micropython/ports/mimxrt/eth.c

659 wiersze
23 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Damien P. George
* Copyright (c) 2021 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "ticks.h"
#if defined(IOMUX_TABLE_ENET)
#include "pin.h"
#include "shared/netutils/netutils.h"
#include "extmod/modnetwork.h"
#include "fsl_iomuxc.h"
#include "fsl_enet.h"
#include "fsl_phy.h"
#include "hal/phy/mdio/enet/fsl_enet_mdio.h"
#include "hal/phy/device/phyksz8081/fsl_phyksz8081.h"
#include "hal/phy/device/phydp83825/fsl_phydp83825.h"
#include "hal/phy/device/phydp83848/fsl_phydp83848.h"
#include "hal/phy/device/phylan8720/fsl_phylan8720.h"
#include "hal/phy/device/phyrtl8211f/fsl_phyrtl8211f.h"
#include "eth.h"
#include "lwip/etharp.h"
#include "lwip/dns.h"
#include "lwip/dhcp.h"
#include "netif/ethernet.h"
#include "ticks.h"
#define ENET_RXBD_NUM (5)
#define ENET_TXBD_NUM (5)
typedef struct _eth_t {
uint32_t trace_flags;
struct netif netif;
struct dhcp dhcp_struct;
} eth_t;
typedef struct _iomux_table_t {
uint32_t muxRegister;
uint32_t muxMode;
uint32_t inputRegister;
uint32_t inputDaisy;
uint32_t configRegister;
uint32_t inputOnfield;
uint32_t configValue;
} iomux_table_t;
// ETH0 buffers and handles
static AT_NONCACHEABLE_SECTION_ALIGN(enet_rx_bd_struct_t g_rxBuffDescrip[ENET_RXBD_NUM], ENET_BUFF_ALIGNMENT);
static AT_NONCACHEABLE_SECTION_ALIGN(enet_tx_bd_struct_t g_txBuffDescrip[ENET_TXBD_NUM], ENET_BUFF_ALIGNMENT);
static SDK_ALIGN(uint8_t g_rxDataBuff[ENET_RXBD_NUM][SDK_SIZEALIGN(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT)],
ENET_BUFF_ALIGNMENT);
static SDK_ALIGN(uint8_t g_txDataBuff[ENET_TXBD_NUM][SDK_SIZEALIGN(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT)],
ENET_BUFF_ALIGNMENT);
// ENET Handles & Buffers
static enet_handle_t g_handle;
static mdio_handle_t mdioHandle = {.ops = &enet_ops};
static phy_handle_t phyHandle;
eth_t eth_instance0;
static enet_buffer_config_t buffConfig[] = {{
ENET_RXBD_NUM,
ENET_TXBD_NUM,
SDK_SIZEALIGN(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT),
SDK_SIZEALIGN(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT),
&g_rxBuffDescrip[0],
&g_txBuffDescrip[0],
&g_rxDataBuff[0][0],
&g_txDataBuff[0][0],
#if FSL_ENET_DRIVER_VERSION >= 0x020300
true,
true,
NULL,
#endif
}};
static const iomux_table_t iomux_table_enet[] = {
IOMUX_TABLE_ENET
};
static uint8_t hw_addr[6]; // The MAC address field
#if defined(ENET_DUAL_PORT)
// ETH1 buffers and handles
static AT_NONCACHEABLE_SECTION_ALIGN(enet_rx_bd_struct_t g_rxBuffDescrip_1[ENET_RXBD_NUM], ENET_BUFF_ALIGNMENT);
static AT_NONCACHEABLE_SECTION_ALIGN(enet_tx_bd_struct_t g_txBuffDescrip_1[ENET_TXBD_NUM], ENET_BUFF_ALIGNMENT);
static SDK_ALIGN(uint8_t g_rxDataBuff_1[ENET_RXBD_NUM][SDK_SIZEALIGN(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT)],
ENET_BUFF_ALIGNMENT);
static SDK_ALIGN(uint8_t g_txDataBuff_1[ENET_TXBD_NUM][SDK_SIZEALIGN(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT)],
ENET_BUFF_ALIGNMENT);
static enet_handle_t g_handle_1;
static mdio_handle_t mdioHandle_1 = {.ops = &enet_ops};
static phy_handle_t phyHandle_1;
eth_t eth_instance1;
static enet_buffer_config_t buffConfig_1[] = {{
ENET_RXBD_NUM,
ENET_TXBD_NUM,
SDK_SIZEALIGN(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT),
SDK_SIZEALIGN(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT),
&g_rxBuffDescrip_1[0],
&g_txBuffDescrip_1[0],
&g_rxDataBuff_1[0][0],
&g_txDataBuff_1[0][0],
#if FSL_ENET_DRIVER_VERSION >= 0x020300
true,
true,
NULL,
#endif
}};
static const iomux_table_t iomux_table_enet_1[] = {
IOMUX_TABLE_ENET_1
};
static uint8_t hw_addr_1[6]; // The MAC address field
#endif
#if defined(ENET_DUAL_PORT)
#if defined MIMXRT117x_SERIES
#define ENET_1 ENET_1G
#else
#define ENET_1 ENET2
#endif
#else
#define ENET_1 ENET
#endif
#define PHY_AUTONEGO_TIMEOUT_US (5000000)
#define PHY_SETTLE_TIME_US (1000)
// Settle time must be 500000 for the 1G interface
#define PHY_SETTLE_TIME_US_1 (500000)
#define ENET_RESET_LOW_TIME_US (10000)
#define ENET_RESET_WAIT_TIME_US (30000)
#define IOTE (iomux_table[i])
#ifndef ENET_TX_CLK_OUTPUT
#define ENET_TX_CLK_OUTPUT true
#endif
#define TRACE_ASYNC_EV (0x0001)
#define TRACE_ETH_TX (0x0002)
#define TRACE_ETH_RX (0x0004)
#define TRACE_ETH_FULL (0x0008)
static void eth_trace(eth_t *self, size_t len, const void *data, unsigned int flags) {
if (((flags & NETUTILS_TRACE_IS_TX) && (self->trace_flags & TRACE_ETH_TX))
|| (!(flags & NETUTILS_TRACE_IS_TX) && (self->trace_flags & TRACE_ETH_RX))) {
const uint8_t *buf;
if (len == (size_t)-1) {
// data is a pbuf
const struct pbuf *pbuf = data;
buf = pbuf->payload;
len = pbuf->len; // restricted to print only the first chunk of the pbuf
} else {
// data is actual data buffer
buf = data;
}
if (self->trace_flags & TRACE_ETH_FULL) {
flags |= NETUTILS_TRACE_PAYLOAD;
}
netutils_ethernet_trace(MP_PYTHON_PRINTER, len, buf, flags);
}
}
static void eth_process_frame(eth_t *self, uint8_t *buf, size_t length) {
struct netif *netif = &self->netif;
if (netif->flags & NETIF_FLAG_LINK_UP) {
struct pbuf *p = pbuf_alloc(PBUF_RAW, length, PBUF_POOL);
if (p != NULL) {
// Need to create a local copy first, since ENET_ReadFrame does not
// provide a pointer to the buffer.
pbuf_take(p, buf, length);
if (netif->input(p, netif) != ERR_OK) {
pbuf_free(p);
}
}
}
}
void eth_irq_handler(ENET_Type *base, enet_handle_t *handle,
#if FSL_FEATURE_ENET_QUEUE > 1
uint32_t ringId,
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
enet_event_t event, enet_frame_info_t *frameInfo, void *userData) {
eth_t *self = (eth_t *)userData;
uint8_t g_rx_frame[ENET_FRAME_MAX_FRAMELEN + 14];
uint32_t length = 0;
status_t status;
if (event == kENET_RxEvent) {
do {
status = ENET_GetRxFrameSize(handle, &length, 0);
if (status == kStatus_Success) {
// Get the data
ENET_ReadFrame(base, handle, g_rx_frame, length, 0, NULL);
eth_process_frame(self, g_rx_frame, length);
} else if (status == kStatus_ENET_RxFrameError) {
ENET_ReadFrame(base, handle, NULL, 0, 0, NULL);
}
} while (status != kStatus_ENET_RxFrameEmpty);
} else {
ENET_ClearInterruptStatus(base, ENET_TX_INTERRUPT | ENET_ERR_INTERRUPT);
}
}
// Configure the ethernet clock
static uint32_t eth_clock_init(int eth_id, bool phy_clock) {
CLOCK_EnableClock(kCLOCK_Iomuxc);
#if defined MIMXRT117x_SERIES
clock_root_config_t rootCfg = {0};
if (eth_id == MP_HAL_MAC_ETH0) {
// Generate 50M root clock.
rootCfg.mux = kCLOCK_ENET1_ClockRoot_MuxSysPll1Div2; // 500 MHz
rootCfg.div = 10;
CLOCK_SetRootClock(kCLOCK_Root_Enet1, &rootCfg);
// 50M ENET_REF_CLOCK output to PHY and ENET module.
// if required, handle phy_clock direction here
IOMUXC_GPR->GPR4 |= 0x3;
} else {
// Generate 125M root clock.
rootCfg.mux = kCLOCK_ENET1_ClockRoot_MuxSysPll1Div2; // 500 MHz
rootCfg.div = 4;
CLOCK_SetRootClock(kCLOCK_Root_Enet2, &rootCfg);
IOMUXC_GPR->GPR5 |= IOMUXC_GPR_GPR5_ENET1G_RGMII_EN_MASK; /* bit1:iomuxc_gpr_enet_clk_dir
bit0:GPR_ENET_TX_CLK_SEL(internal or OSC) */
}
return CLOCK_GetRootClockFreq(kCLOCK_Root_Bus);
#else
const clock_enet_pll_config_t config = {
.enableClkOutput = phy_clock, .enableClkOutput25M = false, .loopDivider = 1
};
CLOCK_InitEnetPll(&config);
IOMUXC_EnableMode(IOMUXC_GPR, kIOMUXC_GPR_ENET1RefClkMode, false); // Drive ENET_REF_CLK from PAD
IOMUXC_EnableMode(IOMUXC_GPR, kIOMUXC_GPR_ENET1TxClkOutputDir, phy_clock); // Enable output driver
return CLOCK_GetFreq(kCLOCK_IpgClk);
#endif
}
// eth_gpio_init: Configure the GPIO pins
static void eth_gpio_init(const iomux_table_t iomux_table[], size_t iomux_table_size,
const machine_pin_obj_t *reset_pin, const machine_pin_obj_t *int_pin) {
gpio_pin_config_t gpio_config = {kGPIO_DigitalOutput, 1, kGPIO_NoIntmode};
(void)gpio_config;
const machine_pin_af_obj_t *af_obj;
if (reset_pin != NULL) {
// Configure the Reset Pin
af_obj = pin_find_af(reset_pin, PIN_AF_MODE_ALT5);
IOMUXC_SetPinMux(reset_pin->muxRegister, af_obj->af_mode, 0, 0, reset_pin->configRegister, 0U);
IOMUXC_SetPinConfig(reset_pin->muxRegister, af_obj->af_mode, 0, 0, reset_pin->configRegister,
pin_generate_config(PIN_PULL_DISABLED, PIN_MODE_OUT, PIN_DRIVE_5, reset_pin->configRegister));
GPIO_PinInit(reset_pin->gpio, reset_pin->pin, &gpio_config);
}
if (int_pin != NULL) {
// Configure the Int Pin
af_obj = pin_find_af(int_pin, PIN_AF_MODE_ALT5);
IOMUXC_SetPinMux(int_pin->muxRegister, af_obj->af_mode, 0, 0, int_pin->configRegister, 0U);
IOMUXC_SetPinConfig(int_pin->muxRegister, af_obj->af_mode, 0, 0, int_pin->configRegister,
pin_generate_config(PIN_PULL_UP_47K, PIN_MODE_IN, PIN_DRIVE_5, int_pin->configRegister));
GPIO_PinInit(int_pin->gpio, int_pin->pin, &gpio_config);
}
// Configure the Transceiver Pins, Settings except for CLK:
// Slew Rate Field: Fast Slew Rate, Drive Strength, R0/5, Speed max(200MHz)
// Open Drain Disabled, Pull Enabled, Pull 100K Ohm Pull Up
// Hysteresis Disabled
for (int i = 0; i < iomux_table_size; i++) {
IOMUXC_SetPinMux(IOTE.muxRegister, IOTE.muxMode, IOTE.inputRegister, IOTE.inputDaisy, IOTE.configRegister, IOTE.inputOnfield);
IOMUXC_SetPinConfig(IOTE.muxRegister, IOTE.muxMode, IOTE.inputRegister, IOTE.inputDaisy, IOTE.configRegister, IOTE.configValue);
}
// Reset the transceiver
if (reset_pin != NULL) {
GPIO_PinWrite(reset_pin->gpio, reset_pin->pin, 0);
mp_hal_delay_us(ENET_RESET_LOW_TIME_US);
GPIO_PinWrite(reset_pin->gpio, reset_pin->pin, 1);
mp_hal_delay_us(ENET_RESET_WAIT_TIME_US);
}
}
// eth_phy_init: Initilaize the PHY interface
static void eth_phy_init(phy_handle_t *phyHandle, phy_config_t *phy_config,
phy_speed_t *speed, phy_duplex_t *duplex, uint32_t phy_settle_time) {
bool link = false;
bool autonego = false;
phy_config->autoNeg = true;
status_t status = PHY_Init(phyHandle, phy_config);
if (status == kStatus_Success) {
uint64_t t = ticks_us64() + PHY_AUTONEGO_TIMEOUT_US;
// Wait for auto-negotiation success and link up
do {
PHY_GetAutoNegotiationStatus(phyHandle, &autonego);
PHY_GetLinkStatus(phyHandle, &link);
if (autonego && link) {
break;
}
} while (ticks_us64() < t);
if (!autonego) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("PHY Auto-negotiation failed."));
}
PHY_GetLinkSpeedDuplex(phyHandle, speed, duplex);
} else {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("PHY Init failed."));
}
mp_hal_delay_us(phy_settle_time);
}
// eth_init: Set up GPIO and the transceiver
void eth_init_0(eth_t *self, int eth_id, const phy_operations_t *phy_ops, int phy_addr, bool phy_clock) {
// Configuration values
enet_config_t enet_config;
phy_config_t phy_config = {0};
uint32_t source_clock = eth_clock_init(eth_id, phy_clock);
const machine_pin_obj_t *reset_pin = NULL;
#if defined(pin_ENET_RESET)
reset_pin = pin_ENET_RESET;
#endif
const machine_pin_obj_t *int_pin = NULL;
#if defined(pin_ENET_INT)
int_pin = pin_ENET_INT;
#endif
eth_gpio_init(iomux_table_enet, ARRAY_SIZE(iomux_table_enet), reset_pin, int_pin);
mp_hal_get_mac(0, hw_addr);
// Init the PHY interface & negotiate the speed
phyHandle.ops = phy_ops;
phy_config.phyAddr = phy_addr;
phyHandle.mdioHandle = &mdioHandle;
mdioHandle.resource.base = ENET;
mdioHandle.resource.csrClock_Hz = source_clock;
phy_speed_t speed = kENET_MiiSpeed100M;
phy_duplex_t duplex = kENET_MiiFullDuplex;
eth_phy_init(&phyHandle, &phy_config, &speed, &duplex, PHY_SETTLE_TIME_US);
ENET_Reset(ENET);
ENET_GetDefaultConfig(&enet_config);
enet_config.miiSpeed = (enet_mii_speed_t)speed;
enet_config.miiDuplex = (enet_mii_duplex_t)duplex;
enet_config.miiMode = kENET_RmiiMode;
// Enable checksum generation by the ENET controller
enet_config.txAccelerConfig = kENET_TxAccelIpCheckEnabled | kENET_TxAccelProtoCheckEnabled;
// Set interrupt
enet_config.interrupt |= ENET_TX_INTERRUPT | ENET_RX_INTERRUPT;
ENET_Init(ENET, &g_handle, &enet_config, &buffConfig[0], hw_addr, source_clock);
ENET_SetCallback(&g_handle, eth_irq_handler, (void *)self);
NVIC_SetPriority(ENET_IRQn, IRQ_PRI_PENDSV);
ENET_EnableInterrupts(ENET, ENET_RX_INTERRUPT);
ENET_ClearInterruptStatus(ENET, ENET_TX_INTERRUPT | ENET_RX_INTERRUPT | ENET_ERR_INTERRUPT);
NVIC_SetPriority(ENET_IRQn, IRQ_PRI_PENDSV);
ENET_EnableInterrupts(ENET, ENET_RX_INTERRUPT);
ENET_ActiveRead(ENET);
}
#if defined(ENET_DUAL_PORT)
// eth_init: Set up GPIO and the transceiver
void eth_init_1(eth_t *self, int eth_id, const phy_operations_t *phy_ops, int phy_addr, bool phy_clock) {
// Configuration values
enet_config_t enet_config;
phy_config_t phy_config = {0};
uint32_t source_clock = eth_clock_init(eth_id, phy_clock);
const machine_pin_obj_t *reset_pin = NULL;
#if defined(pin_ENET_1_INT)
reset_pin = pin_ENET_1_RESET;
#endif
const machine_pin_obj_t *int_pin = NULL;
#if defined(pin_ENET_1_INT)
int_pin = pin_ENET_1_INT;
#endif
eth_gpio_init(iomux_table_enet_1, ARRAY_SIZE(iomux_table_enet_1), reset_pin, int_pin);
#if defined MIMXRT117x_SERIES
NVIC_SetPriority(ENET_1G_MAC0_Tx_Rx_1_IRQn, IRQ_PRI_PENDSV);
NVIC_SetPriority(ENET_1G_MAC0_Tx_Rx_2_IRQn, IRQ_PRI_PENDSV);
NVIC_SetPriority(ENET_1G_IRQn, IRQ_PRI_PENDSV);
EnableIRQ(ENET_1G_MAC0_Tx_Rx_1_IRQn);
EnableIRQ(ENET_1G_MAC0_Tx_Rx_2_IRQn);
phy_speed_t speed = kENET_MiiSpeed1000M;
#else
NVIC_SetPriority(ENET2_IRQn, IRQ_PRI_PENDSV);
phy_speed_t speed = kENET_MiiSpeed100M;
#endif
mp_hal_get_mac(1, hw_addr_1);
// Init the PHY interface & negotiate the speed
phyHandle_1.ops = phy_ops;
phy_config.phyAddr = phy_addr;
phyHandle_1.mdioHandle = &mdioHandle_1;
mdioHandle_1.resource.base = ENET_1;
mdioHandle_1.resource.csrClock_Hz = source_clock;
phy_duplex_t duplex = kENET_MiiFullDuplex;
eth_phy_init(&phyHandle_1, &phy_config, &speed, &duplex, PHY_SETTLE_TIME_US_1);
ENET_Reset(ENET_1);
ENET_GetDefaultConfig(&enet_config);
enet_config.miiSpeed = (enet_mii_speed_t)speed;
enet_config.miiDuplex = (enet_mii_duplex_t)duplex;
// Enable checksum generation by the ENET controller
enet_config.txAccelerConfig = kENET_TxAccelIpCheckEnabled | kENET_TxAccelProtoCheckEnabled;
// Set interrupt
enet_config.interrupt = ENET_TX_INTERRUPT | ENET_RX_INTERRUPT;
ENET_Init(ENET_1, &g_handle_1, &enet_config, &buffConfig_1[0], hw_addr_1, source_clock);
ENET_SetCallback(&g_handle_1, eth_irq_handler, (void *)self);
ENET_ClearInterruptStatus(ENET_1, ENET_TX_INTERRUPT | ENET_RX_INTERRUPT | ENET_ERR_INTERRUPT);
ENET_EnableInterrupts(ENET_1, ENET_RX_INTERRUPT);
ENET_ActiveRead(ENET_1);
}
#endif
// Initialize the phy interface
static int eth_mac_init(eth_t *self) {
return 0;
}
// Deinit the interface
static void eth_mac_deinit(eth_t *self) {
// Just as a reminder: Calling ENET_Deinit() twice causes the board to stall
// with a bus error. Reason unclear. So don't do that for now (or ever).
}
void eth_set_trace(eth_t *self, uint32_t value) {
self->trace_flags = value;
}
/*******************************************************************************/
// ETH-LwIP bindings
static err_t eth_send_frame_blocking(ENET_Type *base, enet_handle_t *handle, uint8_t *buffer, int len) {
status_t status;
int i;
#define XMIT_LOOP 10
// Try a few times to send the frame
for (i = XMIT_LOOP; i > 0; i--) {
status = ENET_SendFrame(base, handle, buffer, len, 0, false, NULL);
if (status != kStatus_ENET_TxFrameBusy) {
break;
}
ticks_delay_us64(base == ENET ? 100 : 20);
}
return status;
}
static err_t eth_netif_output(struct netif *netif, struct pbuf *p) {
// This function should always be called from a context where PendSV-level IRQs are disabled
status_t status;
ENET_Type *enet = ENET;
enet_handle_t *handle = &g_handle;
#if defined ENET_DUAL_PORT
if (netif->state == &eth_instance1) {
enet = ENET_1;
handle = &g_handle_1;
}
#endif
eth_trace(netif->state, (size_t)-1, p, NETUTILS_TRACE_IS_TX | NETUTILS_TRACE_NEWLINE);
if (p->next == NULL) {
status = eth_send_frame_blocking(enet, handle, p->payload, p->len);
} else {
// frame consists of several parts. Copy them together and send them
size_t length = 0;
uint8_t tx_frame[ENET_FRAME_MAX_FRAMELEN + 14];
while (p) {
memcpy(&tx_frame[length], p->payload, p->len);
length += p->len;
p = p->next;
}
status = eth_send_frame_blocking(enet, handle, tx_frame, length);
}
return status == kStatus_Success ? ERR_OK : ERR_BUF;
}
static err_t eth_netif_init(struct netif *netif) {
netif->linkoutput = eth_netif_output;
netif->output = etharp_output;
netif->mtu = 1500;
netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_ETHERNET | NETIF_FLAG_IGMP;
// Checksums only need to be checked on incoming frames, not computed on outgoing frames
NETIF_SET_CHECKSUM_CTRL(netif,
NETIF_CHECKSUM_CHECK_IP
| NETIF_CHECKSUM_CHECK_UDP
| NETIF_CHECKSUM_CHECK_TCP
| NETIF_CHECKSUM_CHECK_ICMP
| NETIF_CHECKSUM_CHECK_ICMP6
);
return ERR_OK;
}
static void eth_lwip_init(eth_t *self) {
struct netif *n = &self->netif;
ip_addr_t ipconfig[4];
self->netif.hwaddr_len = 6;
if (self == &eth_instance0) {
memcpy(self->netif.hwaddr, hw_addr, 6);
IP4_ADDR(&ipconfig[0], 192, 168, 0, 2);
#if defined ENET_DUAL_PORT
} else {
memcpy(self->netif.hwaddr, hw_addr_1, 6);
IP4_ADDR(&ipconfig[0], 192, 168, 0, 3);
#endif
}
IP4_ADDR(&ipconfig[1], 255, 255, 255, 0);
IP4_ADDR(&ipconfig[2], 192, 168, 0, 1);
IP4_ADDR(&ipconfig[3], 8, 8, 8, 8);
MICROPY_PY_LWIP_ENTER
n->name[0] = 'e';
n->name[1] = (self == &eth_instance0 ? '0' : '1');
netif_add(n, &ipconfig[0], &ipconfig[1], &ipconfig[2], self, eth_netif_init, ethernet_input);
netif_set_hostname(n, mod_network_hostname_data);
netif_set_default(n);
netif_set_up(n);
dns_setserver(0, &ipconfig[3]);
dhcp_set_struct(n, &self->dhcp_struct);
dhcp_start(n);
netif_set_link_up(n);
MICROPY_PY_LWIP_EXIT
}
static void eth_lwip_deinit(eth_t *self) {
MICROPY_PY_LWIP_ENTER
for (struct netif *netif = netif_list; netif != NULL; netif = netif->next) {
if (netif == &self->netif) {
netif_remove(netif);
netif->ip_addr.addr = 0;
netif->flags = 0;
}
}
MICROPY_PY_LWIP_EXIT
}
struct netif *eth_netif(eth_t *self) {
return &self->netif;
}
int eth_link_status(eth_t *self) {
struct netif *netif = &self->netif;
if ((netif->flags & (NETIF_FLAG_UP | NETIF_FLAG_LINK_UP))
== (NETIF_FLAG_UP | NETIF_FLAG_LINK_UP)) {
if (netif->ip_addr.addr != 0) {
return 3; // link up
} else {
return 2; // link no-ip;
}
} else {
bool link;
#if defined ENET_DUAL_PORT
PHY_GetLinkStatus(self == &eth_instance0 ? &phyHandle : &phyHandle_1, &link);
#else
PHY_GetLinkStatus(&phyHandle, &link);
#endif
if (link) {
return 1; // link up
} else {
return 0; // link down
}
}
}
int eth_start(eth_t *self) {
eth_lwip_deinit(self);
// Make sure Eth is Not in low power mode.
eth_low_power_mode(self, false);
int ret = eth_mac_init(self);
if (ret < 0) {
return ret;
}
eth_lwip_init(self);
return 0;
}
int eth_stop(eth_t *self) {
eth_lwip_deinit(self);
eth_mac_deinit(self);
return 0;
}
void eth_low_power_mode(eth_t *self, bool enable) {
#if defined ENET_DUAL_PORT
ENET_EnableSleepMode(self == &eth_instance0 ? ENET : ENET_1, enable);
#else
ENET_EnableSleepMode(ENET, enable);
#endif
}
#endif // defined(IOMUX_TABLE_ENET)