/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include "py/scope.h" #include "py/emit.h" #include "py/compile.h" #include "py/runtime.h" #include "py/asmbase.h" #if MICROPY_ENABLE_COMPILER && MICROPY_USE_SMALL_HEAP_COMPILER #if MICROPY_PY_ASYNC_AWAIT #error "async/await syntax not implemented with this parser/compiler" #endif // TODO need to mangle __attr names #define INVALID_LABEL (0xffff) typedef enum { // define rules with a compile function #define DEF_RULE(rule, comp, kind, ...) PN_##rule, #define DEF_RULE_NC(rule, kind, ...) #include "py/grammar.h" #undef DEF_RULE #undef DEF_RULE_NC PN_const_object, // special node for a constant, generic Python object // define rules without a compile function #define DEF_RULE(rule, comp, kind, ...) #define DEF_RULE_NC(rule, kind, ...) PN_##rule, #include "py/grammar.h" #undef DEF_RULE #undef DEF_RULE_NC } pn_kind_t; #define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE #if NEED_METHOD_TABLE // we need a method table to do the lookup for the emitter functions #define EMIT(fun) (comp->emit_method_table->fun(comp->emit)) #define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__)) #define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.fast(comp->emit, qst, local_num)) #define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst)) #else // if we only have the bytecode emitter enabled then we can do a direct call to the functions #define EMIT(fun) (mp_emit_bc_##fun(comp->emit)) #define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__)) #define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_fast(comp->emit, qst, local_num)) #define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst)) #endif #if MICROPY_EMIT_INLINE_ASM // define macros for inline assembler #if MICROPY_EMIT_INLINE_THUMB #define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb #define ASM_EMITTER(f) emit_inline_thumb_##f #elif MICROPY_EMIT_INLINE_XTENSA #define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa #define ASM_EMITTER(f) emit_inline_xtensa_##f #else #error "unknown asm emitter" #endif #endif #define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm)) #define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__)) // elements in this struct are ordered to make it compact typedef struct _compiler_t { qstr source_file; uint8_t is_repl; uint8_t pass; // holds enum type pass_kind_t uint8_t have_star; // try to keep compiler clean from nlr mp_obj_t compile_error; // set to an exception object if there's an error size_t compile_error_line; // set to best guess of line of error uint next_label; uint16_t num_dict_params; uint16_t num_default_params; uint16_t break_label; // highest bit set indicates we are breaking out of a for loop uint16_t continue_label; uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT uint16_t break_continue_except_level; mp_uint_t *co_data; size_t num_scopes; scope_t **scopes; scope_t *scope_cur; emit_t *emit; // current emitter #if NEED_METHOD_TABLE const emit_method_table_t *emit_method_table; // current emit method table #endif #if MICROPY_EMIT_INLINE_ASM emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm #endif } compiler_t; STATIC void compile_error_set_line(compiler_t *comp, const byte *p) { // if the line of the error is unknown then try to update it from the parse data if (comp->compile_error_line == 0 && p != NULL && pt_is_any_rule(p)) { size_t rule_id, src_line; const byte *ptop; pt_rule_extract(p, &rule_id, &src_line, &ptop); comp->compile_error_line = src_line; } } STATIC void compile_syntax_error(compiler_t *comp, const byte *p, const char *msg) { // only register the error if there has been no other error if (comp->compile_error == MP_OBJ_NULL) { comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg); compile_error_set_line(comp, p); } } STATIC void compile_trailer_paren_helper(compiler_t *comp, const byte *p_arglist, bool is_method_call, int n_positional_extra); STATIC void compile_comprehension(compiler_t *comp, const byte *p, scope_kind_t kind); STATIC const byte *compile_node(compiler_t *comp, const byte *p); STATIC uint comp_next_label(compiler_t *comp) { return comp->next_label++; } STATIC void compile_increase_except_level(compiler_t *comp) { comp->cur_except_level += 1; if (comp->cur_except_level > comp->scope_cur->exc_stack_size) { comp->scope_cur->exc_stack_size = comp->cur_except_level; } } STATIC void compile_decrease_except_level(compiler_t *comp) { assert(comp->cur_except_level > 0); comp->cur_except_level -= 1; } STATIC void scope_new_and_link(compiler_t *comp, size_t scope_idx, scope_kind_t kind, const byte *p, uint emit_options) { scope_t *scope = scope_new(kind, p, comp->source_file, emit_options); scope->parent = comp->scope_cur; comp->scopes[scope_idx] = scope; } typedef void (*apply_list_fun_t)(compiler_t *comp, const byte *p); STATIC void apply_to_single_or_list(compiler_t *comp, const byte *p, pn_kind_t pn_list_kind, apply_list_fun_t f) { if (pt_is_rule(p, pn_list_kind)) { const byte *ptop; p = pt_rule_extract_top(p, &ptop); while (p != ptop) { f(comp, p); p = pt_next(p); } } else if (!pt_is_null(p)) { f(comp, p); } } STATIC void compile_generic_all_nodes(compiler_t *comp, const byte *p, const byte *ptop) { while (p != ptop) { //printf("NODE: %02x %02x %02x %02x\n", p[0], p[1], p[2], p[3]); p = compile_node(comp, p); } } STATIC void compile_load_id(compiler_t *comp, qstr qst) { if (comp->pass == MP_PASS_SCOPE) { mp_emit_common_get_id_for_load(comp->scope_cur, qst); } else { #if NEED_METHOD_TABLE mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst); #else mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst); #endif } } STATIC void compile_store_id(compiler_t *comp, qstr qst) { if (comp->pass == MP_PASS_SCOPE) { mp_emit_common_get_id_for_modification(comp->scope_cur, qst); } else { #if NEED_METHOD_TABLE mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst); #else mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst); #endif } } STATIC void compile_delete_id(compiler_t *comp, qstr qst) { if (comp->pass == MP_PASS_SCOPE) { mp_emit_common_get_id_for_modification(comp->scope_cur, qst); } else { #if NEED_METHOD_TABLE mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst); #else mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst); #endif } } STATIC void c_tuple(compiler_t *comp, const byte *p, const byte *p_list, const byte *p_list_top) { int total = 0; if (p != NULL) { compile_node(comp, p); total += 1; } while (p_list != p_list_top) { p_list = compile_node(comp, p_list); total += 1; } EMIT_ARG(build_tuple, total); } STATIC void compile_generic_tuple(compiler_t *comp, const byte *p, const byte *ptop) { // a simple tuple expression c_tuple(comp, NULL, p, ptop); } STATIC bool node_is_const_false(const byte *p) { return pt_is_tok(p, MP_TOKEN_KW_FALSE) || (pt_is_small_int(p) && pt_small_int_value(p) == 0); } STATIC bool node_is_const_true(const byte *p) { return pt_is_tok(p, MP_TOKEN_KW_TRUE) || (pt_is_small_int(p) && pt_small_int_value(p) != 0); } STATIC const byte *c_if_cond(compiler_t *comp, const byte *p, bool jump_if, int label) { if (node_is_const_false(p)) { if (jump_if == false) { EMIT_ARG(jump, label); } return pt_next(p); } else if (node_is_const_true(p)) { if (jump_if == true) { EMIT_ARG(jump, label); } return pt_next(p); } else if (pt_is_any_rule(p)) { const byte *ptop; const byte *p2 = pt_rule_extract_top(p, &ptop); if (pt_is_rule(p, PN_or_test)) { if (jump_if == false) { and_or_logic1:; uint label2 = comp_next_label(comp); while (pt_next(p2) != ptop) { p2 = c_if_cond(comp, p2, !jump_if, label2); } p2 = c_if_cond(comp, p2, jump_if, label); EMIT_ARG(label_assign, label2); } else { and_or_logic2: while (p2 != ptop) { p2 = c_if_cond(comp, p2, jump_if, label); } } return p2; } else if (pt_is_rule(p, PN_and_test)) { if (jump_if == false) { goto and_or_logic2; } else { goto and_or_logic1; } } else if (pt_is_rule(p, PN_not_test_2)) { return c_if_cond(comp, p2, !jump_if, label); } else if (pt_is_rule(p, PN_atom_paren)) { // cond is something in parenthesis if (pt_is_rule_empty(p)) { // empty tuple, acts as false for the condition if (jump_if == false) { EMIT_ARG(jump, label); } } else { assert(pt_is_rule(pt_rule_first(p), PN_testlist_comp)); // non-empty tuple, acts as true for the condition if (jump_if == true) { EMIT_ARG(jump, label); } } return pt_next(p); } } // nothing special, fall back to default compiling for node and jump p = compile_node(comp, p); EMIT_ARG(pop_jump_if, jump_if, label); return p; } typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t; STATIC void c_assign(compiler_t *comp, const byte *p, assign_kind_t kind); STATIC void c_assign_atom_expr(compiler_t *comp, const byte *p_orig, assign_kind_t assign_kind) { const byte *ptop; const byte *p0 = pt_rule_extract_top(p_orig, &ptop); if (assign_kind != ASSIGN_AUG_STORE) { compile_node(comp, p0); } const byte *p1 = pt_next(p0); if (pt_is_null_with_top(p1, ptop)) { cannot_assign: compile_syntax_error(comp, p_orig, "can't assign to expression"); return; } if (pt_is_rule(p1, PN_atom_expr_trailers)) { const byte *p1top; p1 = pt_rule_extract_top(p1, &p1top); for (;;) { const byte *p1next = pt_next(p1); if (p1next >= p1top) { break; } if (assign_kind != ASSIGN_AUG_STORE) { compile_node(comp, p1); } p1 = p1next; } // p1 now points to final trailer for store } if (pt_is_rule(p1, PN_trailer_bracket)) { if (assign_kind == ASSIGN_AUG_STORE) { EMIT(rot_three); EMIT(store_subscr); } else { compile_node(comp, pt_rule_first(p1)); if (assign_kind == ASSIGN_AUG_LOAD) { EMIT(dup_top_two); EMIT(load_subscr); } else { EMIT(store_subscr); } } } else if (pt_is_rule(p1, PN_trailer_period)) { qstr attr; pt_extract_id(pt_rule_first(p1), &attr); if (assign_kind == ASSIGN_AUG_LOAD) { EMIT(dup_top); EMIT_ARG(load_attr, attr); } else { if (assign_kind == ASSIGN_AUG_STORE) { EMIT(rot_two); } EMIT_ARG(store_attr, attr); } } else { goto cannot_assign; } if (!pt_is_null_with_top(pt_next(p1), ptop)) { goto cannot_assign; } } // we need to allow for a caller passing in 1 initial node followed by an array of nodes STATIC void c_assign_tuple(compiler_t *comp, const byte *p_head, const byte *p_tail, const byte *p_tail_top) { uint num_head = (p_head == NULL) ? 0 : 1; uint num_tail = pt_num_nodes(p_tail, p_tail_top); // look for star expression const byte *p_star = NULL; if (num_head != 0 && pt_is_rule(p_head, PN_star_expr)) { EMIT_ARG(unpack_ex, 0, num_tail); p_star = p_head; } uint i = 0; for (const byte *p = p_tail; p != p_tail_top; p = pt_next(p), ++i) { if (pt_is_rule(p, PN_star_expr)) { if (p_star == NULL) { EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1); p_star = p; } else { compile_syntax_error(comp, p, "multiple *x in assignment"); return; } } } if (p_star == NULL) { EMIT_ARG(unpack_sequence, num_head + num_tail); } if (num_head != 0) { if (p_head == p_star) { c_assign(comp, pt_rule_first(p_head), ASSIGN_STORE); } else { c_assign(comp, p_head, ASSIGN_STORE); } } for (const byte *p = p_tail; p != p_tail_top; p = pt_next(p)) { if (p == p_star) { c_assign(comp, pt_rule_first(p), ASSIGN_STORE); } else { c_assign(comp, p, ASSIGN_STORE); } } } // assigns top of stack to pn STATIC void c_assign(compiler_t *comp, const byte *p, assign_kind_t assign_kind) { assert(!pt_is_null(p)); if (pt_is_any_id(p)) { qstr arg; p = pt_extract_id(p, &arg); switch (assign_kind) { case ASSIGN_STORE: case ASSIGN_AUG_STORE: compile_store_id(comp, arg); break; case ASSIGN_AUG_LOAD: default: compile_load_id(comp, arg); break; } } else if (!pt_is_any_rule(p)) { compile_syntax_error(comp, p, "can't assign to literal"); } else { switch (pt_rule_extract_rule_id(p)) { case PN_atom_expr_normal: // lhs is an index or attribute c_assign_atom_expr(comp, p, assign_kind); break; case PN_testlist_star_expr: case PN_exprlist: { // lhs is a tuple if (assign_kind != ASSIGN_STORE) { goto bad_aug; } const byte *ptop; const byte *p0 = pt_rule_extract_top(p, &ptop); c_assign_tuple(comp, NULL, p0, ptop); break; } case PN_atom_paren: { // lhs is something in parenthesis const byte *ptop; const byte *p0 = pt_rule_extract_top(p, &ptop); if (pt_is_null_with_top(p0, ptop)) { // empty tuple goto cannot_assign; } else { assert(pt_is_rule(p0, PN_testlist_comp)); if (assign_kind != ASSIGN_STORE) { goto bad_aug; } p = p0; goto testlist_comp; } break; } case PN_atom_bracket: { // lhs is something in brackets if (assign_kind != ASSIGN_STORE) { goto bad_aug; } const byte *ptop; const byte *p0 = pt_rule_extract_top(p, &ptop); // skip rule header if (pt_is_null_with_top(p0, ptop)) { // empty list, assignment allowed c_assign_tuple(comp, NULL, NULL, NULL); } else if (pt_is_rule(p0, PN_testlist_comp)) { p = p0; goto testlist_comp; } else { // brackets around 1 item c_assign_tuple(comp, p0, NULL, NULL); } break; } default: goto cannot_assign; } return; testlist_comp:; // lhs is a sequence const byte *ptop; const byte *p0 = pt_rule_extract_top(p, &ptop); const byte *p1 = pt_next(p0); if (pt_is_rule(p1, PN_testlist_comp_3b)) { // sequence of one item, with trailing comma assert(pt_is_rule_empty(p1)); c_assign_tuple(comp, p0, NULL, NULL); } else if (pt_is_rule(p1, PN_testlist_comp_3c)) { // sequence of many items p1 = pt_rule_extract_top(p1, &ptop); c_assign_tuple(comp, p0, p1, ptop); } else if (pt_is_rule(p1, PN_comp_for)) { goto cannot_assign; } else { // sequence with 2 items c_assign_tuple(comp, NULL, p0, pt_next(p1)); } } return; cannot_assign: compile_syntax_error(comp, p, "can't assign to expression"); return; bad_aug: compile_syntax_error(comp, p, "illegal expression for augmented assignment"); } // stuff for lambda and comprehensions and generators: // if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults // if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults // if both exist, the tuple is above the dictionary (ie the first pop gets the tuple) STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) { assert(n_pos_defaults >= 0); assert(n_kw_defaults >= 0); // set flags if (n_kw_defaults > 0) { this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS; } this_scope->num_def_pos_args = n_pos_defaults; // make closed over variables, if any // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython) int nfree = 0; if (comp->scope_cur->kind != SCOPE_MODULE) { for (int i = 0; i < comp->scope_cur->id_info_len; i++) { id_info_t *id = &comp->scope_cur->id_info[i]; if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { for (int j = 0; j < this_scope->id_info_len; j++) { id_info_t *id2 = &this_scope->id_info[j]; if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { // in MicroPython we load closures using LOAD_FAST EMIT_LOAD_FAST(id->qst, id->local_num); nfree += 1; } } } } } // make the function/closure if (nfree == 0) { EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults); } else { EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults); } } STATIC void compile_funcdef_lambdef_param(compiler_t *comp, const byte *p) { const byte *p_orig = p; if (pt_is_rule(p, PN_typedargslist_star) || pt_is_rule(p, PN_varargslist_star)) { comp->have_star = true; /* don't need to distinguish bare from named star mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { // bare star } else { // named star } */ } else if (pt_is_rule(p, PN_typedargslist_dbl_star) || pt_is_rule(p, PN_varargslist_dbl_star)) { // named double star // TODO do we need to do anything with this? } else { const byte *p_id; const byte *p_colon = NULL; const byte *p_equal = NULL; if (pt_is_any_id(p)) { // this parameter is just an id p_id = p; } else if (pt_is_rule(p, PN_typedargslist_name)) { // this parameter has a colon and/or equal specifier const byte *ptop; p = pt_rule_extract_top(p, &ptop); p_id = p; p = pt_next(p); if (p != ptop) { p_colon = p; p = pt_next(p); if (p != ptop) { p_equal = p; } } } else { assert(pt_is_rule(p, PN_varargslist_name)); // should be // this parameter has an equal specifier p_id = pt_rule_first(p); p_equal = pt_next(p_id); } qstr q_id; pt_extract_id(p_id, &q_id); if (p_equal == NULL || pt_is_null(p_equal)) { // this parameter does not have a default value // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid) if (!comp->have_star && comp->num_default_params != 0) { compile_syntax_error(comp, p_orig, "non-default argument follows default argument"); return; } } else { // this parameter has a default value // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why if (comp->have_star) { comp->num_dict_params += 1; // in MicroPython we put the default dict parameters into a dictionary using the bytecode if (comp->num_dict_params == 1) { // in MicroPython we put the default positional parameters into a tuple using the bytecode // we need to do this here before we start building the map for the default keywords if (comp->num_default_params > 0) { EMIT_ARG(build_tuple, comp->num_default_params); } else { EMIT(load_null); // sentinel indicating empty default positional args } // first default dict param, so make the map EMIT_ARG(build_map, 0); } // compile value then key, then store it to the dict compile_node(comp, p_equal); EMIT_ARG(load_const_str, q_id); EMIT(store_map); } else { comp->num_default_params += 1; compile_node(comp, p_equal); } } // TODO p_colon not implemented (void)p_colon; } } STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, const byte *p, pn_kind_t pn_list_kind) { // When we call compile_funcdef_lambdef_param below it can compile an arbitrary // expression for default arguments, which may contain a lambda. The lambda will // call here in a nested way, so we must save and restore the relevant state. bool orig_have_star = comp->have_star; uint16_t orig_num_dict_params = comp->num_dict_params; uint16_t orig_num_default_params = comp->num_default_params; // compile default parameters comp->have_star = false; comp->num_dict_params = 0; comp->num_default_params = 0; apply_to_single_or_list(comp, p, pn_list_kind, compile_funcdef_lambdef_param); if (comp->compile_error != MP_OBJ_NULL) { return; } // in MicroPython we put the default positional parameters into a tuple using the bytecode // the default keywords args may have already made the tuple; if not, do it now if (comp->num_default_params > 0 && comp->num_dict_params == 0) { EMIT_ARG(build_tuple, comp->num_default_params); EMIT(load_null); // sentinel indicating empty default keyword args } // make the function close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params); // restore state comp->have_star = orig_have_star; comp->num_dict_params = orig_num_dict_params; comp->num_default_params = orig_num_default_params; } // leaves function object on stack // returns function name STATIC qstr compile_funcdef_helper(compiler_t *comp, const byte *p, uint emit_options) { mp_int_t scope_idx; p = pt_get_small_int(p, &scope_idx); if (comp->pass == MP_PASS_SCOPE) { // create a new scope for this function scope_new_and_link(comp, scope_idx, SCOPE_FUNCTION, p, emit_options); } p = pt_next(p); // skip function name // get the scope for this function scope_t *fscope = comp->scopes[scope_idx]; // compile the function definition compile_funcdef_lambdef(comp, fscope, p, PN_typedargslist); // return its name (the 'f' in "def f(...):") return fscope->simple_name; } // leaves class object on stack // returns class name STATIC qstr compile_classdef_helper(compiler_t *comp, const byte *p, uint emit_options) { mp_int_t scope_idx; p = pt_get_small_int(p, &scope_idx); if (comp->pass == MP_PASS_SCOPE) { // create a new scope for this class scope_new_and_link(comp, scope_idx, SCOPE_CLASS, p, emit_options); } EMIT(load_build_class); // scope for this class scope_t *cscope = comp->scopes[scope_idx]; // compile the class close_over_variables_etc(comp, cscope, 0, 0); // get its name EMIT_ARG(load_const_str, cscope->simple_name); // second node has parent classes, if any // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling const byte *p_parents = pt_next(p); if (pt_is_rule(p_parents, PN_classdef_2)) { p_parents = NULL; } compile_trailer_paren_helper(comp, p_parents, false, 2); // return its name (the 'C' in class C(...):") return cscope->simple_name; } // returns true if it was a built-in decorator (even if the built-in had an error) STATIC bool compile_built_in_decorator(compiler_t *comp, const byte *p, const byte *ptop, uint *emit_options) { qstr qst; p = pt_extract_id(p, &qst); if (qst != MP_QSTR_micropython) { return false; } if (p >= ptop || pt_next(p) != ptop) { compile_syntax_error(comp, NULL, "invalid micropython decorator"); return true; } qstr attr; p = pt_extract_id(p, &attr); if (attr == MP_QSTR_bytecode) { *emit_options = MP_EMIT_OPT_BYTECODE; #if MICROPY_EMIT_NATIVE } else if (attr == MP_QSTR_native) { *emit_options = MP_EMIT_OPT_NATIVE_PYTHON; } else if (attr == MP_QSTR_viper) { *emit_options = MP_EMIT_OPT_VIPER; #endif #if MICROPY_EMIT_INLINE_ASM } else if (attr == ASM_DECORATOR_QSTR) { *emit_options = MP_EMIT_OPT_ASM; #endif } else { compile_syntax_error(comp, NULL, "invalid micropython decorator"); } return true; } STATIC void compile_decorated(compiler_t *comp, const byte *p, const byte *ptop) { // get the list of decorators ptop = mp_parse_node_extract_list(&p, PN_decorators); // inherit emit options for this function/class definition uint emit_options = comp->scope_cur->emit_options; // compile each decorator int num_non_built_in_decorators = 0; while (p != ptop) { assert(pt_is_rule(p, PN_decorator)); // should be const byte *ptop_decorator; p = pt_rule_extract_top(p, &ptop_decorator); // first node contains the decorator function, which is a dotted name const byte *ptop_dotted_name = mp_parse_node_extract_list(&p, PN_dotted_name); // check for built-in decorators if (compile_built_in_decorator(comp, p, ptop_dotted_name, &emit_options)) { // this was a built-in } else { // not a built-in, compile normally num_non_built_in_decorators += 1; // compile the decorator function p = compile_node(comp, p); while (p != ptop_dotted_name) { assert(pt_is_any_id(p)); // should be qstr qst; p = pt_extract_id(p, &qst); EMIT_ARG(load_attr, qst); } // nodes[1] contains arguments to the decorator function, if any if (!pt_is_null_with_top(p, ptop_decorator)) { // call the decorator function with the arguments in nodes[1] compile_node(comp, p); } } p = ptop_decorator; } // compile the body (funcdef or classdef) and get its name qstr body_name = 0; p = pt_rule_first(ptop); // skip the rule header if (pt_is_rule(ptop, PN_funcdef)) { body_name = compile_funcdef_helper(comp, p, emit_options); } else { assert(pt_is_rule(ptop, PN_classdef)); // should be body_name = compile_classdef_helper(comp, p, emit_options); } // call each decorator while (num_non_built_in_decorators-- > 0) { EMIT_ARG(call_function, 1, 0, 0); } // store func/class object into name compile_store_id(comp, body_name); } STATIC void compile_funcdef(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; qstr fname = compile_funcdef_helper(comp, p, comp->scope_cur->emit_options); // store function object into function name compile_store_id(comp, fname); } STATIC void c_del_stmt(compiler_t *comp, const byte *p) { if (pt_is_any_id(p)) { qstr id; pt_extract_id(p, &id); compile_delete_id(comp, id); } else if (pt_is_rule(p, PN_atom_expr_normal)) { const byte *ptop; const byte *p0 = pt_rule_extract_top(p, &ptop); const byte *p1 = compile_node(comp, p0); // base of the power node if (pt_is_rule(p1, PN_atom_expr_trailers)) { const byte *p1top; p1 = pt_rule_extract_top(p1, &p1top); for (;;) { const byte *p1next = pt_next(p1); if (p1next == p1top) { break; } compile_node(comp, p1); p1 = p1next; } // p1 now points to final trailer for delete } const byte *p2; if (pt_is_rule(p1, PN_trailer_bracket)) { p2 = compile_node(comp, pt_rule_first(p1)); EMIT(delete_subscr); } else if (pt_is_rule(p1, PN_trailer_period)) { qstr id; p2 = pt_extract_id(pt_rule_first(p1), &id); EMIT_ARG(delete_attr, id); } else { goto cannot_delete; } if (!pt_is_null_with_top(p2, ptop)) { goto cannot_delete; } } else if (pt_is_rule(p, PN_atom_paren)) { if (pt_is_rule_empty(p)) { goto cannot_delete; } else { p = pt_rule_first(p); assert(pt_is_rule(p, PN_testlist_comp)); // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp // or, simplify the logic here my making the parser simplify everything to a list const byte *p0 = pt_rule_first(p); c_del_stmt(comp, p0); const byte *p1 = pt_next(p0); if (pt_is_rule(p1, PN_testlist_comp_3b)) { // sequence of one item, with trailing comma assert(pt_is_rule_empty(p1)); } else if (pt_is_rule(p1, PN_testlist_comp_3c)) { // sequence of many items const byte *ptop; p1 = pt_rule_extract_top(p1, &ptop); while (p1 != ptop) { c_del_stmt(comp, p1); p1 = pt_next(p1); } } else if (pt_is_rule(p1, PN_comp_for)) { goto cannot_delete; } else { // sequence with 2 items c_del_stmt(comp, p1); } } } else { // some arbitrary statment that we can't delete (eg del 1) goto cannot_delete; } return; cannot_delete: compile_syntax_error(comp, p, "can't delete expression"); } STATIC void compile_del_stmt(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; apply_to_single_or_list(comp, p, PN_exprlist, c_del_stmt); } STATIC void compile_break_stmt(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; if (comp->break_label == INVALID_LABEL) { compile_syntax_error(comp, p, "'break' outside loop"); } assert(comp->cur_except_level >= comp->break_continue_except_level); EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level); } STATIC void compile_continue_stmt(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; if (comp->continue_label == INVALID_LABEL) { compile_syntax_error(comp, p, "'continue' outside loop"); } assert(comp->cur_except_level >= comp->break_continue_except_level); EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level); } STATIC void compile_return_stmt(compiler_t *comp, const byte *p, const byte *ptop) { if (comp->scope_cur->kind != SCOPE_FUNCTION) { compile_syntax_error(comp, NULL, "'return' outside function"); return; } if (pt_is_null_with_top(p, ptop)) { // no argument to 'return', so return None EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); #if 0 // TODO do we need this optimisation? i guess it's hardly used } else if (pt_is_rule(p, PN_test_if_expr)) { // special case when returning an if-expression; to match CPython optimisation mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0]; mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1]; uint l_fail = comp_next_label(comp); c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition compile_node(comp, pns_test_if_expr->nodes[0]); // success value EMIT(return_value); EMIT_ARG(label_assign, l_fail); compile_node(comp, pns_test_if_else->nodes[1]); // failure value #endif } else { compile_node(comp, p); } EMIT(return_value); } STATIC void compile_yield_stmt(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; compile_node(comp, p); EMIT(pop_top); } STATIC void compile_raise_stmt(compiler_t *comp, const byte *p, const byte *ptop) { if (pt_is_null_with_top(p, ptop)) { // raise EMIT_ARG(raise_varargs, 0); } else if (pt_is_rule(p, PN_raise_stmt_arg)) { // raise x from y p = pt_rule_first(p); p = compile_node(comp, p); compile_node(comp, p); EMIT_ARG(raise_varargs, 2); } else { // raise x compile_node(comp, p); EMIT_ARG(raise_varargs, 1); } } // q_base holds the base of the name // eg a -> q_base=a // a.b.c -> q_base=a STATIC void do_import_name(compiler_t *comp, const byte *p, qstr *q_base) { bool is_as = false; if (p != NULL && pt_is_rule(p, PN_dotted_as_name)) { // a name of the form x as y; unwrap it p = pt_rule_first(p); // point to 'x' pt_extract_id(pt_next(p), q_base); // extract 'y' is_as = true; } if (p == NULL || pt_is_null(p)) { // empty name (eg, from . import x) *q_base = MP_QSTR_; EMIT_ARG(import_name, MP_QSTR_); // import the empty string } else if (pt_is_any_id(p)) { // just a simple name qstr q_full; pt_extract_id(p, &q_full); if (!is_as) { *q_base = q_full; } EMIT_ARG(import_name, q_full); } else { // a name of the form a.b.c assert(pt_is_rule(p, PN_dotted_name)); // should be const byte *ptop; p = pt_rule_extract_top(p, &ptop); if (!is_as) { pt_extract_id(p, q_base); } // work out string length int len = -1; for (const byte *p2 = p; p2 != ptop;) { qstr qst; p2 = pt_extract_id(p2, &qst); len += 1 + qstr_len(qst); } // build string byte *q_ptr; byte *str_dest = qstr_build_start(len, &q_ptr); for (const byte *p2 = p; p2 != ptop;) { if (p2 > p) { *str_dest++ = '.'; } qstr qst; p2 = pt_extract_id(p2, &qst); size_t str_src_len; const byte *str_src = qstr_data(qst, &str_src_len); memcpy(str_dest, str_src, str_src_len); str_dest += str_src_len; } qstr q_full = qstr_build_end(q_ptr); EMIT_ARG(import_name, q_full); if (is_as) { for (const byte *p2 = pt_next(p); p2 != ptop;) { qstr qst; p2 = pt_extract_id(p2, &qst); EMIT_ARG(load_attr, qst); } } } } STATIC void compile_dotted_as_name(compiler_t *comp, const byte *p) { EMIT_ARG(load_const_small_int, 0); // level 0 import EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything qstr q_base; do_import_name(comp, p, &q_base); compile_store_id(comp, q_base); } STATIC void compile_import_name(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; apply_to_single_or_list(comp, p, PN_dotted_as_names, compile_dotted_as_name); } STATIC void compile_import_from(compiler_t *comp, const byte *p, const byte *ptop) { const byte *p_import_source = p; // extract the preceeding .'s (if any) for a relative import, to compute the import level uint import_level = 0; do { const byte *p_rel; if (pt_is_any_tok(p_import_source) || pt_is_rule(p_import_source, PN_one_or_more_period_or_ellipsis)) { // This covers relative imports with dots only like "from .. import" p_rel = p_import_source; p_import_source = NULL; } else if (pt_is_rule(p_import_source, PN_import_from_2b)) { // This covers relative imports starting with dot(s) like "from .foo import" p_rel = pt_rule_first(p_import_source); p_import_source = pt_next(p_rel); } else { // Not a relative import break; } // get the list of . and/or ...'s const byte *p_rel_top = mp_parse_node_extract_list(&p_rel, PN_one_or_more_period_or_ellipsis); // count the total number of .'s while (p_rel != p_rel_top) { if (pt_is_tok(p_rel, MP_TOKEN_DEL_PERIOD)) { import_level++; } else { // should be an MP_TOKEN_ELLIPSIS import_level += 3; } p_rel = pt_next(p_rel); } } while (0); p = pt_next(p); if (pt_is_tok(p, MP_TOKEN_OP_STAR)) { EMIT_ARG(load_const_small_int, import_level); // build the "fromlist" tuple EMIT_ARG(load_const_str, MP_QSTR__star_); EMIT_ARG(build_tuple, 1); // do the import qstr dummy_q; do_import_name(comp, p_import_source, &dummy_q); EMIT(import_star); } else { EMIT_ARG(load_const_small_int, import_level); // build the "fromlist" tuple ptop = mp_parse_node_extract_list(&p, PN_import_as_names); uint n = 0; for (const byte *p_list = p; p_list < ptop; p_list = pt_next(p_list), ++n) { assert(pt_is_rule(p_list, PN_import_as_name)); qstr id2; pt_extract_id(pt_rule_first(p_list), &id2); EMIT_ARG(load_const_str, id2); } EMIT_ARG(build_tuple, n); // do the import qstr dummy_q; do_import_name(comp, p_import_source, &dummy_q); for (const byte *p_list = p; p_list < ptop;) { assert(pt_is_rule(p_list, PN_import_as_name)); const byte *p_list_top; p_list = pt_rule_extract_top(p_list, &p_list_top); qstr id2; p_list = pt_extract_id(p_list, &id2); EMIT_ARG(import_from, id2); if (p_list == p_list_top) { compile_store_id(comp, id2); } else { qstr id3; p_list = pt_extract_id(p_list, &id3); compile_store_id(comp, id3); } } EMIT(pop_top); } } STATIC void compile_declare_global(compiler_t *comp, const byte *p_for_err, qstr qst) { bool added; id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added); if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) { compile_syntax_error(comp, p_for_err, "identifier redefined as global"); return; } id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL id_info = scope_find_global(comp->scope_cur, qst); if (id_info != NULL) { id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; } } STATIC void compile_global_stmt(compiler_t *comp, const byte *p, const byte *ptop) { if (comp->pass == MP_PASS_SCOPE) { const byte *p_orig = p; ptop = mp_parse_node_extract_list(&p, PN_name_list); while (p != ptop) { qstr qst; p = pt_extract_id(p, &qst); compile_declare_global(comp, p_orig, qst); } } } STATIC void compile_declare_nonlocal(compiler_t *comp, const byte *p_for_err, qstr qst) { bool added; id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added); if (added) { scope_find_local_and_close_over(comp->scope_cur, id_info, qst); if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { compile_syntax_error(comp, p_for_err, "no binding for nonlocal found"); } } else if (id_info->kind != ID_INFO_KIND_FREE) { compile_syntax_error(comp, p_for_err, "identifier redefined as nonlocal"); } } STATIC void compile_nonlocal_stmt(compiler_t *comp, const byte *p, const byte *ptop) { if (comp->pass == MP_PASS_SCOPE) { if (comp->scope_cur->kind == SCOPE_MODULE) { compile_syntax_error(comp, p, "can't declare nonlocal in outer code"); return; } const byte *p_orig = p; ptop = mp_parse_node_extract_list(&p, PN_name_list); while (p != ptop) { qstr qst; p = pt_extract_id(p, &qst); compile_declare_nonlocal(comp, p_orig, qst); } } } STATIC void compile_assert_stmt(compiler_t *comp, const byte *p, const byte *ptop) { // with optimisations enabled we don't compile assertions if (MP_STATE_VM(mp_optimise_value) != 0) { return; } uint l_end = comp_next_label(comp); p = c_if_cond(comp, p, true, l_end); EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython if (!pt_is_null_with_top(p, ptop)) { // assertion message compile_node(comp, p); EMIT_ARG(call_function, 1, 0, 0); } EMIT_ARG(raise_varargs, 1); EMIT_ARG(label_assign, l_end); } STATIC void compile_if_stmt(compiler_t *comp, const byte *p, const byte *ptop) { // TODO proper and/or short circuiting uint l_end = comp_next_label(comp); // optimisation: don't emit anything when "if False" if (node_is_const_false(p)) { p = pt_next(p); // skip if condition p = pt_next(p); // skip if block } else { uint l_fail = comp_next_label(comp); bool if_true = node_is_const_true(p); p = c_if_cond(comp, p, false, l_fail); // if condition p = compile_node(comp, p); // if block // optimisation: skip everything else when "if True" if (if_true) { goto done; } if ( // optimisation: don't jump over non-existent elif/else blocks !(pt_is_null_with_top(p, ptop) && pt_is_null_with_top(pt_next(p), ptop)) // optimisation: don't jump if last instruction was return && !EMIT(last_emit_was_return_value) ) { // jump over elif/else blocks EMIT_ARG(jump, l_end); } EMIT_ARG(label_assign, l_fail); } // at this point p points to elif node (which may not exist) // compile elif blocks (if any) if (p != ptop) { const byte *p_else_top = mp_parse_node_extract_list(&p, PN_if_stmt_elif_list); while (p != p_else_top) { assert(pt_is_rule(p, PN_if_stmt_elif)); // should be p = pt_rule_first(p); // optimisation: don't emit anything when "if False" if (node_is_const_false(p)) { p = pt_next(p); // skip elif condition p = pt_next(p); // skip elif block } else { uint l_fail = comp_next_label(comp); bool elif_true = node_is_const_true(p); p = c_if_cond(comp, p, false, l_fail); // elif condition p = compile_node(comp, p); // elif block // optimisation: skip everything else when "elif True" if (elif_true) { goto done; } // optimisation: don't jump if last instruction was return if (!EMIT(last_emit_was_return_value)) { EMIT_ARG(jump, l_end); } EMIT_ARG(label_assign, l_fail); } } // compile else block (if any) if (p != ptop) { compile_node(comp, p); } } done: EMIT_ARG(label_assign, l_end); } #define START_BREAK_CONTINUE_BLOCK \ uint16_t old_break_label = comp->break_label; \ uint16_t old_continue_label = comp->continue_label; \ uint16_t old_break_continue_except_level = comp->break_continue_except_level; \ uint break_label = comp_next_label(comp); \ uint continue_label = comp_next_label(comp); \ comp->break_label = break_label; \ comp->continue_label = continue_label; \ comp->break_continue_except_level = comp->cur_except_level; #define END_BREAK_CONTINUE_BLOCK \ comp->break_label = old_break_label; \ comp->continue_label = old_continue_label; \ comp->break_continue_except_level = old_break_continue_except_level; STATIC void compile_while_stmt(compiler_t *comp, const byte *p, const byte *ptop) { START_BREAK_CONTINUE_BLOCK const byte *p_body = pt_next(p); const byte *p_else = pt_next(p_body); if (!node_is_const_false(p)) { // optimisation: don't emit anything for "while False" uint top_label = comp_next_label(comp); if (!node_is_const_true(p)) { // optimisation: don't jump to cond for "while True" EMIT_ARG(jump, continue_label); } EMIT_ARG(label_assign, top_label); compile_node(comp, p_body); // body EMIT_ARG(label_assign, continue_label); c_if_cond(comp, p, true, top_label); // condition } // break/continue apply to outer loop (if any) in the else block END_BREAK_CONTINUE_BLOCK if (p_else != ptop) { compile_node(comp, p_else); // else } EMIT_ARG(label_assign, break_label); } // This function compiles an optimised for-loop of the form: // for in range(, , ): // // else: // // must be an identifier and must be a small-int. // // Semantics of for-loop require: // - final failing value should not be stored in the loop variable // - if the loop never runs, the loop variable should never be assigned // - assignments to , or in the body do not alter the loop // ( is a constant for us, so no need to worry about it changing) // // If is a small-int, then the stack during the for-loop contains just // the current value of . Otherwise, the stack contains then the // current value of . STATIC void compile_for_stmt_optimised_range(compiler_t *comp, const byte *pn_var, const byte *pn_start, const byte *pn_end, mp_int_t step, const byte *pn_body, const byte *pn_else) { START_BREAK_CONTINUE_BLOCK uint top_label = comp_next_label(comp); uint entry_label = comp_next_label(comp); // put the end value on the stack if it's not a small-int constant bool end_on_stack = !pt_is_small_int(pn_end); if (end_on_stack) { compile_node(comp, pn_end); } // compile: start compile_node(comp, pn_start); EMIT_ARG(jump, entry_label); EMIT_ARG(label_assign, top_label); // duplicate next value and store it to var EMIT(dup_top); c_assign(comp, pn_var, ASSIGN_STORE); // compile body compile_node(comp, pn_body); EMIT_ARG(label_assign, continue_label); // compile: var + step EMIT_ARG(load_const_small_int, step); EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD); EMIT_ARG(label_assign, entry_label); // compile: if var end: goto top if (end_on_stack) { EMIT(dup_top_two); EMIT(rot_two); } else { EMIT(dup_top); compile_node(comp, pn_end); } if (step >= 0) { EMIT_ARG(binary_op, MP_BINARY_OP_LESS); } else { EMIT_ARG(binary_op, MP_BINARY_OP_MORE); } EMIT_ARG(pop_jump_if, true, top_label); // break/continue apply to outer loop (if any) in the else block END_BREAK_CONTINUE_BLOCK // Compile the else block. We must pop the iterator variables before // executing the else code because it may contain break/continue statements. uint end_label = 0; if (pn_else != NULL) { // discard final value of "var", and possible "end" value EMIT(pop_top); if (end_on_stack) { EMIT(pop_top); } compile_node(comp, pn_else); end_label = comp_next_label(comp); EMIT_ARG(jump, end_label); EMIT_ARG(adjust_stack_size, 1 + end_on_stack); } EMIT_ARG(label_assign, break_label); // discard final value of var that failed the loop condition EMIT(pop_top); // discard value if it's on the stack if (end_on_stack) { EMIT(pop_top); } if (pn_else != NULL) { EMIT_ARG(label_assign, end_label); } } STATIC void compile_for_stmt(compiler_t *comp, const byte *p, const byte *ptop) { // this bit optimises: for in range(...), turning it into an explicitly incremented variable // this is actually slower, but uses no heap memory // for viper it will be much, much faster if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ pt_is_any_id(p) && pt_is_rule(pt_next(p), PN_atom_expr_normal)) { const byte *p_it_top; const byte *p_it0 = pt_rule_extract_top(pt_next(p), &p_it_top); if (!pt_is_id(p_it0, MP_QSTR_range)) { goto optimise_fail; } const byte *p_it1 = pt_next(p_it0); if (pt_is_rule(p_it1, PN_trailer_paren) && !pt_is_rule_empty(p_it1) && pt_next(p_it1) == p_it_top) { // iterator is of the form range(...) with at least 1 arg const byte *p_range_args = pt_rule_first(p_it1); const byte *p_range_args_top = mp_parse_node_extract_list(&p_range_args, PN_arglist); const byte *p_start = pt_const_int0; const byte *p_end = p_range_args; mp_int_t step = 1; p_range_args = pt_next(p_range_args); if (p_range_args != p_range_args_top) { // range has at least 2 args p_start = p_end; p_end = p_range_args; p_range_args = pt_next(p_range_args); if (p_range_args != p_range_args_top) { // range has at least 3 args // We need to know sign of step. This is possible only if it's constant if (!pt_is_small_int(p_range_args)) { goto optimise_fail; } p_range_args = pt_get_small_int(p_range_args, &step); // the step must be non-zero if (step == 0) { goto optimise_fail; } if (p_range_args != p_range_args_top) { // range has at least 4 args, so don't know how to optimise it goto optimise_fail; } } } // arguments must be able to be compiled as standard expressions if (pt_is_any_rule(p_start)) { int k = pt_rule_extract_rule_id(p_start); if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) { goto optimise_fail; } } if (pt_is_any_rule(p_end)) { int k = pt_rule_extract_rule_id(p_end); if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) { goto optimise_fail; } } // can optimise const byte *p_body = p_it_top; const byte *p_else = pt_next(p_body); if (p_else == ptop) { p_else = NULL; } compile_for_stmt_optimised_range(comp, p, p_start, p_end, step, p_body, p_else); return; } } optimise_fail:; START_BREAK_CONTINUE_BLOCK comp->break_label |= MP_EMIT_BREAK_FROM_FOR; uint pop_label = comp_next_label(comp); const byte *p_it = pt_next(p); const byte *p_body = compile_node(comp, p_it); // iterator EMIT_ARG(get_iter, true); EMIT_ARG(label_assign, continue_label); EMIT_ARG(for_iter, pop_label); c_assign(comp, p, ASSIGN_STORE); // variable const byte *p_else = compile_node(comp, p_body); // body if (!EMIT(last_emit_was_return_value)) { EMIT_ARG(jump, continue_label); } EMIT_ARG(label_assign, pop_label); EMIT(for_iter_end); // break/continue apply to outer loop (if any) in the else block END_BREAK_CONTINUE_BLOCK if (p_else != ptop) { compile_node(comp, p_else); // else } EMIT_ARG(label_assign, break_label); } STATIC void compile_try_except(compiler_t *comp, const byte *p_body, const byte *p_except, const byte *p_except_top, const byte *p_else) { // setup code uint l1 = comp_next_label(comp); uint success_label = comp_next_label(comp); EMIT_ARG(setup_except, l1); compile_increase_except_level(comp); compile_node(comp, p_body); // body EMIT(pop_block); EMIT_ARG(jump, success_label); // jump over exception handler EMIT_ARG(label_assign, l1); // start of exception handler EMIT(start_except_handler); // at this point the top of the stack contains the exception instance that was raised uint l2 = comp_next_label(comp); while (p_except != p_except_top) { assert(pt_is_rule(p_except, PN_try_stmt_except)); // should be p_except = pt_rule_first(p_except); qstr qstr_exception_local = 0; uint end_finally_label = comp_next_label(comp); if (pt_is_null(p_except)) { // this is a catch all exception handler if (pt_next(pt_next(p_except)) != p_except_top) { compile_syntax_error(comp, p_except, "default 'except:' must be last"); compile_decrease_except_level(comp); return; } } else { // this exception handler requires a match to a certain type of exception const byte *p_exception_expr = p_except; if (pt_is_rule(p_exception_expr, PN_try_stmt_as_name)) { // handler binds the exception to a local p_exception_expr = pt_rule_first(p_exception_expr); pt_extract_id(pt_next(p_exception_expr), &qstr_exception_local); } EMIT(dup_top); compile_node(comp, p_exception_expr); EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH); EMIT_ARG(pop_jump_if, false, end_finally_label); } p_except = pt_next(p_except); // either discard or store the exception instance if (qstr_exception_local == 0) { EMIT(pop_top); } else { compile_store_id(comp, qstr_exception_local); } uint l3 = 0; if (qstr_exception_local != 0) { l3 = comp_next_label(comp); EMIT_ARG(setup_finally, l3); compile_increase_except_level(comp); } p_except = compile_node(comp, p_except); if (qstr_exception_local != 0) { EMIT(pop_block); } EMIT(pop_except); if (qstr_exception_local != 0) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(label_assign, l3); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); compile_store_id(comp, qstr_exception_local); compile_delete_id(comp, qstr_exception_local); compile_decrease_except_level(comp); EMIT(end_finally); } EMIT_ARG(jump, l2); EMIT_ARG(label_assign, end_finally_label); EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance } compile_decrease_except_level(comp); EMIT(end_finally); EMIT(end_except_handler); EMIT_ARG(label_assign, success_label); if (p_else != NULL) { compile_node(comp, p_else); // else block } EMIT_ARG(label_assign, l2); } STATIC void compile_try_finally(compiler_t *comp, const byte *p_body, const byte *p_except, const byte *p_except_top, const byte *p_else, const byte *p_finally) { assert(pt_is_rule(p_finally, PN_try_stmt_finally)); uint l_finally_block = comp_next_label(comp); EMIT_ARG(setup_finally, l_finally_block); compile_increase_except_level(comp); if (p_except == NULL) { assert(p_else == NULL); EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state compile_node(comp, p_body); EMIT_ARG(adjust_stack_size, -3); } else { compile_try_except(comp, p_body, p_except, p_except_top, p_else); } EMIT(pop_block); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(label_assign, l_finally_block); compile_node(comp, pt_rule_first(p_finally)); compile_decrease_except_level(comp); EMIT(end_finally); } STATIC void compile_try_stmt(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; const byte* p1 = pt_next(p); if (pt_is_rule(p1, PN_try_stmt_except) || pt_is_rule(p1, PN_try_stmt_except_list)) { // just try-except const byte *p1_top = mp_parse_node_extract_list(&p1, PN_try_stmt_except_list); compile_try_except(comp, p, p1, p1_top, NULL); } else if (pt_is_rule(p1, PN_try_stmt_except_and_more)) { // try-except and possibly else and/or finally const byte *p1_top; const byte *p1_p0 = pt_rule_extract_top(p1, &p1_top); const byte *p1_p1 = mp_parse_node_extract_list(&p1_p0, PN_try_stmt_except_list); if (pt_next(p1_p1) == p1_top) { // no finally, but have else compile_try_except(comp, p, p1_p0, p1_p1, p1_p1); } else { // have finally, may or may not have else compile_try_finally(comp, p, p1_p0, p1_p1, p1_p1, pt_next(p1_p1)); } } else { // just try-finally compile_try_finally(comp, p, NULL, NULL, NULL, p1); } } STATIC void compile_with_stmt_helper(compiler_t *comp, const byte *n_pre, const byte *p_body) { if (n_pre >= p_body) { // no more pre-bits, compile the body of the with compile_node(comp, p_body); } else { uint l_end = comp_next_label(comp); if (MICROPY_EMIT_NATIVE && comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) { // we need to allocate an extra label for the native emitter // it will use l_end+1 as an auxiliary label comp_next_label(comp); } if (pt_is_rule(n_pre, PN_with_item)) { // this pre-bit is of the form "a as b" const byte *p = pt_rule_first(n_pre); p = compile_node(comp, p); EMIT_ARG(setup_with, l_end); c_assign(comp, p, ASSIGN_STORE); n_pre = pt_next(n_pre); } else { // this pre-bit is just an expression n_pre = compile_node(comp, n_pre); EMIT_ARG(setup_with, l_end); EMIT(pop_top); } compile_increase_except_level(comp); // compile additional pre-bits and the body compile_with_stmt_helper(comp, n_pre, p_body); // finish this with block EMIT_ARG(with_cleanup, l_end); compile_decrease_except_level(comp); EMIT(end_finally); } } STATIC void compile_with_stmt(compiler_t *comp, const byte *p, const byte *ptop) { // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit) ptop = mp_parse_node_extract_list(&p, PN_with_stmt_list); // compile in a nested fashion compile_with_stmt_helper(comp, p, ptop); } STATIC void compile_expr_stmt(compiler_t *comp, const byte *p, const byte *ptop) { const byte *p_n1 = pt_next(p); if (pt_is_null_with_top(p_n1, ptop)) { if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) { // for REPL, evaluate then print the expression compile_load_id(comp, MP_QSTR___repl_print__); compile_node(comp, p); EMIT_ARG(call_function, 1, 0, 0); EMIT(pop_top); } else { #if 0 // for non-REPL, evaluate then discard the expression if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0])) || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string) || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_bytes) || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) { // do nothing with a lonely constant } else #endif { compile_node(comp, p); // just an expression EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack } } } else if (pt_is_rule(p_n1, PN_expr_stmt_augassign)) { c_assign(comp, p, ASSIGN_AUG_LOAD); // lhs load for aug assign p_n1 = pt_rule_first(p_n1); assert(pt_is_any_tok(p_n1)); byte tok; p_n1 = pt_tok_extract(p_n1, &tok); mp_binary_op_t op; switch (tok) { case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break; case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break; case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break; case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break; case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break; case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break; case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break; case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break; case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break; case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break; case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break; case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break; } compile_node(comp, p_n1); // rhs EMIT_ARG(binary_op, op); c_assign(comp, p, ASSIGN_AUG_STORE); // lhs store for aug assign } else if (pt_is_rule(p_n1, PN_expr_stmt_assign_list)) { const byte *p_n1_top; p_n1 = pt_rule_extract_top(p_n1, &p_n1_top); const byte *p_rhs = NULL; for (const byte *pp = p_n1; pp != p_n1_top; pp = pt_next(pp)) { p_rhs = pp; } compile_node(comp, p_rhs); // rhs // following CPython, we store left-most first //if (num rhs > 1) { always true? EMIT(dup_top); //} c_assign(comp, p, ASSIGN_STORE); // lhs store for (const byte *pp = p_n1; pp != p_rhs;) { const byte *pp_next = pt_next(pp); if (pp_next != p_rhs) { EMIT(dup_top); } c_assign(comp, pp, ASSIGN_STORE); // middle store pp = pp_next; } } else { // single assignment #if 0 if (MICROPY_COMP_DOUBLE_TUPLE_ASSIGN && MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr) && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 2 && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 2) { // optimisation for a, b = c, d mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns1->nodes[0]; mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr) || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)) { // can't optimise when it's a star expression on the lhs goto no_optimisation; } compile_node(comp, pns10->nodes[0]); // rhs compile_node(comp, pns10->nodes[1]); // rhs EMIT(rot_two); c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store } else if (MICROPY_COMP_TRIPLE_TUPLE_ASSIGN && MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr) && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 3 && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 3) { // optimisation for a, b, c = d, e, f mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns1->nodes[0]; mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr) || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr) || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr)) { // can't optimise when it's a star expression on the lhs goto no_optimisation; } compile_node(comp, pns10->nodes[0]); // rhs compile_node(comp, pns10->nodes[1]); // rhs compile_node(comp, pns10->nodes[2]); // rhs EMIT(rot_three); EMIT(rot_two); c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store } else #endif { //no_optimisation: compile_node(comp, p_n1); // rhs c_assign(comp, p, ASSIGN_STORE); // lhs store } } } STATIC void compile_test_if_expr(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; const byte *p_test_if_else = pt_next(p); assert(p_test_if_else != ptop && pt_is_rule(p_test_if_else, PN_test_if_else)); p_test_if_else = pt_rule_first(p_test_if_else); uint l_fail = comp_next_label(comp); uint l_end = comp_next_label(comp); p_test_if_else = c_if_cond(comp, p_test_if_else, false, l_fail); // condition compile_node(comp, p); // success value EMIT_ARG(jump, l_end); EMIT_ARG(label_assign, l_fail); EMIT_ARG(adjust_stack_size, -1); // adjust stack size compile_node(comp, p_test_if_else); // failure value EMIT_ARG(label_assign, l_end); } STATIC void compile_lambdef(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; mp_int_t scope_idx; p = pt_get_small_int(p, &scope_idx); if (comp->pass == MP_PASS_SCOPE) { // create a new scope for this lambda scope_new_and_link(comp, scope_idx, SCOPE_LAMBDA, p, comp->scope_cur->emit_options); } // get the scope for this lambda scope_t *this_scope = comp->scopes[scope_idx]; // compile the lambda definition compile_funcdef_lambdef(comp, this_scope, p, PN_varargslist); } STATIC void compile_or_and_test(compiler_t *comp, const byte *p, const byte *ptop, bool cond) { uint l_end = comp_next_label(comp); while (p != ptop) { p = compile_node(comp, p); if (p != ptop) { EMIT_ARG(jump_if_or_pop, cond, l_end); } } EMIT_ARG(label_assign, l_end); } STATIC void compile_or_test(compiler_t *comp, const byte *p, const byte *ptop) { compile_or_and_test(comp, p, ptop, true); } STATIC void compile_and_test(compiler_t *comp, const byte *p, const byte *ptop) { compile_or_and_test(comp, p, ptop, false); } STATIC void compile_not_test_2(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; compile_node(comp, p); EMIT_ARG(unary_op, MP_UNARY_OP_NOT); } STATIC void compile_comparison(compiler_t *comp, const byte *p, const byte *ptop) { int num_nodes = pt_num_nodes(p, ptop); p = compile_node(comp, p); bool multi = (num_nodes > 3); uint l_fail = 0; if (multi) { l_fail = comp_next_label(comp); } for (int i = 1; i + 1 < num_nodes; i += 2) { mp_binary_op_t op; if (pt_is_any_tok(p)) { byte tok; p = pt_tok_extract(p, &tok); switch (tok) { case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break; case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break; case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break; case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break; case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break; case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break; case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break; } } else { if (pt_is_rule(p, PN_comp_op_not_in)) { op = MP_BINARY_OP_NOT_IN; } else { assert(pt_is_rule(p, PN_comp_op_is)); // should be if (pt_is_rule_empty(p)) { op = MP_BINARY_OP_IS; } else { op = MP_BINARY_OP_IS_NOT; } } p = pt_next(p); } p = compile_node(comp, p); if (i + 2 < num_nodes) { EMIT(dup_top); EMIT(rot_three); } EMIT_ARG(binary_op, op); if (i + 2 < num_nodes) { EMIT_ARG(jump_if_or_pop, false, l_fail); } } if (multi) { uint l_end = comp_next_label(comp); EMIT_ARG(jump, l_end); EMIT_ARG(label_assign, l_fail); EMIT_ARG(adjust_stack_size, 1); EMIT(rot_two); EMIT(pop_top); EMIT_ARG(label_assign, l_end); } } STATIC void compile_star_expr(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; compile_syntax_error(comp, p, "*x must be assignment target"); } STATIC void c_binary_op(compiler_t *comp, const byte *p, const byte *ptop, mp_binary_op_t binary_op) { p = compile_node(comp, p); while (p != ptop) { p = compile_node(comp, p); EMIT_ARG(binary_op, binary_op); } } STATIC void compile_expr(compiler_t *comp, const byte *p, const byte *ptop) { c_binary_op(comp, p, ptop, MP_BINARY_OP_OR); } STATIC void compile_xor_expr(compiler_t *comp, const byte *p, const byte *ptop) { c_binary_op(comp, p, ptop, MP_BINARY_OP_XOR); } STATIC void compile_and_expr(compiler_t *comp, const byte *p, const byte *ptop) { c_binary_op(comp, p, ptop, MP_BINARY_OP_AND); } STATIC void compile_term(compiler_t *comp, const byte *p, const byte *ptop) { p = compile_node(comp, p); while (p != ptop) { byte tok; p = pt_tok_extract(p, &tok); p = compile_node(comp, p); mp_binary_op_t op; switch (tok) { case MP_TOKEN_OP_PLUS: op = MP_BINARY_OP_ADD; break; case MP_TOKEN_OP_MINUS: op = MP_BINARY_OP_SUBTRACT; break; case MP_TOKEN_OP_STAR: op = MP_BINARY_OP_MULTIPLY; break; case MP_TOKEN_OP_DBL_SLASH: op = MP_BINARY_OP_FLOOR_DIVIDE; break; case MP_TOKEN_OP_SLASH: op = MP_BINARY_OP_TRUE_DIVIDE; break; case MP_TOKEN_OP_PERCENT: op = MP_BINARY_OP_MODULO; break; case MP_TOKEN_OP_DBL_LESS: op = MP_BINARY_OP_LSHIFT; break; default: assert(tok == MP_TOKEN_OP_DBL_MORE); op = MP_BINARY_OP_RSHIFT; break; } EMIT_ARG(binary_op, op); } } STATIC void compile_factor_2(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; byte tok; p = pt_tok_extract(p, &tok); compile_node(comp, p); if (tok == MP_TOKEN_OP_PLUS) { EMIT_ARG(unary_op, MP_UNARY_OP_POSITIVE); } else if (tok == MP_TOKEN_OP_MINUS) { EMIT_ARG(unary_op, MP_UNARY_OP_NEGATIVE); } else { assert(tok == MP_TOKEN_OP_TILDE); // should be EMIT_ARG(unary_op, MP_UNARY_OP_INVERT); } } STATIC void compile_atom_expr_normal(compiler_t *comp, const byte *p, const byte *ptop) { const byte *p_start = p; // compile the subject of the expression p = compile_node(comp, p); // get the array of trailers, it may be a single item or a list if (pt_is_rule(p, PN_atom_expr_trailers)) { p = pt_rule_extract_top(p, &ptop); } // handle special super() call if (comp->scope_cur->kind == SCOPE_FUNCTION && pt_is_id(p_start, MP_QSTR_super) && pt_is_rule(p, PN_trailer_paren) && pt_is_rule_empty(p)) { // at this point we have matched "super()" within a function // load the class for super to search for a parent compile_load_id(comp, MP_QSTR___class__); // look for first argument to function (assumes it's "self") bool found = false; id_info_t *id = &comp->scope_cur->id_info[0]; for (size_t n = comp->scope_cur->id_info_len; n > 0; --n, ++id) { if (id->flags & ID_FLAG_IS_PARAM) { // first argument found; load it compile_load_id(comp, id->qst); found = true; break; } } if (!found) { compile_syntax_error(comp, p, "super() can't find self"); // really a TypeError return; } if (pt_num_nodes(p, ptop) >= 3 && pt_is_rule(pt_next(p), PN_trailer_period) && pt_is_rule(pt_next(pt_next(p)), PN_trailer_paren)) { // optimisation for method calls super().f(...), to eliminate heap allocation const byte *p_period = pt_next(p); const byte *p_paren = pt_next(p_period); qstr method_name; pt_extract_id(pt_rule_first(p_period), &method_name); EMIT_ARG(load_method, method_name, true); if (pt_is_rule_empty(p_paren)) { p_paren = NULL; } else { p_paren = pt_rule_first(p_paren); } compile_trailer_paren_helper(comp, p_paren, true, 0); p = pt_next(p); p = pt_next(p); p = pt_next(p); } else { // a super() call EMIT_ARG(call_function, 2, 0, 0); p = pt_next(p); } } while (p != ptop) { const byte *p_next = pt_next(p); if (p_next != ptop && pt_is_rule(p, PN_trailer_period) && pt_is_rule(p_next, PN_trailer_paren)) { // optimisation for method calls a.f(...), following PyPy const byte *p_period = pt_rule_first(p); const byte *p_paren; if (pt_is_rule_empty(p_next)) { p_paren = NULL; } else { p_paren = pt_rule_first(p_next); } qstr method_name; pt_extract_id(p_period, &method_name); EMIT_ARG(load_method, method_name, false); compile_trailer_paren_helper(comp, p_paren, true, 0); p = pt_next(p_next); } else { // node is one of: trailer_paren, trailer_bracket, trailer_period p = compile_node(comp, p); } } } STATIC void compile_power(compiler_t *comp, const byte *p, const byte *ptop) { compile_generic_all_nodes(comp, p, ptop); // 2 nodes, arguments of power EMIT_ARG(binary_op, MP_BINARY_OP_POWER); } // if p_arglist==NULL then there are no arguments STATIC void compile_trailer_paren_helper(compiler_t *comp, const byte *p_arglist, bool is_method_call, int n_positional_extra) { // function to call is on top of stack // get the list of arguments const byte *ptop; if (p_arglist == NULL) { ptop = NULL; } else { ptop = mp_parse_node_extract_list(&p_arglist, PN_arglist); } // compile the arguments // Rather than calling compile_node on the list, we go through the list of args // explicitly here so that we can count the number of arguments and give sensible // error messages. int n_positional = n_positional_extra; uint n_keyword = 0; uint star_flags = 0; const byte *p_star_args = NULL, *p_dblstar_args = NULL; for (const byte *p = p_arglist; p != ptop;) { if (pt_is_rule(p, PN_arglist_star)) { if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) { compile_syntax_error(comp, p, "can't have multiple *x"); return; } star_flags |= MP_EMIT_STAR_FLAG_SINGLE; p_star_args = pt_rule_first(p); p = pt_next(p); } else if (pt_is_rule(p, PN_arglist_dbl_star)) { if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) { compile_syntax_error(comp, p, "can't have multiple **x"); return; } star_flags |= MP_EMIT_STAR_FLAG_DOUBLE; p_dblstar_args = pt_rule_first(p); p = pt_next(p); } else if (pt_is_rule(p, PN_argument)) { p = pt_rule_first(p); // skip rule header const byte *p2 = pt_next(p); // get second node if (pt_is_rule(p2, PN_comp_for)) { // list comprehension argument compile_comprehension(comp, p, SCOPE_GEN_EXPR); n_positional++; p = pt_next(pt_next(p)); } else { // keyword argument if (!pt_is_any_id(p)) { compile_syntax_error(comp, p, "LHS of keyword arg must be an id"); return; } qstr kw; p = pt_extract_id(p, &kw); EMIT_ARG(load_const_str, kw); p = compile_node(comp, p); n_keyword += 1; } } else { if (star_flags) { compile_syntax_error(comp, p, "non-keyword arg after */**"); return; } if (n_keyword > 0) { compile_syntax_error(comp, p, "non-keyword arg after keyword arg"); return; } p = compile_node(comp, p); n_positional++; } } // compile the star/double-star arguments if we had them // if we had one but not the other then we load "null" as a place holder if (star_flags != 0) { if (p_star_args == NULL) { EMIT(load_null); } else { compile_node(comp, p_star_args); } if (p_dblstar_args == NULL) { EMIT(load_null); } else { compile_node(comp, p_dblstar_args); } } // emit the function/method call if (is_method_call) { EMIT_ARG(call_method, n_positional, n_keyword, star_flags); } else { EMIT_ARG(call_function, n_positional, n_keyword, star_flags); } } // p needs to point to 2 successive nodes, first is lhs of comprehension, second is PN_comp_for node STATIC void compile_comprehension(compiler_t *comp, const byte *p, scope_kind_t kind) { const byte *p_comp_for = pt_next(p); assert(pt_is_rule(p_comp_for, PN_comp_for)); p_comp_for = pt_rule_first(p_comp_for); mp_int_t scope_idx; p_comp_for = pt_get_small_int(p_comp_for, &scope_idx); if (comp->pass == MP_PASS_SCOPE) { // create a new scope for this comprehension scope_new_and_link(comp, scope_idx, kind, p, comp->scope_cur->emit_options); } // get the scope for this comprehension scope_t *this_scope = comp->scopes[scope_idx]; // compile the comprehension close_over_variables_etc(comp, this_scope, 0, 0); compile_node(comp, pt_next(p_comp_for)); // source of the iterator if (kind == SCOPE_GEN_EXPR) { EMIT_ARG(get_iter, false); } EMIT_ARG(call_function, 1, 0, 0); } STATIC void compile_atom_paren(compiler_t *comp, const byte *p, const byte *ptop) { if (pt_is_null_with_top(p, ptop)) { // an empty tuple c_tuple(comp, NULL, NULL, NULL); } else { assert(pt_is_rule(p, PN_testlist_comp)); p = pt_rule_first(p); const byte *p1 = pt_next(p); if (pt_is_rule(p1, PN_testlist_comp_3b) || pt_is_rule(p1, PN_testlist_comp_3c)) { // tuple of one item with trailing comma (3b); or tuple of many items (3c) c_tuple(comp, p, pt_rule_first(p1), ptop); } else if (pt_is_rule(p1, PN_comp_for)) { // generator expression compile_comprehension(comp, p, SCOPE_GEN_EXPR); } else { // tuple with 2 items c_tuple(comp, NULL, p, ptop); } } } STATIC void compile_atom_bracket(compiler_t *comp, const byte *p, const byte *ptop) { if (pt_is_null_with_top(p, ptop)) { // empty list EMIT_ARG(build_list, 0); } else if (pt_is_rule(p, PN_testlist_comp)) { p = pt_rule_first(p); const byte *p3 = pt_next(p); if (pt_is_rule(p3, PN_testlist_comp_3b) || pt_is_rule(p3, PN_testlist_comp_3c)) { // list of one item with trailing comma (3b); or list of many items (3c) p3 = pt_rule_first(p3); compile_node(comp, p); compile_generic_all_nodes(comp, p3, ptop); EMIT_ARG(build_list, 1 + pt_num_nodes(p3, ptop)); } else if (pt_is_rule(p3, PN_comp_for)) { // list comprehension compile_comprehension(comp, p, SCOPE_LIST_COMP); } else { // list with 2 items p = compile_node(comp, p); compile_node(comp, p); EMIT_ARG(build_list, 2); } } else { // list with 1 item compile_node(comp, p); EMIT_ARG(build_list, 1); } } STATIC void compile_atom_brace(compiler_t *comp, const byte *p, const byte *ptop) { if (pt_is_null_with_top(p, ptop)) { // empty dict EMIT_ARG(build_map, 0); } else if (pt_is_rule(p, PN_dictorsetmaker_item)) { // dict with one element EMIT_ARG(build_map, 1); compile_node(comp, p); EMIT(store_map); } else if (pt_is_rule(p, PN_dictorsetmaker)) { p = pt_rule_first(p); const byte *p1 = pt_next(p); if (pt_is_rule(p1, PN_dictorsetmaker_list)) { // dict/set with multiple elements const byte *p1_top; p1 = pt_rule_extract_top(p1, &p1_top); // get tail elements (2nd, 3rd, ...) if (p1 != p1_top) { mp_parse_node_extract_list(&p1, PN_dictorsetmaker_list2); } // first element sets whether it's a dict or set bool is_dict; if (!MICROPY_PY_BUILTINS_SET || pt_is_rule(p, PN_dictorsetmaker_item)) { // a dictionary EMIT_ARG(build_map, 1 + pt_num_nodes(p1, p1_top)); compile_node(comp, p); EMIT(store_map); is_dict = true; } else { // a set compile_node(comp, p); // 1st value of set is_dict = false; } // process rest of elements for (const byte *p_elem = p1; p_elem != p1_top;) { bool is_key_value = pt_is_rule(p_elem, PN_dictorsetmaker_item); p_elem = compile_node(comp, p_elem); if (is_dict) { if (!is_key_value) { // TODO what is the correct p for error node? compile_syntax_error(comp, p, "expecting key:value for dictionary"); return; } EMIT(store_map); } else { if (is_key_value) { // TODO what is the correct p for error node? compile_syntax_error(comp, p, "expecting just a value for set"); return; } } } #if MICROPY_PY_BUILTINS_SET // if it's a set, build it if (!is_dict) { EMIT_ARG(build_set, 1 + pt_num_nodes(p1, p1_top)); } #endif } else { assert(pt_is_rule(p1, PN_comp_for)); // should be // dict/set comprehension if (!MICROPY_PY_BUILTINS_SET || pt_is_rule(p, PN_dictorsetmaker_item)) { // a dictionary comprehension compile_comprehension(comp, p, SCOPE_DICT_COMP); } else { // a set comprehension compile_comprehension(comp, p, SCOPE_SET_COMP); } } } else { // set with one element #if MICROPY_PY_BUILTINS_SET compile_node(comp, p); EMIT_ARG(build_set, 1); #else assert(0); #endif } } STATIC void compile_trailer_paren(compiler_t *comp, const byte *p, const byte *ptop) { if (p >= ptop) { p = NULL; } compile_trailer_paren_helper(comp, p, false, 0); } STATIC void compile_trailer_bracket(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; // object who's index we want is on top of stack compile_node(comp, p); // the index EMIT(load_subscr); } STATIC void compile_trailer_period(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; // object who's attribute we want is on top of stack qstr attr; p = pt_extract_id(p, &attr); EMIT_ARG(load_attr, attr); } #if MICROPY_PY_BUILTINS_SLICE // p,ptop should be the args of subscript_3 STATIC void compile_subscript_3_helper(compiler_t *comp, const byte *p, const byte *ptop) { if (p == ptop) { // [?:] EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(build_slice, 2); } else if (pt_is_rule(p, PN_subscript_3c)) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); if (pt_is_rule_empty(p)) { // [?::] EMIT_ARG(build_slice, 2); } else { // [?::x] compile_node(comp, pt_rule_first(p)); EMIT_ARG(build_slice, 3); } } else if (pt_is_rule(p, PN_subscript_3d)) { p = pt_rule_first(p); p = compile_node(comp, p); assert(pt_is_rule(p, PN_sliceop)); // should always be p = pt_rule_first(p); if (p == ptop) { // [?:x:] EMIT_ARG(build_slice, 2); } else { // [?:x:x] compile_node(comp, p); EMIT_ARG(build_slice, 3); } } else { // [?:x] compile_node(comp, p); EMIT_ARG(build_slice, 2); } } STATIC void compile_subscript_2(compiler_t *comp, const byte *p, const byte *ptop) { p = compile_node(comp, p); // start of slice p = pt_rule_first(p); // skip header of subscript_3 compile_subscript_3_helper(comp, p, ptop); } STATIC void compile_subscript_3(compiler_t *comp, const byte *p, const byte *ptop) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); compile_subscript_3_helper(comp, p, ptop); } #endif // MICROPY_PY_BUILTINS_SLICE STATIC void compile_dictorsetmaker_item(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; // if this is called then we are compiling a dict key:value pair compile_node(comp, pt_next(p)); // value compile_node(comp, p); // key } STATIC void compile_classdef(compiler_t *comp, const byte *p, const byte *ptop) { (void)ptop; qstr cname = compile_classdef_helper(comp, p, comp->scope_cur->emit_options); // store class object into class name compile_store_id(comp, cname); } STATIC void compile_yield_expr(compiler_t *comp, const byte *p, const byte *ptop) { if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) { compile_syntax_error(comp, NULL, "'yield' outside function"); return; } if (pt_is_null_with_top(p, ptop)) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT(yield_value); } else if (pt_is_rule(p, PN_yield_arg_from)) { p = pt_rule_first(p); compile_node(comp, p); EMIT_ARG(get_iter, false); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT(yield_from); } else { compile_node(comp, p); EMIT(yield_value); } } STATIC mp_obj_t get_const_object(compiler_t *comp, const byte *p) { size_t idx; p = pt_extract_const_obj(p, &idx); return (mp_obj_t)comp->co_data[idx]; } STATIC void compile_const_object(compiler_t *comp, const byte *p, const byte *ptop) { EMIT_ARG(load_const_obj, get_const_object(comp, p)); } typedef void (*compile_function_t)(compiler_t*, const byte*, const byte*); STATIC compile_function_t compile_function[] = { #define nc NULL #define c(f) compile_##f #define DEF_RULE(rule, comp, kind, ...) comp, #define DEF_RULE_NC(rule, kind, ...) #include "py/grammar.h" #undef c #undef DEF_RULE #undef DEF_RULE_NC compile_const_object, }; STATIC const byte *compile_node(compiler_t *comp, const byte *p) { //printf("CN %p %02x %02x %02x\n", p, p[0], p[1], p[2]); if (pt_is_null(p)) { // pass return p + 1; } else if (pt_is_small_int(p)) { mp_int_t arg; p = pt_get_small_int(p, &arg); #if MICROPY_DYNAMIC_COMPILER mp_uint_t sign_mask = -(1 << (mp_dynamic_compiler.small_int_bits - 1)); if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) { // integer fits in target runtime's small-int EMIT_ARG(load_const_small_int, arg); } else { // integer doesn't fit, so create a multi-precision int object // (but only create the actual object on the last pass) if (comp->pass != MP_PASS_EMIT) { EMIT_ARG(load_const_obj, mp_const_none); } else { EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg)); } } #else EMIT_ARG(load_const_small_int, arg); #endif return p; } else if (pt_is_any_tok(p)) { byte tok; p = pt_tok_extract(p, &tok); if (tok == MP_TOKEN_NEWLINE) { // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline) // or when single_input lets through a NEWLINE (user enters a blank line) // do nothing } else { EMIT_ARG(load_const_tok, tok); } return p; } else if (*p == MP_PT_STRING) { qstr qst = p[1] | (p[2] << 8); EMIT_ARG(load_const_str, qst); return pt_next(p); } else if (*p == MP_PT_BYTES) { // only create and load the actual bytes object on the last pass if (comp->pass != MP_PASS_EMIT) { EMIT_ARG(load_const_obj, mp_const_none); } else { qstr qst = p[1] | (p[2] << 8); size_t len; const byte *data = qstr_data(qst, &len); EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len)); } return pt_next(p); } else if (pt_is_any_id(p)) { qstr qst; p = pt_extract_id(p, &qst); compile_load_id(comp, qst); return p; } else if (*p == MP_PT_CONST_OBJECT) { size_t idx; p = pt_extract_const_obj(p, &idx); EMIT_ARG(load_const_obj, (mp_obj_t)comp->co_data[idx]); return p; } else { assert(*p >= MP_PT_RULE_BASE); size_t rule_id, src_line; const byte *ptop; p = pt_rule_extract(p, &rule_id, &src_line, &ptop); EMIT_ARG(set_source_line, src_line); compile_function_t f = compile_function[rule_id]; assert(f != NULL); f(comp, p, ptop); if (comp->compile_error != MP_OBJ_NULL && comp->compile_error_line == 0) { // add line info for the error in case it didn't have a line number comp->compile_error_line = src_line; } return ptop; } } STATIC void compile_scope_func_lambda_param(compiler_t *comp, const byte *p, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) { (void)pn_dbl_star; // check that **kw is last if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) { compile_syntax_error(comp, p, "invalid syntax"); return; } qstr param_name = MP_QSTR_NULL; uint param_flag = ID_FLAG_IS_PARAM; if (pt_is_any_id(p)) { pt_extract_id(p, ¶m_name); if (comp->have_star) { // comes after a star, so counts as a keyword-only parameter comp->scope_cur->num_kwonly_args += 1; } else { // comes before a star, so counts as a positional parameter comp->scope_cur->num_pos_args += 1; } } else { if (pt_is_rule(p, pn_name)) { pt_extract_id(pt_rule_first(p), ¶m_name); if (comp->have_star) { // comes after a star, so counts as a keyword-only parameter comp->scope_cur->num_kwonly_args += 1; } else { // comes before a star, so counts as a positional parameter comp->scope_cur->num_pos_args += 1; } } else if (pt_is_rule(p, pn_star)) { if (comp->have_star) { // more than one star compile_syntax_error(comp, p, "invalid syntax"); return; } comp->have_star = true; param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM; if (pt_is_rule_empty(p)) { // bare star // TODO see http://www.python.org/dev/peps/pep-3102/ //assert(comp->scope_cur->num_dict_params == 0); } else if (pt_is_any_id(pt_rule_first(p))) { // named star comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; pt_extract_id(pt_rule_first(p), ¶m_name); } else { assert(pt_is_rule(pt_rule_first(p), PN_tfpdef)); // should be // named star with possible annotation comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; pt_extract_id(pt_rule_first(pt_rule_first(p)), ¶m_name); } } else { assert(pt_is_rule(p, pn_dbl_star)); // should be pt_extract_id(pt_rule_first(p), ¶m_name); param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM; comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS; } } if (param_name != MP_QSTR_NULL) { bool added; id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added); if (!added) { compile_syntax_error(comp, p, "name reused for argument"); return; } id_info->kind = ID_INFO_KIND_LOCAL; id_info->flags = param_flag; } } STATIC void compile_scope_func_param(compiler_t *comp, const byte *p) { compile_scope_func_lambda_param(comp, p, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star); } STATIC void compile_scope_lambda_param(compiler_t *comp, const byte *p) { compile_scope_func_lambda_param(comp, p, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star); } #if MICROPY_EMIT_NATIVE STATIC void compile_scope_func_annotations(compiler_t *comp, const byte *p) { if (pt_is_rule(p, PN_typedargslist_name)) { // named parameter with possible annotation // fallthrough } else if (pt_is_rule(p, PN_typedargslist_star)) { const byte *p0 = pt_rule_first(p); if (pt_is_rule(p0, PN_tfpdef)) { // named star with possible annotation p = p0; // fallthrough } else { // no annotation return; } } else if (pt_is_rule(p, PN_typedargslist_dbl_star)) { // double star with possible annotation // fallthrough } else { // no annotation return; } // p should be a rule whose first node is an identifier and second may be the annotation const byte *ptop; p = pt_rule_extract_top(p, &ptop); qstr param_name; p = pt_extract_id(p, ¶m_name); if (!pt_is_null_with_top(p, ptop)) { id_info_t *id_info = scope_find(comp->scope_cur, param_name); assert(id_info != NULL); if (pt_is_any_id(p)) { qstr arg_type; pt_extract_id(p, &arg_type); EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type); } else { compile_syntax_error(comp, p, "parameter annotation must be an identifier"); } } } #endif // MICROPY_EMIT_NATIVE STATIC void compile_scope_comp_iter(compiler_t *comp, const byte *p_comp_for, const byte *p_comp_for_top, const byte *p_inner_expr, int for_depth) { uint l_top = comp_next_label(comp); uint l_end = comp_next_label(comp); EMIT_ARG(label_assign, l_top); EMIT_ARG(for_iter, l_end); c_assign(comp, p_comp_for, ASSIGN_STORE); const byte *p_iter = pt_next(pt_next(p_comp_for)); tail_recursion: if (p_iter == p_comp_for_top) { // no more nested if/for; compile inner expression compile_node(comp, p_inner_expr); if (comp->scope_cur->kind == SCOPE_GEN_EXPR) { EMIT(yield_value); EMIT(pop_top); } else { EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5); } } else if (pt_is_rule(p_iter, PN_comp_if)) { // if condition const byte *p0 = pt_rule_extract_top(p_iter, &p_comp_for_top); p_iter = c_if_cond(comp, p0, false, l_top); goto tail_recursion; } else { assert(pt_is_rule(p_iter, PN_comp_for)); // should be // for loop const byte *ptop; const byte *p0 = pt_rule_extract_top(p_iter, &ptop); p0 = pt_next(p0); // skip scope index compile_node(comp, pt_next(p0)); EMIT_ARG(get_iter, true); compile_scope_comp_iter(comp, p0, ptop, p_inner_expr, for_depth + 1); } EMIT_ARG(jump, l_top); EMIT_ARG(label_assign, l_end); EMIT(for_iter_end); } #if 0 STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) { #if MICROPY_ENABLE_DOC_STRING // see http://www.python.org/dev/peps/pep-0257/ // look for the first statement if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { // a statement; fall through } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) { // file input; find the first non-newline node mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); for (int i = 0; i < num_nodes; i++) { pn = pns->nodes[i]; if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) { // not a newline, so this is the first statement; finish search break; } } // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) { // a list of statements; get the first one pn = ((mp_parse_node_struct_t*)pn)->nodes[0]; } else { return; } // check the first statement for a doc string if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING) || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string)) { // compile the doc string compile_node(comp, pns->nodes[0]); // store the doc string compile_store_id(comp, MP_QSTR___doc__); } } #else (void)comp; (void)pn; #endif } #endif STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) { comp->pass = pass; comp->scope_cur = scope; comp->next_label = 0; EMIT_ARG(start_pass, pass, scope); if (comp->pass == MP_PASS_SCOPE) { // reset maximum stack sizes in scope // they will be computed in this first pass scope->stack_size = 0; scope->exc_stack_size = 0; } // compile if (pt_is_rule(scope->pn, PN_eval_input)) { assert(scope->kind == SCOPE_MODULE); compile_node(comp, pt_rule_first(scope->pn)); // compile the expression EMIT(return_value); } else if (scope->kind == SCOPE_MODULE) { if (!comp->is_repl) { //check_for_doc_string(comp, scope->pn); } compile_node(comp, scope->pn); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT(return_value); } else if (scope->kind == SCOPE_FUNCTION) { const byte *p = scope->pn; p = pt_next(p); // skip func name // work out number of parameters, keywords and default parameters, and add them to the id_info array // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) if (comp->pass == MP_PASS_SCOPE) { comp->have_star = false; apply_to_single_or_list(comp, p, PN_typedargslist, compile_scope_func_param); } #if MICROPY_EMIT_NATIVE else if (scope->emit_options == MP_EMIT_OPT_VIPER) { // compile annotations; only needed on latter compiler passes // only needed for viper emitter // argument annotations apply_to_single_or_list(comp, p, PN_typedargslist, compile_scope_func_annotations); const byte *p_ret = pt_next(p); // skip arg list // next node is return/whole function annotation if (pt_is_any_id(p_ret)) { qstr ret_type; pt_extract_id(p_ret, &ret_type); EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type); } else if (!pt_is_null(p_ret)) { compile_syntax_error(comp, p_ret, "return annotation must be an identifier"); } } #endif // MICROPY_EMIT_NATIVE p = pt_next(p); // skip arg list p = pt_next(p); // skip return annotation compile_node(comp, p); // function body // emit return if it wasn't the last opcode if (!EMIT(last_emit_was_return_value)) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT(return_value); } } else if (scope->kind == SCOPE_LAMBDA) { const byte *p = scope->pn; // work out number of parameters, keywords and default parameters, and add them to the id_info array // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) if (comp->pass == MP_PASS_SCOPE) { comp->have_star = false; apply_to_single_or_list(comp, p, PN_varargslist, compile_scope_lambda_param); } p = pt_next(p); // skip arg list compile_node(comp, p); // lambda body // if the lambda is a generator, then we return None, not the result of the expression of the lambda if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { EMIT(pop_top); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); } EMIT(return_value); } else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) { const byte *p = scope->pn; const byte *p_comp_for = pt_next(p); const byte *p_comp_for_top; p_comp_for = pt_rule_extract_top(p_comp_for, &p_comp_for_top); p_comp_for = pt_next(p_comp_for); // skip scope index // We need a unique name for the comprehension argument (the iterator). // CPython uses .0, but we should be able to use anything that won't // clash with a user defined variable. Best to use an existing qstr, // so we use the blank qstr. qstr qstr_arg = MP_QSTR_; if (comp->pass == MP_PASS_SCOPE) { bool added; id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added); assert(added); id_info->kind = ID_INFO_KIND_LOCAL; scope->num_pos_args = 1; } if (scope->kind == SCOPE_LIST_COMP) { EMIT_ARG(build_list, 0); } else if (scope->kind == SCOPE_DICT_COMP) { EMIT_ARG(build_map, 0); #if MICROPY_PY_BUILTINS_SET } else if (scope->kind == SCOPE_SET_COMP) { EMIT_ARG(build_set, 0); #endif } // There are 4 slots on the stack for the iterator, and the first one is // NULL to indicate that the second one points to the iterator object. if (scope->kind == SCOPE_GEN_EXPR) { // TODO static assert that MP_OBJ_ITER_BUF_NSLOTS == 4 EMIT(load_null); compile_load_id(comp, qstr_arg); EMIT(load_null); EMIT(load_null); } else { compile_load_id(comp, qstr_arg); EMIT_ARG(get_iter, true); } compile_scope_comp_iter(comp, p_comp_for, p_comp_for_top, p, 0); if (scope->kind == SCOPE_GEN_EXPR) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); } EMIT(return_value); } else { assert(scope->kind == SCOPE_CLASS); if (comp->pass == MP_PASS_SCOPE) { bool added; id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added); assert(added); id_info->kind = ID_INFO_KIND_LOCAL; } // just to check, should remove this code qstr class_name; pt_extract_id(scope->pn, &class_name); assert(class_name == scope->simple_name); compile_load_id(comp, MP_QSTR___name__); compile_store_id(comp, MP_QSTR___module__); EMIT_ARG(load_const_str, scope->simple_name); compile_store_id(comp, MP_QSTR___qualname__); const byte *p = pt_next(pt_next(scope->pn)); // skip name, bases //check_for_doc_string(comp, p); compile_node(comp, p); // class body id_info_t *id = scope_find(scope, MP_QSTR___class__); assert(id != NULL); if (id->kind == ID_INFO_KIND_LOCAL) { EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); } else { EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num); } EMIT(return_value); } EMIT(end_pass); // make sure we match all the exception levels assert(comp->cur_except_level == 0); } #if MICROPY_EMIT_INLINE_ASM // requires 3 passes: SCOPE, CODE_SIZE, EMIT STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) { comp->pass = pass; comp->scope_cur = scope; comp->next_label = 0; if (scope->kind != SCOPE_FUNCTION) { compile_syntax_error(comp, NULL, "inline assembler must be a function"); return; } if (comp->pass > MP_PASS_SCOPE) { EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error); } // get the function definition parse node const byte *p = scope->pn; assert(pt_is_any_id(p)); p = pt_next(p); // skip the function name // parameters are in next node if (comp->pass == MP_PASS_CODE_SIZE) { const byte *pp = p; const byte *pptop = mp_parse_node_extract_list(&pp, PN_typedargslist); scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, pp, pptop); if (comp->compile_error != MP_OBJ_NULL) { goto inline_asm_error; } } p = pt_next(p); // skip the parameter list // function return annotation is in the next node mp_uint_t type_sig = MP_NATIVE_TYPE_INT; if (!pt_is_null(p)) { if (pt_is_any_id(p)) { qstr ret_type; pt_extract_id(p, &ret_type); switch (ret_type) { case MP_QSTR_object: type_sig = MP_NATIVE_TYPE_OBJ; break; case MP_QSTR_bool: type_sig = MP_NATIVE_TYPE_BOOL; break; case MP_QSTR_int: type_sig = MP_NATIVE_TYPE_INT; break; case MP_QSTR_uint: type_sig = MP_NATIVE_TYPE_UINT; break; default: compile_syntax_error(comp, p, "unknown type"); return; } } else { compile_syntax_error(comp, p, "return annotation must be an identifier"); } } p = pt_next(p); // move past function return annotation // get the list of statements within the body of the function const byte *ptop = mp_parse_node_extract_list(&p, PN_suite_block_stmts); for (const byte *p_instr = p; p_instr != ptop; p_instr = pt_next(p_instr)) { p = p_instr; if (pt_is_rule(p, PN_pass_stmt)) { // no instructions continue; } else if (!pt_is_rule(p, PN_expr_stmt)) { // not an instruction; error not_an_instruction: compile_syntax_error(comp, p, "expecting an assembler instruction"); return; } // check structure of parse node const byte *p_expr_top; const byte *p_expr = pt_rule_extract_top(p, &p_expr_top); if (!pt_is_rule(p_expr, PN_atom_expr_normal)) { goto not_an_instruction; } if (pt_next(p_expr) != p_expr_top) { goto not_an_instruction; } p_expr = pt_rule_extract_top(p_expr, &p_expr_top); if (!pt_is_any_id(p_expr)) { goto not_an_instruction; } const byte *p_expr_paren = pt_next(p_expr); if (p_expr_paren == p_expr_top || !pt_is_rule(p_expr_paren, PN_trailer_paren)) { goto not_an_instruction; } if (pt_next(p_expr_paren) != p_expr_top) { goto not_an_instruction; } // parse node looks like an instruction // get instruction name and args qstr op; pt_extract_id(p_expr, &op); const byte *p_args = pt_rule_first(p_expr_paren); const byte *p_args_top = mp_parse_node_extract_list(&p_args, PN_arglist); uint n_args = pt_num_nodes(p_args, p_args_top); // emit instructions if (op == MP_QSTR_label) { if (!(n_args == 1 && pt_is_any_id(p_args))) { compile_syntax_error(comp, p, "'label' requires 1 argument"); return; } uint lab = comp_next_label(comp); if (pass > MP_PASS_SCOPE) { qstr id; pt_extract_id(p_args, &id); if (!EMIT_INLINE_ASM_ARG(label, lab, id)) { compile_syntax_error(comp, p, "label redefined"); return; } } } else if (op == MP_QSTR_align) { if (!(n_args == 1 && pt_is_small_int(p_args))) { compile_syntax_error(comp, p, "'align' requires 1 argument"); return; } if (pass > MP_PASS_SCOPE) { mp_asm_base_align((mp_asm_base_t*)comp->emit_inline_asm, pt_small_int_value(p_args)); } } else if (op == MP_QSTR_data) { if (!(n_args >= 2 && pt_is_small_int(p_args))) { compile_syntax_error(comp, p, "'data' requires at least 2 arguments"); return; } if (pass > MP_PASS_SCOPE) { mp_int_t bytesize; p_args = pt_get_small_int(p_args, &bytesize); for (uint j = 1; j < n_args; j++) { if (!pt_is_small_int(p_args)) { compile_syntax_error(comp, p, "'data' requires integer arguments"); return; } mp_int_t val; p_args = pt_get_small_int(p_args, &val); mp_asm_base_data((mp_asm_base_t*)comp->emit_inline_asm, bytesize, val); } } } else { if (pass > MP_PASS_SCOPE) { if (n_args > 3) { goto not_an_instruction; } const byte *pn_arg[3]; pn_arg[0] = p_args; pn_arg[1] = pt_next(pn_arg[0]); pn_arg[2] = pt_next(pn_arg[1]); EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg); } } if (comp->compile_error != MP_OBJ_NULL) { goto inline_asm_error; } } if (comp->pass > MP_PASS_SCOPE) { EMIT_INLINE_ASM_ARG(end_pass, type_sig); if (comp->pass == MP_PASS_EMIT) { void *f = mp_asm_base_get_code((mp_asm_base_t*)comp->emit_inline_asm); mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM, f, mp_asm_base_get_code_size((mp_asm_base_t*)comp->emit_inline_asm), NULL, comp->scope_cur->num_pos_args, 0, type_sig); } } if (comp->compile_error != MP_OBJ_NULL) { // inline assembler had an error; set line for its exception inline_asm_error: compile_error_set_line(comp, p); } } #endif STATIC void scope_compute_things(scope_t *scope) { // in MicroPython we put the *x parameter after all other parameters (except **y) if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) { id_info_t *id_param = NULL; for (int i = scope->id_info_len - 1; i >= 0; i--) { id_info_t *id = &scope->id_info[i]; if (id->flags & ID_FLAG_IS_STAR_PARAM) { if (id_param != NULL) { // swap star param with last param id_info_t temp = *id_param; *id_param = *id; *id = temp; } break; } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) { id_param = id; } } } // in functions, turn implicit globals into explicit globals // compute the index of each local scope->num_locals = 0; for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) { // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL continue; } if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; } // params always count for 1 local, even if they are a cell if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) { id->local_num = scope->num_locals++; } } // compute the index of cell vars for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; // in MicroPython the cells come right after the fast locals // parameters are not counted here, since they remain at the start // of the locals, even if they are cell vars if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) { id->local_num = scope->num_locals; scope->num_locals += 1; } } // compute the index of free vars // make sure they are in the order of the parent scope if (scope->parent != NULL) { int num_free = 0; for (int i = 0; i < scope->parent->id_info_len; i++) { id_info_t *id = &scope->parent->id_info[i]; if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { for (int j = 0; j < scope->id_info_len; j++) { id_info_t *id2 = &scope->id_info[j]; if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params // in MicroPython the frees come first, before the params id2->local_num = num_free; num_free += 1; } } } } // in MicroPython shift all other locals after the free locals if (num_free > 0) { for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) { id->local_num += num_free; } } scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function scope->num_locals += num_free; } } } #if !MICROPY_PERSISTENT_CODE_SAVE STATIC #endif mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) { // put compiler state on the stack, it's relatively small compiler_t comp_state = {0}; compiler_t *comp = &comp_state; comp->source_file = source_file; comp->is_repl = is_repl; comp->co_data = parse_tree->co_data; comp->break_label = INVALID_LABEL; comp->continue_label = INVALID_LABEL; // create the array of scopes comp->num_scopes = pt_small_int_value(pt_next(parse_tree->root)); comp->scopes = m_new0(scope_t*, comp->num_scopes); // create the module scope scope_new_and_link(comp, 0, SCOPE_MODULE, parse_tree->root, emit_opt); // create standard emitter; it's used at least for MP_PASS_SCOPE emit_t *emit_bc = emit_bc_new(); // compile pass 1 comp->emit = emit_bc; #if MICROPY_EMIT_NATIVE comp->emit_method_table = &emit_bc_method_table; #endif uint max_num_labels = 0; // grrr: scope for nested comp_for's are not used, unless they are parenthesised // and become individual generators; in this case they are parsed in the wrong // direction for allocation of scope id bool keep_going = true; while (keep_going) { keep_going = false; for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) { scope_t *s = comp->scopes[i]; if (s == NULL) { continue; } // no scope (yet?) if (s->raw_code != NULL) { continue; } // scope already did pass 1 keep_going = true; s->raw_code = mp_emit_glue_new_raw_code(); if (false) { #if MICROPY_EMIT_INLINE_ASM } else if (s->emit_options == MP_EMIT_OPT_ASM) { compile_scope_inline_asm(comp, s, MP_PASS_SCOPE); #endif } else { compile_scope(comp, s, MP_PASS_SCOPE); } // update maximim number of labels needed if (comp->next_label > max_num_labels) { max_num_labels = comp->next_label; } } } // compute some things related to scope and identifiers for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) { scope_t *s = comp->scopes[i]; if (s == NULL) { continue; } // TODO scope for nested comp_for's are not used scope_compute_things(s); } // set max number of labels now that it's calculated emit_bc_set_max_num_labels(emit_bc, max_num_labels); // compile pass 2 and 3 #if MICROPY_EMIT_NATIVE emit_t *emit_native = NULL; #endif for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) { scope_t *s = comp->scopes[i]; if (s == NULL) { continue; } if (false) { // dummy #if MICROPY_EMIT_INLINE_ASM } else if (s->emit_options == MP_EMIT_OPT_ASM) { // inline assembly if (comp->emit_inline_asm == NULL) { comp->emit_inline_asm = ASM_EMITTER(new)(comp->co_data, max_num_labels); } comp->emit = NULL; comp->emit_inline_asm_method_table = &ASM_EMITTER(method_table); compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE); #if MICROPY_EMIT_INLINE_XTENSA // Xtensa requires an extra pass to compute size of l32r const table // TODO this can be improved by calculating it during SCOPE pass // but that requires some other structural changes to the asm emitters compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE); #endif if (comp->compile_error == MP_OBJ_NULL) { compile_scope_inline_asm(comp, s, MP_PASS_EMIT); } #endif } else { // choose the emit type switch (s->emit_options) { #if MICROPY_EMIT_NATIVE case MP_EMIT_OPT_NATIVE_PYTHON: case MP_EMIT_OPT_VIPER: #if MICROPY_EMIT_X64 if (emit_native == NULL) { emit_native = emit_native_x64_new(&comp->compile_error, max_num_labels); } comp->emit_method_table = &emit_native_x64_method_table; #elif MICROPY_EMIT_X86 if (emit_native == NULL) { emit_native = emit_native_x86_new(&comp->compile_error, max_num_labels); } comp->emit_method_table = &emit_native_x86_method_table; #elif MICROPY_EMIT_THUMB if (emit_native == NULL) { emit_native = emit_native_thumb_new(&comp->compile_error, max_num_labels); } comp->emit_method_table = &emit_native_thumb_method_table; #elif MICROPY_EMIT_ARM if (emit_native == NULL) { emit_native = emit_native_arm_new(&comp->compile_error, max_num_labels); } comp->emit_method_table = &emit_native_arm_method_table; #endif comp->emit = emit_native; EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0); break; #endif // MICROPY_EMIT_NATIVE default: comp->emit = emit_bc; #if MICROPY_EMIT_NATIVE comp->emit_method_table = &emit_bc_method_table; #endif break; } // need a pass to compute stack size compile_scope(comp, s, MP_PASS_STACK_SIZE); // second last pass: compute code size if (comp->compile_error == MP_OBJ_NULL) { compile_scope(comp, s, MP_PASS_CODE_SIZE); } // final pass: emit code if (comp->compile_error == MP_OBJ_NULL) { compile_scope(comp, s, MP_PASS_EMIT); } } } if (comp->compile_error != MP_OBJ_NULL) { // if there is no line number for the error then use the line // number for the start of this scope compile_error_set_line(comp, comp->scope_cur->pn); // add a traceback to the exception using relevant source info mp_obj_exception_add_traceback(comp->compile_error, comp->source_file, comp->compile_error_line, comp->scope_cur->simple_name); } // free the emitters emit_bc_free(emit_bc); #if MICROPY_EMIT_NATIVE if (emit_native != NULL) { #if MICROPY_EMIT_X64 emit_native_x64_free(emit_native); #elif MICROPY_EMIT_X86 emit_native_x86_free(emit_native); #elif MICROPY_EMIT_THUMB emit_native_thumb_free(emit_native); #elif MICROPY_EMIT_ARM emit_native_arm_free(emit_native); #endif } #endif #if MICROPY_EMIT_INLINE_ASM if (comp->emit_inline_asm != NULL) { ASM_EMITTER(free)(comp->emit_inline_asm); } #endif // free the parse tree mp_parse_tree_clear(parse_tree); mp_raw_code_t *outer_raw_code = comp->scopes[0]->raw_code; // free the scopes for (uint i = 0; i < comp->num_scopes; ++i) { if (comp->scopes[i] == NULL) { continue; } // TODO scope for nested comp_for's are not used scope_free(comp->scopes[i]); } m_del(scope_t*, comp->scopes, comp->num_scopes); if (comp->compile_error != MP_OBJ_NULL) { nlr_raise(comp->compile_error); } else { return outer_raw_code; } } mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) { mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, emit_opt, is_repl); // return function that executes the outer module return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL); } #endif // MICROPY_ENABLE_COMPILER && MICROPY_USE_SMALL_HEAP_COMPILER