARG(label_assign, label2);
} else {
and_or_logic2:
while (p2 != ptop) {
p2 = c_if_cond(comp, p2, jump_if, label);
}
}
return p2;
} else if (pt_is_rule(p, PN_and_test)) {
if (jump_if == false) {
goto and_or_logic2;
} else {
goto and_or_logic1;
}
} else if (pt_is_rule(p, PN_not_test_2)) {
return c_if_cond(comp, p2, !jump_if, label);
} else if (pt_is_rule(p, PN_atom_paren)) {
// cond is something in parenthesis
if (pt_is_rule_empty(p)) {
// empty tuple, acts as false for the condition
if (jump_if == false) {
EMIT_ARG(jump, label);
}
} else {
assert(pt_is_rule(pt_rule_first(p), PN_testlist_comp));
// non-empty tuple, acts as true for the condition
if (jump_if == true) {
EMIT_ARG(jump, label);
}
}
return pt_next(p);
}
}
// nothing special, fall back to default compiling for node and jump
p = compile_node(comp, p);
EMIT_ARG(pop_jump_if, jump_if, label);
return p;
}
typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
STATIC void c_assign(compiler_t *comp, const byte *p, assign_kind_t kind);
STATIC void c_assign_atom_expr(compiler_t *comp, const byte *p_orig, assign_kind_t assign_kind) {
const byte *ptop;
const byte *p0 = pt_rule_extract_top(p_orig, &ptop);
if (assign_kind != ASSIGN_AUG_STORE) {
compile_node(comp, p0);
}
const byte *p1 = pt_next(p0);
if (pt_is_null_with_top(p1, ptop)) {
cannot_assign:
compile_syntax_error(comp, p_orig, "can't assign to expression");
return;
}
if (pt_is_rule(p1, PN_atom_expr_trailers)) {
const byte *p1top;
p1 = pt_rule_extract_top(p1, &p1top);
for (;;) {
const byte *p1next = pt_next(p1);
if (p1next >= p1top) {
break;
}
if (assign_kind != ASSIGN_AUG_STORE) {
compile_node(comp, p1);
}
p1 = p1next;
}
// p1 now points to final trailer for store
}
if (pt_is_rule(p1, PN_trailer_bracket)) {
if (assign_kind == ASSIGN_AUG_STORE) {
EMIT(rot_three);
EMIT(store_subscr);
} else {
compile_node(comp, pt_rule_first(p1));
if (assign_kind == ASSIGN_AUG_LOAD) {
EMIT(dup_top_two);
EMIT(load_subscr);
} else {
EMIT(store_subscr);
}
}
} else if (pt_is_rule(p1, PN_trailer_period)) {
qstr attr;
pt_extract_id(pt_rule_first(p1), &attr);
if (assign_kind == ASSIGN_AUG_LOAD) {
EMIT(dup_top);
EMIT_ARG(load_attr, attr);
} else {
if (assign_kind == ASSIGN_AUG_STORE) {
EMIT(rot_two);
}
EMIT_ARG(store_attr, attr);
}
} else {
goto cannot_assign;
}
if (!pt_is_null_with_top(pt_next(p1), ptop)) {
goto cannot_assign;
}
}
// we need to allow for a caller passing in 1 initial node followed by an array of nodes
STATIC void c_assign_tuple(compiler_t *comp, const byte *p_head, const byte *p_tail, const byte *p_tail_top) {
uint num_head = (p_head == NULL) ? 0 : 1;
uint num_tail = pt_num_nodes(p_tail, p_tail_top);
// look for star expression
const byte *p_star = NULL;
if (num_head != 0 && pt_is_rule(p_head, PN_star_expr)) {
EMIT_ARG(unpack_ex, 0, num_tail);
p_star = p_head;
}
uint i = 0;
for (const byte *p = p_tail; p != p_tail_top; p = pt_next(p), ++i) {
if (pt_is_rule(p, PN_star_expr)) {
if (p_star == NULL) {
EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1);
p_star = p;
} else {
compile_syntax_error(comp, p, "multiple *x in assignment");
return;
}
}
}
if (p_star == NULL) {
EMIT_ARG(unpack_sequence, num_head + num_tail);
}
if (num_head != 0) {
if (p_head == p_star) {
c_assign(comp, pt_rule_first(p_head), ASSIGN_STORE);
} else {
c_assign(comp, p_head, ASSIGN_STORE);
}
}
for (const byte *p = p_tail; p != p_tail_top; p = pt_next(p)) {
if (p == p_star) {
c_assign(comp, pt_rule_first(p), ASSIGN_STORE);
} else {
c_assign(comp, p, ASSIGN_STORE);
}
}
}
// assigns top of stack to pn
STATIC void c_assign(compiler_t *comp, const byte *p, assign_kind_t assign_kind) {
assert(!pt_is_null(p));
if (pt_is_any_id(p)) {
qstr arg;
p = pt_extract_id(p, &arg);
switch (assign_kind) {
case ASSIGN_STORE:
case ASSIGN_AUG_STORE:
compile_store_id(comp, arg);
break;
case ASSIGN_AUG_LOAD:
default:
compile_load_id(comp, arg);
break;
}
} else if (!pt_is_any_rule(p)) {
compile_syntax_error(comp, p, "can't assign to literal");
} else {
switch (pt_rule_extract_rule_id(p)) {
case PN_atom_expr_normal:
// lhs is an index or attribute
c_assign_atom_expr(comp, p, assign_kind);
break;
case PN_testlist_star_expr:
case PN_exprlist: {
// lhs is a tuple
if (assign_kind != ASSIGN_STORE) {
goto bad_aug;
}
const byte *ptop;
const byte *p0 = pt_rule_extract_top(p, &ptop);
c_assign_tuple(comp, NULL, p0, ptop);
break;
}
case PN_atom_paren: {
// lhs is something in parenthesis
const byte *ptop;
const byte *p0 = pt_rule_extract_top(p, &ptop);
if (pt_is_null_with_top(p0, ptop)) {
// empty tuple
goto cannot_assign;
} else {
assert(pt_is_rule(p0, PN_testlist_comp));
if (assign_kind != ASSIGN_STORE) {
goto bad_aug;
}
p = p0;
goto testlist_comp;
}
break;
}
case PN_atom_bracket: {
// lhs is something in brackets
if (assign_kind != ASSIGN_STORE) {
goto bad_aug;
}
const byte *ptop;
const byte *p0 = pt_rule_extract_top(p, &ptop); // skip rule header
if (pt_is_null_with_top(p0, ptop)) {
// empty list, assignment allowed
c_assign_tuple(comp, NULL, NULL, NULL);
} else if (pt_is_rule(p0, PN_testlist_comp)) {
p = p0;
goto testlist_comp;
} else {
// brackets around 1 item
c_assign_tuple(comp, p0, NULL, NULL);
}
break;
}
default:
goto cannot_assign;
}
return;
testlist_comp:;
// lhs is a sequence
const byte *ptop;
const byte *p0 = pt_rule_extract_top(p, &ptop);
const byte *p1 = pt_next(p0);
if (pt_is_rule(p1, PN_testlist_comp_3b)) {
// sequence of one item, with trailing comma
assert(pt_is_rule_empty(p1));
c_assign_tuple(comp, p0, NULL, NULL);
} else if (pt_is_rule(p1, PN_testlist_comp_3c)) {
// sequence of many items
p1 = pt_rule_extract_top(p1, &ptop);
c_assign_tuple(comp, p0, p1, ptop);
} else if (pt_is_rule(p1, PN_comp_for)) {
goto cannot_assign;
} else {
// sequence with 2 items
c_assign_tuple(comp, NULL, p0, pt_next(p1));
}
}
return;
cannot_assign:
compile_syntax_error(comp, p, "can't assign to expression");
return;
bad_aug:
compile_syntax_error(comp, p, "illegal expression for augmented assignment");
}
// stuff for lambda and comprehensions and generators:
// if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults
// if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults
// if both exist, the tuple is above the dictionary (ie the first pop gets the tuple)
STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) {
assert(n_pos_defaults >= 0);
assert(n_kw_defaults >= 0);
// set flags
if (n_kw_defaults > 0) {
this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS;
}
this_scope->num_def_pos_args = n_pos_defaults;
// make closed over variables, if any
// ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
int nfree = 0;
if (comp->scope_cur->kind != SCOPE_MODULE) {
for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
id_info_t *id = &comp->scope_cur->id_info[i];
if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
for (int j = 0; j < this_scope->id_info_len; j++) {
id_info_t *id2 = &this_scope->id_info[j];
if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
// in MicroPython we load closures using LOAD_FAST
EMIT_LOAD_FAST(id->qst, id->local_num);
nfree += 1;
}
}
}
}
}
// make the function/closure
if (nfree == 0) {
EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults);
} else {
EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults);
}
}
STATIC void compile_funcdef_lambdef_param(compiler_t *comp, const byte *p) {
const byte *p_orig = p;
if (pt_is_rule(p, PN_typedargslist_star)
|| pt_is_rule(p, PN_varargslist_star)) {
comp->have_star = true;
/* don't need to distinguish bare from named star
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// bare star
} else {
// named star
}
*/
} else if (pt_is_rule(p, PN_typedargslist_dbl_star)
|| pt_is_rule(p, PN_varargslist_dbl_star)) {
// named double star
// TODO do we need to do anything with this?
} else {
const byte *p_id;
const byte *p_colon = NULL;
const byte *p_equal = NULL;
if (pt_is_any_id(p)) {
// this parameter is just an id
p_id = p;
} else if (pt_is_rule(p, PN_typedargslist_name)) {
// this parameter has a colon and/or equal specifier
const byte *ptop;
p = pt_rule_extract_top(p, &ptop);
p_id = p;
p = pt_next(p);
if (p != ptop) {
p_colon = p;
p = pt_next(p);
if (p != ptop) {
p_equal = p;
}
}
} else {
assert(pt_is_rule(p, PN_varargslist_name)); // should be
// this parameter has an equal specifier
p_id = pt_rule_first(p);
p_equal = pt_next(p_id);
}
qstr q_id;
pt_extract_id(p_id, &q_id);
if (p_equal == NULL || pt_is_null(p_equal)) {
// this parameter does not have a default value
// check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid)
if (!comp->have_star && comp->num_default_params != 0) {
compile_syntax_error(comp, p_orig, "non-default argument follows default argument");
return;
}
} else {
// this parameter has a default value
// in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why
if (comp->have_star) {
comp->num_dict_params += 1;
// in MicroPython we put the default dict parameters into a dictionary using the bytecode
if (comp->num_dict_params == 1) {
// in MicroPython we put the default positional parameters into a tuple using the bytecode
// we need to do this here before we start building the map for the default keywords
if (comp->num_default_params > 0) {
EMIT_ARG(build_tuple, comp->num_default_params);
} else {
EMIT(load_null); // sentinel indicating empty default positional args
}
// first default dict param, so make the map
EMIT_ARG(build_map, 0);
}
// compile value then key, then store it to the dict
compile_node(comp, p_equal);
EMIT_ARG(load_const_str, q_id);
EMIT(store_map);
} else {
comp->num_default_params += 1;
compile_node(comp, p_equal);
}
}
// TODO p_colon not implemented
(void)p_colon;
}
}
STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, const byte *p, pn_kind_t pn_list_kind) {
// When we call compile_funcdef_lambdef_param below it can compile an arbitrary
// expression for default arguments, which may contain a lambda. The lambda will
// call here in a nested way, so we must save and restore the relevant state.
bool orig_have_star = comp->have_star;
uint16_t orig_num_dict_params = comp->num_dict_params;
uint16_t orig_num_default_params = comp->num_default_params;
// compile default parameters
comp->have_star = false;
comp->num_dict_params = 0;
comp->num_default_params = 0;
apply_to_single_or_list(comp, p, pn_list_kind, compile_funcdef_lambdef_param);
if (comp->compile_error != MP_OBJ_NULL) {
return;
}
// in MicroPython we put the default positional parameters into a tuple using the bytecode
// the default keywords args may have already made the tuple; if not, do it now
if (comp->num_default_params > 0 && comp->num_dict_params == 0) {
EMIT_ARG(build_tuple, comp->num_default_params);
EMIT(load_null); // sentinel indicating empty default keyword args
}
// make the function
close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params);
// restore state
comp->have_star = orig_have_star;
comp->num_dict_params = orig_num_dict_params;
comp->num_default_params = orig_num_default_params;
}
// leaves function object on stack
// returns function name
STATIC qstr compile_funcdef_helper(compiler_t *comp, const byte *p, uint emit_options) {
mp_int_t scope_idx;
p = pt_get_small_int(p, &scope_idx);
if (comp->pass == MP_PASS_SCOPE) {
// create a new scope for this function
scope_new_and_link(comp, scope_idx, SCOPE_FUNCTION, p, emit_options);
}
p = pt_next(p); // skip function name
// get the scope for this function
scope_t *fscope = comp->scopes[scope_idx];
// compile the function definition
compile_funcdef_lambdef(comp, fscope, p, PN_typedargslist);
// return its name (the 'f' in "def f(...):")
return fscope->simple_name;
}
// leaves class object on stack
// returns class name
STATIC qstr compile_classdef_helper(compiler_t *comp, const byte *p, uint emit_options) {
mp_int_t scope_idx;
p = pt_get_small_int(p, &scope_idx);
if (comp->pass == MP_PASS_SCOPE) {
// create a new scope for this class
scope_new_and_link(comp, scope_idx, SCOPE_CLASS, p, emit_options);
}
EMIT(load_build_class);
// scope for this class
scope_t *cscope = comp->scopes[scope_idx];
// compile the class
close_over_variables_etc(comp, cscope, 0, 0);
// get its name
EMIT_ARG(load_const_str, cscope->simple_name);
// second node has parent classes, if any
// empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling
const byte *p_parents = pt_next(p);
if (pt_is_rule(p_parents, PN_classdef_2)) {
p_parents = NULL;
}
compile_trailer_paren_helper(comp, p_parents, false, 2);
// return its name (the 'C' in class C(...):")
return cscope->simple_name;
}
// returns true if it was a built-in decorator (even if the built-in had an error)
STATIC bool compile_built_in_decorator(compiler_t *comp, const byte *p, const byte *ptop, uint *emit_options) {
qstr qst;
p = pt_extract_id(p, &qst);
if (qst != MP_QSTR_micropython) {
return false;
}
if (p >= ptop || pt_next(p) != ptop) {
compile_syntax_error(comp, NULL, "invalid micropython decorator");
return true;
}
qstr attr;
p = pt_extract_id(p, &attr);
if (attr == MP_QSTR_bytecode) {
*emit_options = MP_EMIT_OPT_BYTECODE;
#if MICROPY_EMIT_NATIVE
} else if (attr == MP_QSTR_native) {
*emit_options = MP_EMIT_OPT_NATIVE_PYTHON;
} else if (attr == MP_QSTR_viper) {
*emit_options = MP_EMIT_OPT_VIPER;
#endif
#if MICROPY_EMIT_INLINE_ASM
} else if (attr == ASM_DECORATOR_QSTR) {
*emit_options = MP_EMIT_OPT_ASM;
#endif
} else {
compile_syntax_error(comp, NULL, "invalid micropython decorator");
}
return true;
}
STATIC void compile_decorated(compiler_t *comp, const byte *p, const byte *ptop) {
// get the list of decorators
ptop = mp_parse_node_extract_list(&p, PN_decorators);
// inherit emit options for this function/class definition
uint emit_options = comp->scope_cur->emit_options;
// compile each decorator
int num_non_built_in_decorators = 0;
while (p != ptop) {
assert(pt_is_rule(p, PN_decorator)); // should be
const byte *ptop_decorator;
p = pt_rule_extract_top(p, &ptop_decorator);
// first node contains the decorator function, which is a dotted name
const byte *ptop_dotted_name = mp_parse_node_extract_list(&p, PN_dotted_name);
// check for built-in decorators
if (compile_built_in_decorator(comp, p, ptop_dotted_name, &emit_options)) {
// this was a built-in
} else {
// not a built-in, compile normally
num_non_built_in_decorators += 1;
// compile the decorator function
p = compile_node(comp, p);
while (p != ptop_dotted_name) {
assert(pt_is_any_id(p)); // should be
qstr qst;
p = pt_extract_id(p, &qst);
EMIT_ARG(load_attr, qst);
}
// nodes[1] contains arguments to the decorator function, if any
if (!pt_is_null_with_top(p, ptop_decorator)) {
// call the decorator function with the arguments in nodes[1]
compile_node(comp, p);
}
}
p = ptop_decorator;
}
// compile the body (funcdef or classdef) and get its name
qstr body_name = 0;
p = pt_rule_first(ptop); // skip the rule header
if (pt_is_rule(ptop, PN_funcdef)) {
body_name = compile_funcdef_helper(comp, p, emit_options);
} else {
assert(pt_is_rule(ptop, PN_classdef)); // should be
body_name = compile_classdef_helper(comp, p, emit_options);
}
// call each decorator
while (num_non_built_in_decorators-- > 0) {
EMIT_ARG(call_function, 1, 0, 0);
}
// store func/class object into name
compile_store_id(comp, body_name);
}
STATIC void compile_funcdef(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
qstr fname = compile_funcdef_helper(comp, p, comp->scope_cur->emit_options);
// store function object into function name
compile_store_id(comp, fname);
}
STATIC void c_del_stmt(compiler_t *comp, const byte *p) {
if (pt_is_any_id(p)) {
qstr id;
pt_extract_id(p, &id);
compile_delete_id(comp, id);
} else if (pt_is_rule(p, PN_atom_expr_normal)) {
const byte *ptop;
const byte *p0 = pt_rule_extract_top(p, &ptop);
const byte *p1 = compile_node(comp, p0); // base of the power node
if (pt_is_rule(p1, PN_atom_expr_trailers)) {
const byte *p1top;
p1 = pt_rule_extract_top(p1, &p1top);
for (;;) {
const byte *p1next = pt_next(p1);
if (p1next == p1top) {
break;
}
compile_node(comp, p1);
p1 = p1next;
}
// p1 now points to final trailer for delete
}
const byte *p2;
if (pt_is_rule(p1, PN_trailer_bracket)) {
p2 = compile_node(comp, pt_rule_first(p1));
EMIT(delete_subscr);
} else if (pt_is_rule(p1, PN_trailer_period)) {
qstr id;
p2 = pt_extract_id(pt_rule_first(p1), &id);
EMIT_ARG(delete_attr, id);
} else {
goto cannot_delete;
}
if (!pt_is_null_with_top(p2, ptop)) {
goto cannot_delete;
}
} else if (pt_is_rule(p, PN_atom_paren)) {
if (pt_is_rule_empty(p)) {
goto cannot_delete;
} else {
p = pt_rule_first(p);
assert(pt_is_rule(p, PN_testlist_comp));
// TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp
// or, simplify the logic here my making the parser simplify everything to a list
const byte *p0 = pt_rule_first(p);
c_del_stmt(comp, p0);
const byte *p1 = pt_next(p0);
if (pt_is_rule(p1, PN_testlist_comp_3b)) {
// sequence of one item, with trailing comma
assert(pt_is_rule_empty(p1));
} else if (pt_is_rule(p1, PN_testlist_comp_3c)) {
// sequence of many items
const byte *ptop;
p1 = pt_rule_extract_top(p1, &ptop);
while (p1 != ptop) {
c_del_stmt(comp, p1);
p1 = pt_next(p1);
}
} else if (pt_is_rule(p1, PN_comp_for)) {
goto cannot_delete;
} else {
// sequence with 2 items
c_del_stmt(comp, p1);
}
}
} else {
// some arbitrary statment that we can't delete (eg del 1)
goto cannot_delete;
}
return;
cannot_delete:
compile_syntax_error(comp, p, "can't delete expression");
}
STATIC void compile_del_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
apply_to_single_or_list(comp, p, PN_exprlist, c_del_stmt);
}
STATIC void compile_break_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
if (comp->break_label == INVALID_LABEL) {
compile_syntax_error(comp, p, "'break' outside loop");
}
assert(comp->cur_except_level >= comp->break_continue_except_level);
EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level);
}
STATIC void compile_continue_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
if (comp->continue_label == INVALID_LABEL) {
compile_syntax_error(comp, p, "'continue' outside loop");
}
assert(comp->cur_except_level >= comp->break_continue_except_level);
EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level);
}
STATIC void compile_return_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
if (comp->scope_cur->kind != SCOPE_FUNCTION) {
compile_syntax_error(comp, NULL, "'return' outside function");
return;
}
if (pt_is_null_with_top(p, ptop)) {
// no argument to 'return', so return None
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
#if 0
// TODO do we need this optimisation? i guess it's hardly used
} else if (pt_is_rule(p, PN_test_if_expr)) {
// special case when returning an if-expression; to match CPython optimisation
mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0];
mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1];
uint l_fail = comp_next_label(comp);
c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
compile_node(comp, pns_test_if_expr->nodes[0]); // success value
EMIT(return_value);
EMIT_ARG(label_assign, l_fail);
compile_node(comp, pns_test_if_else->nodes[1]); // failure value
#endif
} else {
compile_node(comp, p);
}
EMIT(return_value);
}
STATIC void compile_yield_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
compile_node(comp, p);
EMIT(pop_top);
}
STATIC void compile_raise_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
if (pt_is_null_with_top(p, ptop)) {
// raise
EMIT_ARG(raise_varargs, 0);
} else if (pt_is_rule(p, PN_raise_stmt_arg)) {
// raise x from y
p = pt_rule_first(p);
p = compile_node(comp, p);
compile_node(comp, p);
EMIT_ARG(raise_varargs, 2);
} else {
// raise x
compile_node(comp, p);
EMIT_ARG(raise_varargs, 1);
}
}
// q_base holds the base of the name
// eg a -> q_base=a
// a.b.c -> q_base=a
STATIC void do_import_name(compiler_t *comp, const byte *p, qstr *q_base) {
bool is_as = false;
if (p != NULL && pt_is_rule(p, PN_dotted_as_name)) {
// a name of the form x as y; unwrap it
p = pt_rule_first(p); // point to 'x'
pt_extract_id(pt_next(p), q_base); // extract 'y'
is_as = true;
}
if (p == NULL || pt_is_null(p)) {
// empty name (eg, from . import x)
*q_base = MP_QSTR_;
EMIT_ARG(import_name, MP_QSTR_); // import the empty string
} else if (pt_is_any_id(p)) {
// just a simple name
qstr q_full;
pt_extract_id(p, &q_full);
if (!is_as) {
*q_base = q_full;
}
EMIT_ARG(import_name, q_full);
} else {
// a name of the form a.b.c
assert(pt_is_rule(p, PN_dotted_name)); // should be
const byte *ptop;
p = pt_rule_extract_top(p, &ptop);
if (!is_as) {
pt_extract_id(p, q_base);
}
// work out string length
int len = -1;
for (const byte *p2 = p; p2 != ptop;) {
qstr qst;
p2 = pt_extract_id(p2, &qst);
len += 1 + qstr_len(qst);
}
// build string
byte *q_ptr;
byte *str_dest = qstr_build_start(len, &q_ptr);
for (const byte *p2 = p; p2 != ptop;) {
if (p2 > p) {
*str_dest++ = '.';
}
qstr qst;
p2 = pt_extract_id(p2, &qst);
size_t str_src_len;
const byte *str_src = qstr_data(qst, &str_src_len);
memcpy(str_dest, str_src, str_src_len);
str_dest += str_src_len;
}
qstr q_full = qstr_build_end(q_ptr);
EMIT_ARG(import_name, q_full);
if (is_as) {
for (const byte *p2 = pt_next(p); p2 != ptop;) {
qstr qst;
p2 = pt_extract_id(p2, &qst);
EMIT_ARG(load_attr, qst);
}
}
}
}
STATIC void compile_dotted_as_name(compiler_t *comp, const byte *p) {
EMIT_ARG(load_const_small_int, 0); // level 0 import
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything
qstr q_base;
do_import_name(comp, p, &q_base);
compile_store_id(comp, q_base);
}
STATIC void compile_import_name(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
apply_to_single_or_list(comp, p, PN_dotted_as_names, compile_dotted_as_name);
}
STATIC void compile_import_from(compiler_t *comp, const byte *p, const byte *ptop) {
const byte *p_import_source = p;
// extract the preceeding .'s (if any) for a relative import, to compute the import level
uint import_level = 0;
do {
const byte *p_rel;
if (pt_is_any_tok(p_import_source) || pt_is_rule(p_import_source, PN_one_or_more_period_or_ellipsis)) {
// This covers relative imports with dots only like "from .. import"
p_rel = p_import_source;
p_import_source = NULL;
} else if (pt_is_rule(p_import_source, PN_import_from_2b)) {
// This covers relative imports starting with dot(s) like "from .foo import"
p_rel = pt_rule_first(p_import_source);
p_import_source = pt_next(p_rel);
} else {
// Not a relative import
break;
}
// get the list of . and/or ...'s
const byte *p_rel_top = mp_parse_node_extract_list(&p_rel, PN_one_or_more_period_or_ellipsis);
// count the total number of .'s
while (p_rel != p_rel_top) {
if (pt_is_tok(p_rel, MP_TOKEN_DEL_PERIOD)) {
import_level++;
} else {
// should be an MP_TOKEN_ELLIPSIS
import_level += 3;
}
p_rel = pt_next(p_rel);
}
} while (0);
p = pt_next(p);
if (pt_is_tok(p, MP_TOKEN_OP_STAR)) {
EMIT_ARG(load_const_small_int, import_level);
// build the "fromlist" tuple
EMIT_ARG(load_const_str, MP_QSTR__star_);
EMIT_ARG(build_tuple, 1);
// do the import
qstr dummy_q;
do_import_name(comp, p_import_source, &dummy_q);
EMIT(import_star);
} else {
EMIT_ARG(load_const_small_int, import_level);
// build the "fromlist" tuple
ptop = mp_parse_node_extract_list(&p, PN_import_as_names);
uint n = 0;
for (const byte *p_list = p; p_list < ptop; p_list = pt_next(p_list), ++n) {
assert(pt_is_rule(p_list, PN_import_as_name));
qstr id2;
pt_extract_id(pt_rule_first(p_list), &id2);
EMIT_ARG(load_const_str, id2);
}
EMIT_ARG(build_tuple, n);
// do the import
qstr dummy_q;
do_import_name(comp, p_import_source, &dummy_q);
for (const byte *p_list = p; p_list < ptop;) {
assert(pt_is_rule(p_list, PN_import_as_name));
const byte *p_list_top;
p_list = pt_rule_extract_top(p_list, &p_list_top);
qstr id2;
p_list = pt_extract_id(p_list, &id2);
EMIT_ARG(import_from, id2);
if (p_list == p_list_top) {
compile_store_id(comp, id2);
} else {
qstr id3;
p_list = pt_extract_id(p_list, &id3);
compile_store_id(comp, id3);
}
}
EMIT(pop_top);
}
}
STATIC void compile_declare_global(compiler_t *comp, const byte *p_for_err, qstr qst) {
bool added;
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) {
compile_syntax_error(comp, p_for_err, "identifier redefined as global");
return;
}
id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
// if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL
id_info = scope_find_global(comp->scope_cur, qst);
if (id_info != NULL) {
id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
}
}
STATIC void compile_global_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
if (comp->pass == MP_PASS_SCOPE) {
const byte *p_orig = p;
ptop = mp_parse_node_extract_list(&p, PN_name_list);
while (p != ptop) {
qstr qst;
p = pt_extract_id(p, &qst);
compile_declare_global(comp, p_orig, qst);
}
}
}
STATIC void compile_declare_nonlocal(compiler_t *comp, const byte *p_for_err, qstr qst) {
bool added;
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
if (added) {
scope_find_local_and_close_over(comp->scope_cur, id_info, qst);
if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
compile_syntax_error(comp, p_for_err, "no binding for nonlocal found");
}
} else if (id_info->kind != ID_INFO_KIND_FREE) {
compile_syntax_error(comp, p_for_err, "identifier redefined as nonlocal");
}
}
STATIC void compile_nonlocal_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
if (comp->pass == MP_PASS_SCOPE) {
if (comp->scope_cur->kind == SCOPE_MODULE) {
compile_syntax_error(comp, p, "can't declare nonlocal in outer code");
return;
}
const byte *p_orig = p;
ptop = mp_parse_node_extract_list(&p, PN_name_list);
while (p != ptop) {
qstr qst;
p = pt_extract_id(p, &qst);
compile_declare_nonlocal(comp, p_orig, qst);
}
}
}
STATIC void compile_assert_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
// with optimisations enabled we don't compile assertions
if (MP_STATE_VM(mp_optimise_value) != 0) {
return;
}
uint l_end = comp_next_label(comp);
p = c_if_cond(comp, p, true, l_end);
EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython
if (!pt_is_null_with_top(p, ptop)) {
// assertion message
compile_node(comp, p);
EMIT_ARG(call_function, 1, 0, 0);
}
EMIT_ARG(raise_varargs, 1);
EMIT_ARG(label_assign, l_end);
}
STATIC void compile_if_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
// TODO proper and/or short circuiting
uint l_end = comp_next_label(comp);
// optimisation: don't emit anything when "if False"
if (node_is_const_false(p)) {
p = pt_next(p); // skip if condition
p = pt_next(p); // skip if block
} else {
uint l_fail = comp_next_label(comp);
bool if_true = node_is_const_true(p);
p = c_if_cond(comp, p, false, l_fail); // if condition
p = compile_node(comp, p); // if block
// optimisation: skip everything else when "if True"
if (if_true) {
goto done;
}
if (
// optimisation: don't jump over non-existent elif/else blocks
!(pt_is_null_with_top(p, ptop) && pt_is_null_with_top(pt_next(p), ptop))
// optimisation: don't jump if last instruction was return
&& !EMIT(last_emit_was_return_value)
) {
// jump over elif/else blocks
EMIT_ARG(jump, l_end);
}
EMIT_ARG(label_assign, l_fail);
}
// at this point p points to elif node (which may not exist)
// compile elif blocks (if any)
if (p != ptop) {
const byte *p_else_top = mp_parse_node_extract_list(&p, PN_if_stmt_elif_list);
while (p != p_else_top) {
assert(pt_is_rule(p, PN_if_stmt_elif)); // should be
p = pt_rule_first(p);
// optimisation: don't emit anything when "if False"
if (node_is_const_false(p)) {
p = pt_next(p); // skip elif condition
p = pt_next(p); // skip elif block
} else {
uint l_fail = comp_next_label(comp);
bool elif_true = node_is_const_true(p);
p = c_if_cond(comp, p, false, l_fail); // elif condition
p = compile_node(comp, p); // elif block
// optimisation: skip everything else when "elif True"
if (elif_true) {
goto done;
}
// optimisation: don't jump if last instruction was return
if (!EMIT(last_emit_was_return_value)) {
EMIT_ARG(jump, l_end);
}
EMIT_ARG(label_assign, l_fail);
}
}
// compile else block (if any)
if (p != ptop) {
compile_node(comp, p);
}
}
done:
EMIT_ARG(label_assign, l_end);
}
#define START_BREAK_CONTINUE_BLOCK \
uint16_t old_break_label = comp->break_label; \
uint16_t old_continue_label = comp->continue_label; \
uint16_t old_break_continue_except_level = comp->break_continue_except_level; \
uint break_label = comp_next_label(comp); \
uint continue_label = comp_next_label(comp); \
comp->break_label = break_label; \
comp->continue_label = continue_label; \
comp->break_continue_except_level = comp->cur_except_level;
#define END_BREAK_CONTINUE_BLOCK \
comp->break_label = old_break_label; \
comp->continue_label = old_continue_label; \
comp->break_continue_except_level = old_break_continue_except_level;
STATIC void compile_while_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
START_BREAK_CONTINUE_BLOCK
const byte *p_body = pt_next(p);
const byte *p_else = pt_next(p_body);
if (!node_is_const_false(p)) { // optimisation: don't emit anything for "while False"
uint top_label = comp_next_label(comp);
if (!node_is_const_true(p)) { // optimisation: don't jump to cond for "while True"
EMIT_ARG(jump, continue_label);
}
EMIT_ARG(label_assign, top_label);
compile_node(comp, p_body); // body
EMIT_ARG(label_assign, continue_label);
c_if_cond(comp, p, true, top_label); // condition
}
// break/continue apply to outer loop (if any) in the else block
END_BREAK_CONTINUE_BLOCK
if (p_else != ptop) {
compile_node(comp, p_else); // else
}
EMIT_ARG(label_assign, break_label);
}
// This function compiles an optimised for-loop of the form:
// for <var> in range(<start>, <end>, <step>):
// <body>
// else:
// <else>
// <var> must be an identifier and <step> must be a small-int.
//
// Semantics of for-loop require:
// - final failing value should not be stored in the loop variable
// - if the loop never runs, the loop variable should never be assigned
// - assignments to <var>, <end> or <step> in the body do not alter the loop
// (<step> is a constant for us, so no need to worry about it changing)
//
// If <end> is a small-int, then the stack during the for-loop contains just
// the current value of <var>. Otherwise, the stack contains <end> then the
// current value of <var>.
STATIC void compile_for_stmt_optimised_range(compiler_t *comp, const byte *pn_var,
const byte *pn_start, const byte *pn_end, mp_int_t step,
const byte *pn_body, const byte *pn_else) {
START_BREAK_CONTINUE_BLOCK
uint top_label = comp_next_label(comp);
uint entry_label = comp_next_label(comp);
// put the end value on the stack if it's not a small-int constant
bool end_on_stack = !pt_is_small_int(pn_end);
if (end_on_stack) {
compile_node(comp, pn_end);
}
// compile: start
compile_node(comp, pn_start);
EMIT_ARG(jump, entry_label);
EMIT_ARG(label_assign, top_label);
// duplicate next value and store it to var
EMIT(dup_top);
c_assign(comp, pn_var, ASSIGN_STORE);
// compile body
compile_node(comp, pn_body);
EMIT_ARG(label_assign, continue_label);
// compile: var + step
EMIT_ARG(load_const_small_int, step);
EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD);
EMIT_ARG(label_assign, entry_label);
// compile: if var <cond> end: goto top
if (end_on_stack) {
EMIT(dup_top_two);
EMIT(rot_two);
} else {
EMIT(dup_top);
compile_node(comp, pn_end);
}
if (step >= 0) {
EMIT_ARG(binary_op, MP_BINARY_OP_LESS);
} else {
EMIT_ARG(binary_op, MP_BINARY_OP_MORE);
}
EMIT_ARG(pop_jump_if, true, top_label);
// break/continue apply to outer loop (if any) in the else block
END_BREAK_CONTINUE_BLOCK
// Compile the else block. We must pop the iterator variables before
// executing the else code because it may contain break/continue statements.
uint end_label = 0;
if (pn_else != NULL) {
// discard final value of "var", and possible "end" value
EMIT(pop_top);
if (end_on_stack) {
EMIT(pop_top);
}
compile_node(comp, pn_else);
end_label = comp_next_label(comp);
EMIT_ARG(jump, end_label);
EMIT_ARG(adjust_stack_size, 1 + end_on_stack);
}
EMIT_ARG(label_assign, break_label);
// discard final value of var that failed the loop condition
EMIT(pop_top);
// discard <end> value if it's on the stack
if (end_on_stack) {
EMIT(pop_top);
}
if (pn_else != NULL) {
EMIT_ARG(label_assign, end_label);
}
}
STATIC void compile_for_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
// this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable
// this is actually slower, but uses no heap memory
// for viper it will be much, much faster
if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ pt_is_any_id(p)
&& pt_is_rule(pt_next(p), PN_atom_expr_normal)) {
const byte *p_it_top;
const byte *p_it0 = pt_rule_extract_top(pt_next(p), &p_it_top);
if (!pt_is_id(p_it0, MP_QSTR_range)) {
goto optimise_fail;
}
const byte *p_it1 = pt_next(p_it0);
if (pt_is_rule(p_it1, PN_trailer_paren)
&& !pt_is_rule_empty(p_it1)
&& pt_next(p_it1) == p_it_top) {
// iterator is of the form range(...) with at least 1 arg
const byte *p_range_args = pt_rule_first(p_it1);
const byte *p_range_args_top = mp_parse_node_extract_list(&p_range_args, PN_arglist);
const byte *p_start = pt_const_int0;
const byte *p_end = p_range_args;
mp_int_t step = 1;
p_range_args = pt_next(p_range_args);
if (p_range_args != p_range_args_top) {
// range has at least 2 args
p_start = p_end;
p_end = p_range_args;
p_range_args = pt_next(p_range_args);
if (p_range_args != p_range_args_top) {
// range has at least 3 args
// We need to know sign of step. This is possible only if it's constant
if (!pt_is_small_int(p_range_args)) {
goto optimise_fail;
}
p_range_args = pt_get_small_int(p_range_args, &step);
// the step must be non-zero
if (step == 0) {
goto optimise_fail;
}
if (p_range_args != p_range_args_top) {
// range has at least 4 args, so don't know how to optimise it
goto optimise_fail;
}
}
}
// arguments must be able to be compiled as standard expressions
if (pt_is_any_rule(p_start)) {
int k = pt_rule_extract_rule_id(p_start);
if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
goto optimise_fail;
}
}
if (pt_is_any_rule(p_end)) {
int k = pt_rule_extract_rule_id(p_end);
if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
goto optimise_fail;
}
}
// can optimise
const byte *p_body = p_it_top;
const byte *p_else = pt_next(p_body);
if (p_else == ptop) {
p_else = NULL;
}
compile_for_stmt_optimised_range(comp, p, p_start, p_end, step, p_body, p_else);
return;
}
}
optimise_fail:;
START_BREAK_CONTINUE_BLOCK
comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
uint pop_label = comp_next_label(comp);
const byte *p_it = pt_next(p);
const byte *p_body = compile_node(comp, p_it); // iterator
EMIT_ARG(get_iter, true);
EMIT_ARG(label_assign, continue_label);
EMIT_ARG(for_iter, pop_label);
c_assign(comp, p, ASSIGN_STORE); // variable
const byte *p_else = compile_node(comp, p_body); // body
if (!EMIT(last_emit_was_return_value)) {
EMIT_ARG(jump, continue_label);
}
EMIT_ARG(label_assign, pop_label);
EMIT(for_iter_end);
// break/continue apply to outer loop (if any) in the else block
END_BREAK_CONTINUE_BLOCK
if (p_else != ptop) {
compile_node(comp, p_else); // else
}
EMIT_ARG(label_assign, break_label);
}
STATIC void compile_try_except(compiler_t *comp, const byte *p_body, const byte *p_except, const byte *p_except_top, const byte *p_else) {
// setup code
uint l1 = comp_next_label(comp);
uint success_label = comp_next_label(comp);
EMIT_ARG(setup_except, l1);
compile_increase_except_level(comp);
compile_node(comp, p_body); // body
EMIT(pop_block);
EMIT_ARG(jump, success_label); // jump over exception handler
EMIT_ARG(label_assign, l1); // start of exception handler
EMIT(start_except_handler);
// at this point the top of the stack contains the exception instance that was raised
uint l2 = comp_next_label(comp);
while (p_except != p_except_top) {
assert(pt_is_rule(p_except, PN_try_stmt_except)); // should be
p_except = pt_rule_first(p_except);
qstr qstr_exception_local = 0;
uint end_finally_label = comp_next_label(comp);
if (pt_is_null(p_except)) {
// this is a catch all exception handler
if (pt_next(pt_next(p_except)) != p_except_top) {
compile_syntax_error(comp, p_except, "default 'except:' must be last");
compile_decrease_except_level(comp);
return;
}
} else {
// this exception handler requires a match to a certain type of exception
const byte *p_exception_expr = p_except;
if (pt_is_rule(p_exception_expr, PN_try_stmt_as_name)) {
// handler binds the exception to a local
p_exception_expr = pt_rule_first(p_exception_expr);
pt_extract_id(pt_next(p_exception_expr), &qstr_exception_local);
}
EMIT(dup_top);
compile_node(comp, p_exception_expr);
EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
EMIT_ARG(pop_jump_if, false, end_finally_label);
}
p_except = pt_next(p_except);
// either discard or store the exception instance
if (qstr_exception_local == 0) {
EMIT(pop_top);
} else {
compile_store_id(comp, qstr_exception_local);
}
uint l3 = 0;
if (qstr_exception_local != 0) {
l3 = comp_next_label(comp);
EMIT_ARG(setup_finally, l3);
compile_increase_except_level(comp);
}
p_except = compile_node(comp, p_except);
if (qstr_exception_local != 0) {
EMIT(pop_block);
}
EMIT(pop_except);
if (qstr_exception_local != 0) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT_ARG(label_assign, l3);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
compile_store_id(comp, qstr_exception_local);
compile_delete_id(comp, qstr_exception_local);
compile_decrease_except_level(comp);
EMIT(end_finally);
}
EMIT_ARG(jump, l2);
EMIT_ARG(label_assign, end_finally_label);
EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance
}
compile_decrease_except_level(comp);
EMIT(end_finally);
EMIT(end_except_handler);
EMIT_ARG(label_assign, success_label);
if (p_else != NULL) {
compile_node(comp, p_else); // else block
}
EMIT_ARG(label_assign, l2);
}
STATIC void compile_try_finally(compiler_t *comp, const byte *p_body, const byte *p_except, const byte *p_except_top, const byte *p_else, const byte *p_finally) {
assert(pt_is_rule(p_finally, PN_try_stmt_finally));
uint l_finally_block = comp_next_label(comp);
EMIT_ARG(setup_finally, l_finally_block);
compile_increase_except_level(comp);
if (p_except == NULL) {
assert(p_else == NULL);
EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
compile_node(comp, p_body);
EMIT_ARG(adjust_stack_size, -3);
} else {
compile_try_except(comp, p_body, p_except, p_except_top, p_else);
}
EMIT(pop_block);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT_ARG(label_assign, l_finally_block);
compile_node(comp, pt_rule_first(p_finally));
compile_decrease_except_level(comp);
EMIT(end_finally);
}
STATIC void compile_try_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
const byte* p1 = pt_next(p);
if (pt_is_rule(p1, PN_try_stmt_except) || pt_is_rule(p1, PN_try_stmt_except_list)) {
// just try-except
const byte *p1_top = mp_parse_node_extract_list(&p1, PN_try_stmt_except_list);
compile_try_except(comp, p, p1, p1_top, NULL);
} else if (pt_is_rule(p1, PN_try_stmt_except_and_more)) {
// try-except and possibly else and/or finally
const byte *p1_top;
const byte *p1_p0 = pt_rule_extract_top(p1, &p1_top);
const byte *p1_p1 = mp_parse_node_extract_list(&p1_p0, PN_try_stmt_except_list);
if (pt_next(p1_p1) == p1_top) {
// no finally, but have else
compile_try_except(comp, p, p1_p0, p1_p1, p1_p1);
} else {
// have finally, may or may not have else
compile_try_finally(comp, p, p1_p0, p1_p1, p1_p1, pt_next(p1_p1));
}
} else {
// just try-finally
compile_try_finally(comp, p, NULL, NULL, NULL, p1);
}
}
STATIC void compile_with_stmt_helper(compiler_t *comp, const byte *n_pre, const byte *p_body) {
if (n_pre >= p_body) {
// no more pre-bits, compile the body of the with
compile_node(comp, p_body);
} else {
uint l_end = comp_next_label(comp);
if (MICROPY_EMIT_NATIVE && comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
// we need to allocate an extra label for the native emitter
// it will use l_end+1 as an auxiliary label
comp_next_label(comp);
}
if (pt_is_rule(n_pre, PN_with_item)) {
// this pre-bit is of the form "a as b"
const byte *p = pt_rule_first(n_pre);
p = compile_node(comp, p);
EMIT_ARG(setup_with, l_end);
c_assign(comp, p, ASSIGN_STORE);
n_pre = pt_next(n_pre);
} else {
// this pre-bit is just an expression
n_pre = compile_node(comp, n_pre);
EMIT_ARG(setup_with, l_end);
EMIT(pop_top);
}
compile_increase_except_level(comp);
// compile additional pre-bits and the body
compile_with_stmt_helper(comp, n_pre, p_body);
// finish this with block
EMIT_ARG(with_cleanup, l_end);
compile_decrease_except_level(comp);
EMIT(end_finally);
}
}
STATIC void compile_with_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
// get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
ptop = mp_parse_node_extract_list(&p, PN_with_stmt_list);
// compile in a nested fashion
compile_with_stmt_helper(comp, p, ptop);
}
STATIC void compile_expr_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
const byte *p_n1 = pt_next(p);
if (pt_is_null_with_top(p_n1, ptop)) {
if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) {
// for REPL, evaluate then print the expression
compile_load_id(comp, MP_QSTR___repl_print__);
compile_node(comp, p);
EMIT_ARG(call_function, 1, 0, 0);
EMIT(pop_top);
} else {
#if 0
// for non-REPL, evaluate then discard the expression
if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0]))
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_bytes)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) {
// do nothing with a lonely constant
} else
#endif
{
compile_node(comp, p); // just an expression
EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack
}
}
} else if (pt_is_rule(p_n1, PN_expr_stmt_augassign)) {
c_assign(comp, p, ASSIGN_AUG_LOAD); // lhs load for aug assign
p_n1 = pt_rule_first(p_n1);
assert(pt_is_any_tok(p_n1));
byte tok;
p_n1 = pt_tok_extract(p_n1, &tok);
mp_binary_op_t op;
switch (tok) {
case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break;
case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break;
case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break;
case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break;
case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break;
case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break;
case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break;
case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break;
case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break;
case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break;
case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break;
case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break;
}
compile_node(comp, p_n1); // rhs
EMIT_ARG(binary_op, op);
c_assign(comp, p, ASSIGN_AUG_STORE); // lhs store for aug assign
} else if (pt_is_rule(p_n1, PN_expr_stmt_assign_list)) {
const byte *p_n1_top;
p_n1 = pt_rule_extract_top(p_n1, &p_n1_top);
const byte *p_rhs = NULL;
for (const byte *pp = p_n1; pp != p_n1_top; pp = pt_next(pp)) {
p_rhs = pp;
}
compile_node(comp, p_rhs); // rhs
// following CPython, we store left-most first
//if (num rhs > 1) { always true?
EMIT(dup_top);
//}
c_assign(comp, p, ASSIGN_STORE); // lhs store
for (const byte *pp = p_n1; pp != p_rhs;) {
const byte *pp_next = pt_next(pp);
if (pp_next != p_rhs) {
EMIT(dup_top);
}
c_assign(comp, pp, ASSIGN_STORE); // middle store
pp = pp_next;
}
} else {
// single assignment
#if 0
if (MICROPY_COMP_DOUBLE_TUPLE_ASSIGN
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr)
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 2
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 2) {
// optimisation for a, b = c, d
mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns1->nodes[0];
mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)) {
// can't optimise when it's a star expression on the lhs
goto no_optimisation;
}
compile_node(comp, pns10->nodes[0]); // rhs
compile_node(comp, pns10->nodes[1]); // rhs
EMIT(rot_two);
c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
} else if (MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr)
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 3
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 3) {
// optimisation for a, b, c = d, e, f
mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns1->nodes[0];
mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr)) {
// can't optimise when it's a star expression on the lhs
goto no_optimisation;
}
compile_node(comp, pns10->nodes[0]); // rhs
compile_node(comp, pns10->nodes[1]); // rhs
compile_node(comp, pns10->nodes[2]); // rhs
EMIT(rot_three);
EMIT(rot_two);
c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store
} else
#endif
{
//no_optimisation:
compile_node(comp, p_n1); // rhs
c_assign(comp, p, ASSIGN_STORE); // lhs store
}
}
}
STATIC void compile_test_if_expr(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
const byte *p_test_if_else = pt_next(p);
assert(p_test_if_else != ptop && pt_is_rule(p_test_if_else, PN_test_if_else));
p_test_if_else = pt_rule_first(p_test_if_else);
uint l_fail = comp_next_label(comp);
uint l_end = comp_next_label(comp);
p_test_if_else = c_if_cond(comp, p_test_if_else, false, l_fail); // condition
compile_node(comp, p); // success value
EMIT_ARG(jump, l_end);
EMIT_ARG(label_assign, l_fail);
EMIT_ARG(adjust_stack_size, -1); // adjust stack size
compile_node(comp, p_test_if_else); // failure value
EMIT_ARG(label_assign, l_end);
}
STATIC void compile_lambdef(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
mp_int_t scope_idx;
p = pt_get_small_int(p, &scope_idx);
if (comp->pass == MP_PASS_SCOPE) {
// create a new scope for this lambda
scope_new_and_link(comp, scope_idx, SCOPE_LAMBDA, p, comp->scope_cur->emit_options);
}
// get the scope for this lambda
scope_t *this_scope = comp->scopes[scope_idx];
// compile the lambda definition
compile_funcdef_lambdef(comp, this_scope, p, PN_varargslist);
}
STATIC void compile_or_and_test(compiler_t *comp, const byte *p, const byte *ptop, bool cond) {
uint l_end = comp_next_label(comp);
while (p != ptop) {
p = compile_node(comp, p);
if (p != ptop) {
EMIT_ARG(jump_if_or_pop, cond, l_end);
}
}
EMIT_ARG(label_assign, l_end);
}
STATIC void compile_or_test(compiler_t *comp, const byte *p, const byte *ptop) {
compile_or_and_test(comp, p, ptop, true);
}
STATIC void compile_and_test(compiler_t *comp, const byte *p, const byte *ptop) {
compile_or_and_test(comp, p, ptop, false);
}
STATIC void compile_not_test_2(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
compile_node(comp, p);
EMIT_ARG(unary_op, MP_UNARY_OP_NOT);
}
STATIC void compile_comparison(compiler_t *comp, const byte *p, const byte *ptop) {
int num_nodes = pt_num_nodes(p, ptop);
p = compile_node(comp, p);
bool multi = (num_nodes > 3);
uint l_fail = 0;
if (multi) {
l_fail = comp_next_label(comp);
}
for (int i = 1; i + 1 < num_nodes; i += 2) {
mp_binary_op_t op;
if (pt_is_any_tok(p)) {
byte tok;
p = pt_tok_extract(p, &tok);
switch (tok) {
case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break;
case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break;
case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break;
case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break;
case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break;
case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break;
case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break;
}
} else {
if (pt_is_rule(p, PN_comp_op_not_in)) {
op = MP_BINARY_OP_NOT_IN;
} else {
assert(pt_is_rule(p, PN_comp_op_is)); // should be
if (pt_is_rule_empty(p)) {
op = MP_BINARY_OP_IS;
} else {
op = MP_BINARY_OP_IS_NOT;
}
}
p = pt_next(p);
}
p = compile_node(comp, p);
if (i + 2 < num_nodes) {
EMIT(dup_top);
EMIT(rot_three);
}
EMIT_ARG(binary_op, op);
if (i + 2 < num_nodes) {
EMIT_ARG(jump_if_or_pop, false, l_fail);
}
}
if (multi) {
uint l_end = comp_next_label(comp);
EMIT_ARG(jump, l_end);
EMIT_ARG(label_assign, l_fail);
EMIT_ARG(adjust_stack_size, 1);
EMIT(rot_two);
EMIT(pop_top);
EMIT_ARG(label_assign, l_end);
}
}
STATIC void compile_star_expr(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
compile_syntax_error(comp, p, "*x must be assignment target");
}
STATIC void c_binary_op(compiler_t *comp, const byte *p, const byte *ptop, mp_binary_op_t binary_op) {
p = compile_node(comp, p);
while (p != ptop) {
p = compile_node(comp, p);
EMIT_ARG(binary_op, binary_op);
}
}
STATIC void compile_expr(compiler_t *comp, const byte *p, const byte *ptop) {
c_binary_op(comp, p, ptop, MP_BINARY_OP_OR);
}
STATIC void compile_xor_expr(compiler_t *comp, const byte *p, const byte *ptop) {
c_binary_op(comp, p, ptop, MP_BINARY_OP_XOR);
}
STATIC void compile_and_expr(compiler_t *comp, const byte *p, const byte *ptop) {
c_binary_op(comp, p, ptop, MP_BINARY_OP_AND);
}
STATIC void compile_term(compiler_t *comp, const byte *p, const byte *ptop) {
p = compile_node(comp, p);
while (p != ptop) {
byte tok;
p = pt_tok_extract(p, &tok);
p = compile_node(comp, p);
mp_binary_op_t op;
switch (tok) {
case MP_TOKEN_OP_PLUS: op = MP_BINARY_OP_ADD; break;
case MP_TOKEN_OP_MINUS: op = MP_BINARY_OP_SUBTRACT; break;
case MP_TOKEN_OP_STAR: op = MP_BINARY_OP_MULTIPLY; break;
case MP_TOKEN_OP_DBL_SLASH: op = MP_BINARY_OP_FLOOR_DIVIDE; break;
case MP_TOKEN_OP_SLASH: op = MP_BINARY_OP_TRUE_DIVIDE; break;
case MP_TOKEN_OP_PERCENT: op = MP_BINARY_OP_MODULO; break;
case MP_TOKEN_OP_DBL_LESS: op = MP_BINARY_OP_LSHIFT; break;
default:
assert(tok == MP_TOKEN_OP_DBL_MORE);
op = MP_BINARY_OP_RSHIFT;
break;
}
EMIT_ARG(binary_op, op);
}
}
STATIC void compile_factor_2(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
byte tok;
p = pt_tok_extract(p, &tok);
compile_node(comp, p);
if (tok == MP_TOKEN_OP_PLUS) {
EMIT_ARG(unary_op, MP_UNARY_OP_POSITIVE);
} else if (tok == MP_TOKEN_OP_MINUS) {
EMIT_ARG(unary_op, MP_UNARY_OP_NEGATIVE);
} else {
assert(tok == MP_TOKEN_OP_TILDE); // should be
EMIT_ARG(unary_op, MP_UNARY_OP_INVERT);
}
}
STATIC void compile_atom_expr_normal(compiler_t *comp, const byte *p, const byte *ptop) {
const byte *p_start = p;
// compile the subject of the expression
p = compile_node(comp, p);
// get the array of trailers, it may be a single item or a list
if (pt_is_rule(p, PN_atom_expr_trailers)) {
p = pt_rule_extract_top(p, &ptop);
}
// handle special super() call
if (comp->scope_cur->kind == SCOPE_FUNCTION
&& pt_is_id(p_start, MP_QSTR_super)
&& pt_is_rule(p, PN_trailer_paren)
&& pt_is_rule_empty(p)) {
// at this point we have matched "super()" within a function
// load the class for super to search for a parent
compile_load_id(comp, MP_QSTR___class__);
// look for first argument to function (assumes it's "self")
bool found = false;
id_info_t *id = &comp->scope_cur->id_info[0];
for (size_t n = comp->scope_cur->id_info_len; n > 0; --n, ++id) {
if (id->flags & ID_FLAG_IS_PARAM) {
// first argument found; load it
compile_load_id(comp, id->qst);
found = true;
break;
}
}
if (!found) {
compile_syntax_error(comp, p,
"super() can't find self"); // really a TypeError
return;
}
if (pt_num_nodes(p, ptop) >= 3
&& pt_is_rule(pt_next(p), PN_trailer_period)
&& pt_is_rule(pt_next(pt_next(p)), PN_trailer_paren)) {
// optimisation for method calls super().f(...), to eliminate heap allocation
const byte *p_period = pt_next(p);
const byte *p_paren = pt_next(p_period);
qstr method_name;
pt_extract_id(pt_rule_first(p_period), &method_name);
EMIT_ARG(load_method, method_name, true);
if (pt_is_rule_empty(p_paren)) {
p_paren = NULL;
} else {
p_paren = pt_rule_first(p_paren);
}
compile_trailer_paren_helper(comp, p_paren, true, 0);
p = pt_next(p);
p = pt_next(p);
p = pt_next(p);
} else {
// a super() call
EMIT_ARG(call_function, 2, 0, 0);
p = pt_next(p);
}
}
while (p != ptop) {
const byte *p_next = pt_next(p);
if (p_next != ptop && pt_is_rule(p, PN_trailer_period) && pt_is_rule(p_next, PN_trailer_paren)) {
// optimisation for method calls a.f(...), following PyPy
const byte *p_period = pt_rule_first(p);
const byte *p_paren;
if (pt_is_rule_empty(p_next)) {
p_paren = NULL;
} else {
p_paren = pt_rule_first(p_next);
}
qstr method_name;
pt_extract_id(p_period, &method_name);
EMIT_ARG(load_method, method_name, false);
compile_trailer_paren_helper(comp, p_paren, true, 0);
p = pt_next(p_next);
} else {
// node is one of: trailer_paren, trailer_bracket, trailer_period
p = compile_node(comp, p);
}
}
}
STATIC void compile_power(compiler_t *comp, const byte *p, const byte *ptop) {
compile_generic_all_nodes(comp, p, ptop); // 2 nodes, arguments of power
EMIT_ARG(binary_op, MP_BINARY_OP_POWER);
}
// if p_arglist==NULL then there are no arguments
STATIC void compile_trailer_paren_helper(compiler_t *comp, const byte *p_arglist, bool is_method_call, int n_positional_extra) {
// function to call is on top of stack
// get the list of arguments
const byte *ptop;
if (p_arglist == NULL) {
ptop = NULL;
} else {
ptop = mp_parse_node_extract_list(&p_arglist, PN_arglist);
}
// compile the arguments
// Rather than calling compile_node on the list, we go through the list of args
// explicitly here so that we can count the number of arguments and give sensible
// error messages.
int n_positional = n_positional_extra;
uint n_keyword = 0;
uint star_flags = 0;
const byte *p_star_args = NULL, *p_dblstar_args = NULL;
for (const byte *p = p_arglist; p != ptop;) {
if (pt_is_rule(p, PN_arglist_star)) {
if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) {
compile_syntax_error(comp, p, "can't have multiple *x");
return;
}
star_flags |= MP_EMIT_STAR_FLAG_SINGLE;
p_star_args = pt_rule_first(p);
p = pt_next(p);
} else if (pt_is_rule(p, PN_arglist_dbl_star)) {
if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) {
compile_syntax_error(comp, p, "can't have multiple **x");
return;
}
star_flags |= MP_EMIT_STAR_FLAG_DOUBLE;
p_dblstar_args = pt_rule_first(p);
p = pt_next(p);
} else if (pt_is_rule(p, PN_argument)) {
p = pt_rule_first(p); // skip rule header
const byte *p2 = pt_next(p); // get second node
if (pt_is_rule(p2, PN_comp_for)) {
// list comprehension argument
compile_comprehension(comp, p, SCOPE_GEN_EXPR);
n_positional++;
p = pt_next(pt_next(p));
} else {
// keyword argument
if (!pt_is_any_id(p)) {
compile_syntax_error(comp, p, "LHS of keyword arg must be an id");
return;
}
qstr kw;
p = pt_extract_id(p, &kw);
EMIT_ARG(load_const_str, kw);
p = compile_node(comp, p);
n_keyword += 1;
}
} else {
if (star_flags) {
compile_syntax_error(comp, p, "non-keyword arg after */**");
return;
}
if (n_keyword > 0) {
compile_syntax_error(comp, p, "non-keyword arg after keyword arg");
return;
}
p = compile_node(comp, p);
n_positional++;
}
}
// compile the star/double-star arguments if we had them
// if we had one but not the other then we load "null" as a place holder
if (star_flags != 0) {
if (p_star_args == NULL) {
EMIT(load_null);
} else {
compile_node(comp, p_star_args);
}
if (p_dblstar_args == NULL) {
EMIT(load_null);
} else {
compile_node(comp, p_dblstar_args);
}
}
// emit the function/method call
if (is_method_call) {
EMIT_ARG(call_method, n_positional, n_keyword, star_flags);
} else {
EMIT_ARG(call_function, n_positional, n_keyword, star_flags);
}
}
// p needs to point to 2 successive nodes, first is lhs of comprehension, second is PN_comp_for node
STATIC void compile_comprehension(compiler_t *comp, const byte *p, scope_kind_t kind) {
const byte *p_comp_for = pt_next(p);
assert(pt_is_rule(p_comp_for, PN_comp_for));
p_comp_for = pt_rule_first(p_comp_for);
mp_int_t scope_idx;
p_comp_for = pt_get_small_int(p_comp_for, &scope_idx);
if (comp->pass == MP_PASS_SCOPE) {
// create a new scope for this comprehension
scope_new_and_link(comp, scope_idx, kind, p, comp->scope_cur->emit_options);
}
// get the scope for this comprehension
scope_t *this_scope = comp->scopes[scope_idx];
// compile the comprehension
close_over_variables_etc(comp, this_scope, 0, 0);
compile_node(comp, pt_next(p_comp_for)); // source of the iterator
if (kind == SCOPE_GEN_EXPR) {
EMIT_ARG(get_iter, false);
}
EMIT_ARG(call_function, 1, 0, 0);
}
STATIC void compile_atom_paren(compiler_t *comp, const byte *p, const byte *ptop) {
if (pt_is_null_with_top(p, ptop)) {
// an empty tuple
c_tuple(comp, NULL, NULL, NULL);
} else {
assert(pt_is_rule(p, PN_testlist_comp));
p = pt_rule_first(p);
const byte *p1 = pt_next(p);
if (pt_is_rule(p1, PN_testlist_comp_3b) || pt_is_rule(p1, PN_testlist_comp_3c)) {
// tuple of one item with trailing comma (3b); or tuple of many items (3c)
c_tuple(comp, p, pt_rule_first(p1), ptop);
} else if (pt_is_rule(p1, PN_comp_for)) {
// generator expression
compile_comprehension(comp, p, SCOPE_GEN_EXPR);
} else {
// tuple with 2 items
c_tuple(comp, NULL, p, ptop);
}
}
}
STATIC void compile_atom_bracket(compiler_t *comp, const byte *p, const byte *ptop) {
if (pt_is_null_with_top(p, ptop)) {
// empty list
EMIT_ARG(build_list, 0);
} else if (pt_is_rule(p, PN_testlist_comp)) {
p = pt_rule_first(p);
const byte *p3 = pt_next(p);
if (pt_is_rule(p3, PN_testlist_comp_3b) || pt_is_rule(p3, PN_testlist_comp_3c)) {
// list of one item with trailing comma (3b); or list of many items (3c)
p3 = pt_rule_first(p3);
compile_node(comp, p);
compile_generic_all_nodes(comp, p3, ptop);
EMIT_ARG(build_list, 1 + pt_num_nodes(p3, ptop));
} else if (pt_is_rule(p3, PN_comp_for)) {
// list comprehension
compile_comprehension(comp, p, SCOPE_LIST_COMP);
} else {
// list with 2 items
p = compile_node(comp, p);
compile_node(comp, p);
EMIT_ARG(build_list, 2);
}
} else {
// list with 1 item
compile_node(comp, p);
EMIT_ARG(build_list, 1);
}
}
STATIC void compile_atom_brace(compiler_t *comp, const byte *p, const byte *ptop) {
if (pt_is_null_with_top(p, ptop)) {
// empty dict
EMIT_ARG(build_map, 0);
} else if (pt_is_rule(p, PN_dictorsetmaker_item)) {
// dict with one element
EMIT_ARG(build_map, 1);
compile_node(comp, p);
EMIT(store_map);
} else if (pt_is_rule(p, PN_dictorsetmaker)) {
p = pt_rule_first(p);
const byte *p1 = pt_next(p);
if (pt_is_rule(p1, PN_dictorsetmaker_list)) {
// dict/set with multiple elements
const byte *p1_top;
p1 = pt_rule_extract_top(p1, &p1_top);
// get tail elements (2nd, 3rd, ...)
if (p1 != p1_top) {
mp_parse_node_extract_list(&p1, PN_dictorsetmaker_list2);
}
// first element sets whether it's a dict or set
bool is_dict;
if (!MICROPY_PY_BUILTINS_SET || pt_is_rule(p, PN_dictorsetmaker_item)) {
// a dictionary
EMIT_ARG(build_map, 1 + pt_num_nodes(p1, p1_top));
compile_node(comp, p);
EMIT(store_map);
is_dict = true;
} else {
// a set
compile_node(comp, p); // 1st value of set
is_dict = false;
}
// process rest of elements
for (const byte *p_elem = p1; p_elem != p1_top;) {
bool is_key_value = pt_is_rule(p_elem, PN_dictorsetmaker_item);
p_elem = compile_node(comp, p_elem);
if (is_dict) {
if (!is_key_value) {
// TODO what is the correct p for error node?
compile_syntax_error(comp, p, "expecting key:value for dictionary");
return;
}
EMIT(store_map);
} else {
if (is_key_value) {
// TODO what is the correct p for error node?
compile_syntax_error(comp, p, "expecting just a value for set");
return;
}
}
}
#if MICROPY_PY_BUILTINS_SET
// if it's a set, build it
if (!is_dict) {
EMIT_ARG(build_set, 1 + pt_num_nodes(p1, p1_top));
}
#endif
} else {
assert(pt_is_rule(p1, PN_comp_for)); // should be
// dict/set comprehension
if (!MICROPY_PY_BUILTINS_SET || pt_is_rule(p, PN_dictorsetmaker_item)) {
// a dictionary comprehension
compile_comprehension(comp, p, SCOPE_DICT_COMP);
} else {
// a set comprehension
compile_comprehension(comp, p, SCOPE_SET_COMP);
}
}
} else {
// set with one element
#if MICROPY_PY_BUILTINS_SET
compile_node(comp, p);
EMIT_ARG(build_set, 1);
#else
assert(0);
#endif
}
}
STATIC void compile_trailer_paren(compiler_t *comp, const byte *p, const byte *ptop) {
if (p >= ptop) {
p = NULL;
}
compile_trailer_paren_helper(comp, p, false, 0);
}
STATIC void compile_trailer_bracket(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
// object who's index we want is on top of stack
compile_node(comp, p); // the index
EMIT(load_subscr);
}
STATIC void compile_trailer_period(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
// object who's attribute we want is on top of stack
qstr attr;
p = pt_extract_id(p, &attr);
EMIT_ARG(load_attr, attr);
}
#if MICROPY_PY_BUILTINS_SLICE
// p,ptop should be the args of subscript_3
STATIC void compile_subscript_3_helper(compiler_t *comp, const byte *p, const byte *ptop) {
if (p == ptop) {
// [?:]
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT_ARG(build_slice, 2);
} else if (pt_is_rule(p, PN_subscript_3c)) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
if (pt_is_rule_empty(p)) {
// [?::]
EMIT_ARG(build_slice, 2);
} else {
// [?::x]
compile_node(comp, pt_rule_first(p));
EMIT_ARG(build_slice, 3);
}
} else if (pt_is_rule(p, PN_subscript_3d)) {
p = pt_rule_first(p);
p = compile_node(comp, p);
assert(pt_is_rule(p, PN_sliceop)); // should always be
p = pt_rule_first(p);
if (p == ptop) {
// [?:x:]
EMIT_ARG(build_slice, 2);
} else {
// [?:x:x]
compile_node(comp, p);
EMIT_ARG(build_slice, 3);
}
} else {
// [?:x]
compile_node(comp, p);
EMIT_ARG(build_slice, 2);
}
}
STATIC void compile_subscript_2(compiler_t *comp, const byte *p, const byte *ptop) {
p = compile_node(comp, p); // start of slice
p = pt_rule_first(p); // skip header of subscript_3
compile_subscript_3_helper(comp, p, ptop);
}
STATIC void compile_subscript_3(compiler_t *comp, const byte *p, const byte *ptop) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
compile_subscript_3_helper(comp, p, ptop);
}
#endif // MICROPY_PY_BUILTINS_SLICE
STATIC void compile_dictorsetmaker_item(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
// if this is called then we are compiling a dict key:value pair
compile_node(comp, pt_next(p)); // value
compile_node(comp, p); // key
}
STATIC void compile_classdef(compiler_t *comp, const byte *p, const byte *ptop) {
(void)ptop;
qstr cname = compile_classdef_helper(comp, p, comp->scope_cur->emit_options);
// store class object into class name
compile_store_id(comp, cname);
}
STATIC void compile_yield_expr(compiler_t *comp, const byte *p, const byte *ptop) {
if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
compile_syntax_error(comp, NULL, "'yield' outside function");
return;
}
if (pt_is_null_with_top(p, ptop)) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(yield_value);
} else if (pt_is_rule(p, PN_yield_arg_from)) {
p = pt_rule_first(p);
compile_node(comp, p);
EMIT_ARG(get_iter, false);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(yield_from);
} else {
compile_node(comp, p);
EMIT(yield_value);
}
}
STATIC mp_obj_t get_const_object(compiler_t *comp, const byte *p) {
size_t idx;
p = pt_extract_const_obj(p, &idx);
return (mp_obj_t)comp->co_data[idx];
}
STATIC void compile_const_object(compiler_t *comp, const byte *p, const byte *ptop) {
EMIT_ARG(load_const_obj, get_const_object(comp, p));
}
typedef void (*compile_function_t)(compiler_t*, const byte*, const byte*);
STATIC compile_function_t compile_function[] = {
#define nc NULL
#define c(f) compile_##f
#define DEF_RULE(rule, comp, kind, ...) comp,
#define DEF_RULE_NC(rule, kind, ...)
#include "py/grammar.h"
#undef c
#undef DEF_RULE
#undef DEF_RULE_NC
compile_const_object,
};
STATIC const byte *compile_node(compiler_t *comp, const byte *p) {
//printf("CN %p %02x %02x %02x\n", p, p[0], p[1], p[2]);
if (pt_is_null(p)) {
// pass
return p + 1;
} else if (pt_is_small_int(p)) {
mp_int_t arg;
p = pt_get_small_int(p, &arg);
#if MICROPY_DYNAMIC_COMPILER
mp_uint_t sign_mask = -(1 << (mp_dynamic_compiler.small_int_bits - 1));
if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) {
// integer fits in target runtime's small-int
EMIT_ARG(load_const_small_int, arg);
} else {
// integer doesn't fit, so create a multi-precision int object
// (but only create the actual object on the last pass)
if (comp->pass != MP_PASS_EMIT) {
EMIT_ARG(load_const_obj, mp_const_none);
} else {
EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg));
}
}
#else
EMIT_ARG(load_const_small_int, arg);
#endif
return p;
} else if (pt_is_any_tok(p)) {
byte tok;
p = pt_tok_extract(p, &tok);
if (tok == MP_TOKEN_NEWLINE) {
// this can occur when file_input lets through a NEWLINE (eg if file starts with a newline)
// or when single_input lets through a NEWLINE (user enters a blank line)
// do nothing
} else {
EMIT_ARG(load_const_tok, tok);
}
return p;
} else if (*p == MP_PT_STRING) {
qstr qst = p[1] | (p[2] << 8);
EMIT_ARG(load_const_str, qst);
return pt_next(p);
} else if (*p == MP_PT_BYTES) {
// only create and load the actual bytes object on the last pass
if (comp->pass != MP_PASS_EMIT) {
EMIT_ARG(load_const_obj, mp_const_none);
} else {
qstr qst = p[1] | (p[2] << 8);
size_t len;
const byte *data = qstr_data(qst, &len);
EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len));
}
return pt_next(p);
} else if (pt_is_any_id(p)) {
qstr qst;
p = pt_extract_id(p, &qst);
compile_load_id(comp, qst);
return p;
} else if (*p == MP_PT_CONST_OBJECT) {
size_t idx;
p = pt_extract_const_obj(p, &idx);
EMIT_ARG(load_const_obj, (mp_obj_t)comp->co_data[idx]);
return p;
} else {
assert(*p >= MP_PT_RULE_BASE);
size_t rule_id, src_line;
const byte *ptop;
p = pt_rule_extract(p, &rule_id, &src_line, &ptop);
EMIT_ARG(set_source_line, src_line);
compile_function_t f = compile_function[rule_id];
assert(f != NULL);
f(comp, p, ptop);
if (comp->compile_error != MP_OBJ_NULL && comp->compile_error_line == 0) {
// add line info for the error in case it didn't have a line number
comp->compile_error_line = src_line;
}
return ptop;
}
}
STATIC void compile_scope_func_lambda_param(compiler_t *comp, const byte *p, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) {
(void)pn_dbl_star;
// check that **kw is last
if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
compile_syntax_error(comp, p, "invalid syntax");
return;
}
qstr param_name = MP_QSTR_NULL;
uint param_flag = ID_FLAG_IS_PARAM;
if (pt_is_any_id(p)) {
pt_extract_id(p, &param_name);
if (comp->have_star) {
// comes after a star, so counts as a keyword-only parameter
comp->scope_cur->num_kwonly_args += 1;
} else {
// comes before a star, so counts as a positional parameter
comp->scope_cur->num_pos_args += 1;
}
} else {
if (pt_is_rule(p, pn_name)) {
pt_extract_id(pt_rule_first(p), &param_name);
if (comp->have_star) {
// comes after a star, so counts as a keyword-only parameter
comp->scope_cur->num_kwonly_args += 1;
} else {
// comes before a star, so counts as a positional parameter
comp->scope_cur->num_pos_args += 1;
}
} else if (pt_is_rule(p, pn_star)) {
if (comp->have_star) {
// more than one star
compile_syntax_error(comp, p, "invalid syntax");
return;
}
comp->have_star = true;
param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM;
if (pt_is_rule_empty(p)) {
// bare star
// TODO see http://www.python.org/dev/peps/pep-3102/
//assert(comp->scope_cur->num_dict_params == 0);
} else if (pt_is_any_id(pt_rule_first(p))) {
// named star
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
pt_extract_id(pt_rule_first(p), &param_name);
} else {
assert(pt_is_rule(pt_rule_first(p), PN_tfpdef)); // should be
// named star with possible annotation
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
pt_extract_id(pt_rule_first(pt_rule_first(p)), &param_name);
}
} else {
assert(pt_is_rule(p, pn_dbl_star)); // should be
pt_extract_id(pt_rule_first(p), &param_name);
param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM;
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS;
}
}
if (param_name != MP_QSTR_NULL) {
bool added;
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added);
if (!added) {
compile_syntax_error(comp, p, "name reused for argument");
return;
}
id_info->kind = ID_INFO_KIND_LOCAL;
id_info->flags = param_flag;
}
}
STATIC void compile_scope_func_param(compiler_t *comp, const byte *p) {
compile_scope_func_lambda_param(comp, p, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star);
}
STATIC void compile_scope_lambda_param(compiler_t *comp, const byte *p) {
compile_scope_func_lambda_param(comp, p, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star);
}
#if MICROPY_EMIT_NATIVE
STATIC void compile_scope_func_annotations(compiler_t *comp, const byte *p) {
if (pt_is_rule(p, PN_typedargslist_name)) {
// named parameter with possible annotation
// fallthrough
} else if (pt_is_rule(p, PN_typedargslist_star)) {
const byte *p0 = pt_rule_first(p);
if (pt_is_rule(p0, PN_tfpdef)) {
// named star with possible annotation
p = p0;
// fallthrough
} else {
// no annotation
return;
}
} else if (pt_is_rule(p, PN_typedargslist_dbl_star)) {
// double star with possible annotation
// fallthrough
} else {
// no annotation
return;
}
// p should be a rule whose first node is an identifier and second may be the annotation
const byte *ptop;
p = pt_rule_extract_top(p, &ptop);
qstr param_name;
p = pt_extract_id(p, &param_name);
if (!pt_is_null_with_top(p, ptop)) {
id_info_t *id_info = scope_find(comp->scope_cur, param_name);
assert(id_info != NULL);
if (pt_is_any_id(p)) {
qstr arg_type;
pt_extract_id(p, &arg_type);
EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type);
} else {
compile_syntax_error(comp, p, "parameter annotation must be an identifier");
}
}
}
#endif // MICROPY_EMIT_NATIVE
STATIC void compile_scope_comp_iter(compiler_t *comp, const byte *p_comp_for, const byte *p_comp_for_top, const byte *p_inner_expr, int for_depth) {
uint l_top = comp_next_label(comp);
uint l_end = comp_next_label(comp);
EMIT_ARG(label_assign, l_top);
EMIT_ARG(for_iter, l_end);
c_assign(comp, p_comp_for, ASSIGN_STORE);
const byte *p_iter = pt_next(pt_next(p_comp_for));
tail_recursion:
if (p_iter == p_comp_for_top) {
// no more nested if/for; compile inner expression
compile_node(comp, p_inner_expr);
if (comp->scope_cur->kind == SCOPE_GEN_EXPR) {
EMIT(yield_value);
EMIT(pop_top);
} else {
EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5);
}
} else if (pt_is_rule(p_iter, PN_comp_if)) {
// if condition
const byte *p0 = pt_rule_extract_top(p_iter, &p_comp_for_top);
p_iter = c_if_cond(comp, p0, false, l_top);
goto tail_recursion;
} else {
assert(pt_is_rule(p_iter, PN_comp_for)); // should be
// for loop
const byte *ptop;
const byte *p0 = pt_rule_extract_top(p_iter, &ptop);
p0 = pt_next(p0); // skip scope index
compile_node(comp, pt_next(p0));
EMIT_ARG(get_iter, true);
compile_scope_comp_iter(comp, p0, ptop, p_inner_expr, for_depth + 1);
}
EMIT_ARG(jump, l_top);
EMIT_ARG(label_assign, l_end);
EMIT(for_iter_end);
}
#if 0
STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) {
#if MICROPY_ENABLE_DOC_STRING
// see http://www.python.org/dev/peps/pep-0257/
// look for the first statement
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
// a statement; fall through
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) {
// file input; find the first non-newline node
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
pn = pns->nodes[i];
if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) {
// not a newline, so this is the first statement; finish search
break;
}
}
// if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) {
// a list of statements; get the first one
pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
} else {
return;
}
// check the first statement for a doc string
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0])
&& MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string)) {
// compile the doc string
compile_node(comp, pns->nodes[0]);
// store the doc string
compile_store_id(comp, MP_QSTR___doc__);
}
}
#else
(void)comp;
(void)pn;
#endif
}
#endif
STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
comp->pass = pass;
comp->scope_cur = scope;
comp->next_label = 0;
EMIT_ARG(start_pass, pass, scope);
if (comp->pass == MP_PASS_SCOPE) {
// reset maximum stack sizes in scope
// they will be computed in this first pass
scope->stack_size = 0;
scope->exc_stack_size = 0;
}
// compile
if (pt_is_rule(scope->pn, PN_eval_input)) {
assert(scope->kind == SCOPE_MODULE);
compile_node(comp, pt_rule_first(scope->pn)); // compile the expression
EMIT(return_value);
} else if (scope->kind == SCOPE_MODULE) {
if (!comp->is_repl) {
//check_for_doc_string(comp, scope->pn);
}
compile_node(comp, scope->pn);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(return_value);
} else if (scope->kind == SCOPE_FUNCTION) {
const byte *p = scope->pn;
p = pt_next(p); // skip func name
// work out number of parameters, keywords and default parameters, and add them to the id_info array
// must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
if (comp->pass == MP_PASS_SCOPE) {
comp->have_star = false;
apply_to_single_or_list(comp, p, PN_typedargslist, compile_scope_func_param);
}
#if MICROPY_EMIT_NATIVE
else if (scope->emit_options == MP_EMIT_OPT_VIPER) {
// compile annotations; only needed on latter compiler passes
// only needed for viper emitter
// argument annotations
apply_to_single_or_list(comp, p, PN_typedargslist, compile_scope_func_annotations);
const byte *p_ret = pt_next(p); // skip arg list
// next node is return/whole function annotation
if (pt_is_any_id(p_ret)) {
qstr ret_type;
pt_extract_id(p_ret, &ret_type);
EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type);
} else if (!pt_is_null(p_ret)) {
compile_syntax_error(comp, p_ret, "return annotation must be an identifier");
}
}
#endif // MICROPY_EMIT_NATIVE
p = pt_next(p); // skip arg list
p = pt_next(p); // skip return annotation
compile_node(comp, p); // function body
// emit return if it wasn't the last opcode
if (!EMIT(last_emit_was_return_value)) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(return_value);
}
} else if (scope->kind == SCOPE_LAMBDA) {
const byte *p = scope->pn;
// work out number of parameters, keywords and default parameters, and add them to the id_info array
// must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
if (comp->pass == MP_PASS_SCOPE) {
comp->have_star = false;
apply_to_single_or_list(comp, p, PN_varargslist, compile_scope_lambda_param);
}
p = pt_next(p); // skip arg list
compile_node(comp, p); // lambda body
// if the lambda is a generator, then we return None, not the result of the expression of the lambda
if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
EMIT(pop_top);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
}
EMIT(return_value);
} else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) {
const byte *p = scope->pn;
const byte *p_comp_for = pt_next(p);
const byte *p_comp_for_top;
p_comp_for = pt_rule_extract_top(p_comp_for, &p_comp_for_top);
p_comp_for = pt_next(p_comp_for); // skip scope index
// We need a unique name for the comprehension argument (the iterator).
// CPython uses .0, but we should be able to use anything that won't
// clash with a user defined variable. Best to use an existing qstr,
// so we use the blank qstr.
qstr qstr_arg = MP_QSTR_;
if (comp->pass == MP_PASS_SCOPE) {
bool added;
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added);
assert(added);
id_info->kind = ID_INFO_KIND_LOCAL;
scope->num_pos_args = 1;
}
if (scope->kind == SCOPE_LIST_COMP) {
EMIT_ARG(build_list, 0);
} else if (scope->kind == SCOPE_DICT_COMP) {
EMIT_ARG(build_map, 0);
#if MICROPY_PY_BUILTINS_SET
} else if (scope->kind == SCOPE_SET_COMP) {
EMIT_ARG(build_set, 0);
#endif
}
// There are 4 slots on the stack for the iterator, and the first one is
// NULL to indicate that the second one points to the iterator object.
if (scope->kind == SCOPE_GEN_EXPR) {
// TODO static assert that MP_OBJ_ITER_BUF_NSLOTS == 4
EMIT(load_null);
compile_load_id(comp, qstr_arg);
EMIT(load_null);
EMIT(load_null);
} else {
compile_load_id(comp, qstr_arg);
EMIT_ARG(get_iter, true);
}
compile_scope_comp_iter(comp, p_comp_for, p_comp_for_top, p, 0);
if (scope->kind == SCOPE_GEN_EXPR) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
}
EMIT(return_value);
} else {
assert(scope->kind == SCOPE_CLASS);
if (comp->pass == MP_PASS_SCOPE) {
bool added;
id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added);
assert(added);
id_info->kind = ID_INFO_KIND_LOCAL;
}
// just to check, should remove this code
qstr class_name;
pt_extract_id(scope->pn, &class_name);
assert(class_name == scope->simple_name);
compile_load_id(comp, MP_QSTR___name__);
compile_store_id(comp, MP_QSTR___module__);
EMIT_ARG(load_const_str, scope->simple_name);
compile_store_id(comp, MP_QSTR___qualname__);
const byte *p = pt_next(pt_next(scope->pn)); // skip name, bases
//check_for_doc_string(comp, p);
compile_node(comp, p); // class body
id_info_t *id = scope_find(scope, MP_QSTR___class__);
assert(id != NULL);
if (id->kind == ID_INFO_KIND_LOCAL) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
} else {
EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num);
}
EMIT(return_value);
}
EMIT(end_pass);
// make sure we match all the exception levels
assert(comp->cur_except_level == 0);
}
#if MICROPY_EMIT_INLINE_ASM
// requires 3 passes: SCOPE, CODE_SIZE, EMIT
STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
comp->pass = pass;
comp->scope_cur = scope;
comp->next_label = 0;
if (scope->kind != SCOPE_FUNCTION) {
compile_syntax_error(comp, NULL, "inline assembler must be a function");
return;
}
if (comp->pass > MP_PASS_SCOPE) {
EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error);
}
// get the function definition parse node
const byte *p = scope->pn;
assert(pt_is_any_id(p));
p = pt_next(p); // skip the function name
// parameters are in next node
if (comp->pass == MP_PASS_CODE_SIZE) {
const byte *pp = p;
const byte *pptop = mp_parse_node_extract_list(&pp, PN_typedargslist);
scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, pp, pptop);
if (comp->compile_error != MP_OBJ_NULL) {
goto inline_asm_error;
}
}
p = pt_next(p); // skip the parameter list
// function return annotation is in the next node
mp_uint_t type_sig = MP_NATIVE_TYPE_INT;
if (!pt_is_null(p)) {
if (pt_is_any_id(p)) {
qstr ret_type;
pt_extract_id(p, &ret_type);
switch (ret_type) {
case MP_QSTR_object: type_sig = MP_NATIVE_TYPE_OBJ; break;
case MP_QSTR_bool: type_sig = MP_NATIVE_TYPE_BOOL; break;
case MP_QSTR_int: type_sig = MP_NATIVE_TYPE_INT; break;
case MP_QSTR_uint: type_sig = MP_NATIVE_TYPE_UINT; break;
default: compile_syntax_error(comp, p, "unknown type"); return;
}
} else {
compile_syntax_error(comp, p, "return annotation must be an identifier");
}
}
p = pt_next(p); // move past function return annotation
// get the list of statements within the body of the function
const byte *ptop = mp_parse_node_extract_list(&p, PN_suite_block_stmts);
for (const byte *p_instr = p; p_instr != ptop; p_instr = pt_next(p_instr)) {
p = p_instr;
if (pt_is_rule(p, PN_pass_stmt)) {
// no instructions
continue;
} else if (!pt_is_rule(p, PN_expr_stmt)) {
// not an instruction; error
not_an_instruction:
compile_syntax_error(comp, p, "expecting an assembler instruction");
return;
}
// check structure of parse node
const byte *p_expr_top;
const byte *p_expr = pt_rule_extract_top(p, &p_expr_top);
if (!pt_is_rule(p_expr, PN_atom_expr_normal)) {
goto not_an_instruction;
}
if (pt_next(p_expr) != p_expr_top) {
goto not_an_instruction;
}
p_expr = pt_rule_extract_top(p_expr, &p_expr_top);
if (!pt_is_any_id(p_expr)) {
goto not_an_instruction;
}
const byte *p_expr_paren = pt_next(p_expr);
if (p_expr_paren == p_expr_top || !pt_is_rule(p_expr_paren, PN_trailer_paren)) {
goto not_an_instruction;
}
if (pt_next(p_expr_paren) != p_expr_top) {
goto not_an_instruction;
}
// parse node looks like an instruction
// get instruction name and args
qstr op;
pt_extract_id(p_expr, &op);
const byte *p_args = pt_rule_first(p_expr_paren);
const byte *p_args_top = mp_parse_node_extract_list(&p_args, PN_arglist);
uint n_args = pt_num_nodes(p_args, p_args_top);
// emit instructions
if (op == MP_QSTR_label) {
if (!(n_args == 1 && pt_is_any_id(p_args))) {
compile_syntax_error(comp, p, "'label' requires 1 argument");
return;
}
uint lab = comp_next_label(comp);
if (pass > MP_PASS_SCOPE) {
qstr id;
pt_extract_id(p_args, &id);
if (!EMIT_INLINE_ASM_ARG(label, lab, id)) {
compile_syntax_error(comp, p, "label redefined");
return;
}
}
} else if (op == MP_QSTR_align) {
if (!(n_args == 1 && pt_is_small_int(p_args))) {
compile_syntax_error(comp, p, "'align' requires 1 argument");
return;
}
if (pass > MP_PASS_SCOPE) {
mp_asm_base_align((mp_asm_base_t*)comp->emit_inline_asm,
pt_small_int_value(p_args));
}
} else if (op == MP_QSTR_data) {
if (!(n_args >= 2 && pt_is_small_int(p_args))) {
compile_syntax_error(comp, p, "'data' requires at least 2 arguments");
return;
}
if (pass > MP_PASS_SCOPE) {
mp_int_t bytesize;
p_args = pt_get_small_int(p_args, &bytesize);
for (uint j = 1; j < n_args; j++) {
if (!pt_is_small_int(p_args)) {
compile_syntax_error(comp, p, "'data' requires integer arguments");
return;
}
mp_int_t val;
p_args = pt_get_small_int(p_args, &val);
mp_asm_base_data((mp_asm_base_t*)comp->emit_inline_asm,
bytesize, val);
}
}
} else {
if (pass > MP_PASS_SCOPE) {
if (n_args > 3) {
goto not_an_instruction;
}
const byte *pn_arg[3];
pn_arg[0] = p_args;
pn_arg[1] = pt_next(pn_arg[0]);
pn_arg[2] = pt_next(pn_arg[1]);
EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg);
}
}
if (comp->compile_error != MP_OBJ_NULL) {
goto inline_asm_error;
}
}
if (comp->pass > MP_PASS_SCOPE) {
EMIT_INLINE_ASM_ARG(end_pass, type_sig);
if (comp->pass == MP_PASS_EMIT) {
void *f = mp_asm_base_get_code((mp_asm_base_t*)comp->emit_inline_asm);
mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM,
f, mp_asm_base_get_code_size((mp_asm_base_t*)comp->emit_inline_asm),
NULL, comp->scope_cur->num_pos_args, 0, type_sig);
}
}
if (comp->compile_error != MP_OBJ_NULL) {
// inline assembler had an error; set line for its exception
inline_asm_error:
compile_error_set_line(comp, p);
}
}
#endif
STATIC void scope_compute_things(scope_t *scope) {
// in MicroPython we put the *x parameter after all other parameters (except **y)
if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
id_info_t *id_param = NULL;
for (int i = scope->id_info_len - 1; i >= 0; i--) {
id_info_t *id = &scope->id_info[i];
if (id->flags & ID_FLAG_IS_STAR_PARAM) {
if (id_param != NULL) {
// swap star param with last param
id_info_t temp = *id_param; *id_param = *id; *id = temp;
}
break;
} else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) {
id_param = id;
}
}
}
// in functions, turn implicit globals into explicit globals
// compute the index of each local
scope->num_locals = 0;
for (int i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) {
// __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL
continue;
}
if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
}
// params always count for 1 local, even if they are a cell
if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) {
id->local_num = scope->num_locals++;
}
}
// compute the index of cell vars
for (int i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
// in MicroPython the cells come right after the fast locals
// parameters are not counted here, since they remain at the start
// of the locals, even if they are cell vars
if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) {
id->local_num = scope->num_locals;
scope->num_locals += 1;
}
}
// compute the index of free vars
// make sure they are in the order of the parent scope
if (scope->parent != NULL) {
int num_free = 0;
for (int i = 0; i < scope->parent->id_info_len; i++) {
id_info_t *id = &scope->parent->id_info[i];
if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
for (int j = 0; j < scope->id_info_len; j++) {
id_info_t *id2 = &scope->id_info[j];
if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params
// in MicroPython the frees come first, before the params
id2->local_num = num_free;
num_free += 1;
}
}
}
}
// in MicroPython shift all other locals after the free locals
if (num_free > 0) {
for (int i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) {
id->local_num += num_free;
}
}
scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function
scope->num_locals += num_free;
}
}
}
#if !MICROPY_PERSISTENT_CODE_SAVE
STATIC
#endif
mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
// put compiler state on the stack, it's relatively small
compiler_t comp_state = {0};
compiler_t *comp = &comp_state;
comp->source_file = source_file;
comp->is_repl = is_repl;
comp->co_data = parse_tree->co_data;
comp->break_label = INVALID_LABEL;
comp->continue_label = INVALID_LABEL;
// create the array of scopes
comp->num_scopes = pt_small_int_value(pt_next(parse_tree->root));
comp->scopes = m_new0(scope_t*, comp->num_scopes);
// create the module scope
scope_new_and_link(comp, 0, SCOPE_MODULE, parse_tree->root, emit_opt);
// create standard emitter; it's used at least for MP_PASS_SCOPE
emit_t *emit_bc = emit_bc_new();
// compile pass 1
comp->emit = emit_bc;
#if MICROPY_EMIT_NATIVE
comp->emit_method_table = &emit_bc_method_table;
#endif
uint max_num_labels = 0;
// grrr: scope for nested comp_for's are not used, unless they are parenthesised
// and become individual generators; in this case they are parsed in the wrong
// direction for allocation of scope id
bool keep_going = true;
while (keep_going) {
keep_going = false;
for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) {
scope_t *s = comp->scopes[i];
if (s == NULL) { continue; } // no scope (yet?)
if (s->raw_code != NULL) { continue; } // scope already did pass 1
keep_going = true;
s->raw_code = mp_emit_glue_new_raw_code();
if (false) {
#if MICROPY_EMIT_INLINE_ASM
} else if (s->emit_options == MP_EMIT_OPT_ASM) {
compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);
#endif
} else {
compile_scope(comp, s, MP_PASS_SCOPE);
}
// update maximim number of labels needed
if (comp->next_label > max_num_labels) {
max_num_labels = comp->next_label;
}
}
}
// compute some things related to scope and identifiers
for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) {
scope_t *s = comp->scopes[i];
if (s == NULL) { continue; } // TODO scope for nested comp_for's are not used
scope_compute_things(s);
}
// set max number of labels now that it's calculated
emit_bc_set_max_num_labels(emit_bc, max_num_labels);
// compile pass 2 and 3
#if MICROPY_EMIT_NATIVE
emit_t *emit_native = NULL;
#endif
for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) {
scope_t *s = comp->scopes[i];
if (s == NULL) { continue; }
if (false) {
// dummy
#if MICROPY_EMIT_INLINE_ASM
} else if (s->emit_options == MP_EMIT_OPT_ASM) {
// inline assembly
if (comp->emit_inline_asm == NULL) {
comp->emit_inline_asm = ASM_EMITTER(new)(comp->co_data, max_num_labels);
}
comp->emit = NULL;
comp->emit_inline_asm_method_table = &ASM_EMITTER(method_table);
compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
#if MICROPY_EMIT_INLINE_XTENSA
// Xtensa requires an extra pass to compute size of l32r const table
// TODO this can be improved by calculating it during SCOPE pass
// but that requires some other structural changes to the asm emitters
compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
#endif
if (comp->compile_error == MP_OBJ_NULL) {
compile_scope_inline_asm(comp, s, MP_PASS_EMIT);
}
#endif
} else {
// choose the emit type
switch (s->emit_options) {
#if MICROPY_EMIT_NATIVE
case MP_EMIT_OPT_NATIVE_PYTHON:
case MP_EMIT_OPT_VIPER:
#if MICROPY_EMIT_X64
if (emit_native == NULL) {
emit_native = emit_native_x64_new(&comp->compile_error, max_num_labels);
}
comp->emit_method_table = &emit_native_x64_method_table;
#elif MICROPY_EMIT_X86
if (emit_native == NULL) {
emit_native = emit_native_x86_new(&comp->compile_error, max_num_labels);
}
comp->emit_method_table = &emit_native_x86_method_table;
#elif MICROPY_EMIT_THUMB
if (emit_native == NULL) {
emit_native = emit_native_thumb_new(&comp->compile_error, max_num_labels);
}
comp->emit_method_table = &emit_native_thumb_method_table;
#elif MICROPY_EMIT_ARM
if (emit_native == NULL) {
emit_native = emit_native_arm_new(&comp->compile_error, max_num_labels);
}
comp->emit_method_table = &emit_native_arm_method_table;
#endif
comp->emit = emit_native;
EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0);
break;
#endif // MICROPY_EMIT_NATIVE
default:
comp->emit = emit_bc;
#if MICROPY_EMIT_NATIVE
comp->emit_method_table = &emit_bc_method_table;
#endif
break;
}
// need a pass to compute stack size
compile_scope(comp, s, MP_PASS_STACK_SIZE);
// second last pass: compute code size
if (comp->compile_error == MP_OBJ_NULL) {
compile_scope(comp, s, MP_PASS_CODE_SIZE);
}
// final pass: emit code
if (comp->compile_error == MP_OBJ_NULL) {
compile_scope(comp, s, MP_PASS_EMIT);
}
}
}
if (comp->compile_error != MP_OBJ_NULL) {
// if there is no line number for the error then use the line
// number for the start of this scope
compile_error_set_line(comp, comp->scope_cur->pn);
// add a traceback to the exception using relevant source info
mp_obj_exception_add_traceback(comp->compile_error, comp->source_file,
comp->compile_error_line, comp->scope_cur->simple_name);
}
// free the emitters
emit_bc_free(emit_bc);
#if MICROPY_EMIT_NATIVE
if (emit_native != NULL) {
#if MICROPY_EMIT_X64
emit_native_x64_free(emit_native);
#elif MICROPY_EMIT_X86
emit_native_x86_free(emit_native);
#elif MICROPY_EMIT_THUMB
emit_native_thumb_free(emit_native);
#elif MICROPY_EMIT_ARM
emit_native_arm_free(emit_native);
#endif
}
#endif
#if MICROPY_EMIT_INLINE_ASM
if (comp->emit_inline_asm != NULL) {
ASM_EMITTER(free)(comp->emit_inline_asm);
}
#endif
// free the parse tree
mp_parse_tree_clear(parse_tree);
mp_raw_code_t *outer_raw_code = comp->scopes[0]->raw_code;
// free the scopes
for (uint i = 0; i < comp->num_scopes; ++i) {
if (comp->scopes[i] == NULL) { continue; } // TODO scope for nested comp_for's are not used
scope_free(comp->scopes[i]);
}
m_del(scope_t*, comp->scopes, comp->num_scopes);
if (comp->compile_error != MP_OBJ_NULL) {
nlr_raise(comp->compile_error);
} else {
return outer_raw_code;
}
}
mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, emit_opt, is_repl);
// return function that executes the outer module
return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL);
}
#endif // MICROPY_ENABLE_COMPILER && MICROPY_USE_SMALL_HEAP_COMPILER