esp-idf/components/esp_timer/test_apps/main/test_esp_timer.c

1286 wiersze
40 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <time.h>
#include <sys/time.h>
#include <sys/param.h>
#include "esp_timer.h"
#include "esp_timer_impl.h"
#include "unity.h"
#include "soc/timer_group_reg.h"
#include "esp_heap_caps.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "test_utils.h"
#include "esp_freertos_hooks.h"
#include "esp_rom_sys.h"
#define SEC (1000000)
#ifdef CONFIG_ESP_TIMER_PROFILING
#define WITH_PROFILING 1
#endif
static void dummy_cb(void* arg)
{
}
TEST_CASE("esp_timer orders timers correctly", "[esp_timer]")
{
uint64_t timeouts[] = { 10000, 1000, 10000, 5000, 20000, 1000 };
size_t indices[] = { 3, 0, 4, 2, 5, 1 };
const size_t num_timers = sizeof(timeouts) / sizeof(timeouts[0]);
esp_timer_handle_t handles[num_timers];
char* names[num_timers];
for (size_t i = 0; i < num_timers; ++i) {
asprintf(&names[i], "timer%d", i);
esp_timer_create_args_t args = {
.callback = &dummy_cb,
.name = names[i]
};
TEST_ESP_OK(esp_timer_create(&args, &handles[i]));
TEST_ESP_OK(esp_timer_start_once(handles[i], timeouts[i] * 100));
}
char* stream_str[1024];
FILE* stream = fmemopen(stream_str, sizeof(stream_str), "r+");
TEST_ESP_OK(esp_timer_dump(stream));
for (size_t i = 0; i < num_timers; ++i) {
TEST_ESP_OK(esp_timer_stop(handles[i]));
TEST_ESP_OK(esp_timer_delete(handles[i]));
free(names[i]);
}
fflush(stream);
fseek(stream, 0, SEEK_SET);
/* Discard header lines */
char line[128];
TEST_ASSERT_NOT_NULL(fgets(line, sizeof(line), stream));
TEST_ASSERT_NOT_NULL(fgets(line, sizeof(line), stream));
for (size_t i = 0; i < num_timers; ++i) {
TEST_ASSERT_NOT_NULL(fgets(line, sizeof(line), stream));
#if WITH_PROFILING
int timer_id;
sscanf(line, "timer%d", &timer_id);
TEST_ASSERT_EQUAL(indices[timer_id], i);
#else
intptr_t timer_ptr;
sscanf(line, "timer@0x%x", &timer_ptr);
for (size_t j = 0; j < num_timers; ++j) {
if (indices[j] == i) {
TEST_ASSERT_EQUAL_PTR(handles[j], timer_ptr);
break;
}
}
#endif
}
fclose(stream);
}
static const int test_time_sec = 10;
static void set_alarm_task(void* arg)
{
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
int64_t start = esp_timer_impl_get_time();
int64_t now = start;
int count = 0;
const int delays[] = {50, 5000, 10000000};
const int delays_count = sizeof(delays) / sizeof(delays[0]);
while (now - start < test_time_sec * 1000000) {
now = esp_timer_impl_get_time();
esp_timer_impl_set_alarm(now + delays[count % delays_count]);
++count;
}
xSemaphoreGive(done);
vTaskDelete(NULL);
}
TEST_CASE("esp_timer_impl_set_alarm stress test", "[esp_timer]")
{
SemaphoreHandle_t done = xSemaphoreCreateCounting(CONFIG_FREERTOS_NUMBER_OF_CORES, 0);
xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_0", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 0);
#if CONFIG_FREERTOS_NUMBER_OF_CORES == 2
xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_1", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 1);
#endif
TEST_ASSERT(xSemaphoreTake(done, test_time_sec * 2 * 1000 / portTICK_PERIOD_MS));
#if CONFIG_FREERTOS_NUMBER_OF_CORES == 2
TEST_ASSERT(xSemaphoreTake(done, test_time_sec * 2 * 1000 / portTICK_PERIOD_MS));
#endif
vSemaphoreDelete(done);
}
static void test_correct_delay_timer_func(void* arg)
{
int64_t* p_end = (int64_t*) arg;
*p_end = ref_clock_get();
}
TEST_CASE("esp_timer produces correct delay", "[esp_timer]")
{
int64_t t_end;
esp_timer_handle_t timer1;
esp_timer_create_args_t args = {
.callback = &test_correct_delay_timer_func,
.arg = &t_end,
.name = "timer1"
};
TEST_ESP_OK(esp_timer_create(&args, &timer1));
const int delays_ms[] = {20, 100, 200, 250};
const size_t delays_count = sizeof(delays_ms) / sizeof(delays_ms[0]);
ref_clock_init();
for (size_t i = 0; i < delays_count; ++i) {
t_end = 0;
int64_t t_start = ref_clock_get();
TEST_ESP_OK(esp_timer_start_once(timer1, delays_ms[i] * 1000));
vTaskDelay(delays_ms[i] * 2 / portTICK_PERIOD_MS);
TEST_ASSERT(t_end != 0);
int32_t ms_diff = (t_end - t_start) / 1000;
printf("%d %"PRIi32"\n", delays_ms[i], ms_diff);
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, delays_ms[i], ms_diff);
}
ref_clock_deinit();
TEST_ESP_OK(esp_timer_dump(stdout));
esp_timer_delete(timer1);
}
// no, we can't make this a const size_t (§6.7.5.2)
#define NUM_INTERVALS 16
typedef struct {
esp_timer_handle_t timer;
size_t cur_interval;
int intervals[NUM_INTERVALS];
int64_t t_start;
SemaphoreHandle_t done;
} test_periodic_correct_delays_args_t;
static void test_periodic_correct_delays_timer_func(void* arg)
{
test_periodic_correct_delays_args_t* p_args = (test_periodic_correct_delays_args_t*) arg;
int64_t t_end = ref_clock_get();
int32_t ms_diff = (t_end - p_args->t_start) / 1000;
printf("timer #%d %"PRIi32"ms\n", p_args->cur_interval, ms_diff);
p_args->intervals[p_args->cur_interval++] = ms_diff;
// Deliberately make timer handler run longer.
// We check that this doesn't affect the result.
esp_rom_delay_us(10 * 1000);
if (p_args->cur_interval == NUM_INTERVALS) {
printf("done\n");
TEST_ESP_OK(esp_timer_stop(p_args->timer));
xSemaphoreGive(p_args->done);
}
}
TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]")
{
const int delay_ms = 100;
test_periodic_correct_delays_args_t args = {0};
esp_timer_handle_t timer1;
esp_timer_create_args_t create_args = {
.callback = &test_periodic_correct_delays_timer_func,
.arg = &args,
.name = "timer1",
};
TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
ref_clock_init();
args.timer = timer1;
args.t_start = ref_clock_get();
args.done = xSemaphoreCreateBinary();
TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000));
TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * NUM_INTERVALS * 2));
TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval);
for (size_t i = 0; i < NUM_INTERVALS; ++i) {
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]);
}
ref_clock_deinit();
TEST_ESP_OK(esp_timer_dump(stdout));
TEST_ESP_OK(esp_timer_delete(timer1));
vSemaphoreDelete(args.done);
}
#undef NUM_INTERVALS
#define N 5
typedef struct {
const int order[N * 3];
size_t count;
} test_timers_ordered_correctly_common_t;
typedef struct {
int timer_index;
const int intervals[N];
size_t intervals_count;
esp_timer_handle_t timer;
test_timers_ordered_correctly_common_t* common;
bool pass;
SemaphoreHandle_t done;
int64_t t_start;
} test_timers_ordered_correctly_args_t;
static void test_timers_ordered_correctly_timer_func(void* arg)
{
test_timers_ordered_correctly_args_t* p_args = (test_timers_ordered_correctly_args_t*) arg;
// check order
size_t count = p_args->common->count;
int expected_index = p_args->common->order[count];
int ms_since_start = (ref_clock_get() - p_args->t_start) / 1000;
printf("Time %dms, at count %d, expected timer %d, got timer %d\n",
ms_since_start, count, expected_index, p_args->timer_index);
if (expected_index != p_args->timer_index) {
p_args->pass = false;
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
p_args->common->count++;
if (++p_args->intervals_count == N) {
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
int next_interval = p_args->intervals[p_args->intervals_count];
printf("starting timer %d interval #%d, %d ms\n",
p_args->timer_index, p_args->intervals_count, next_interval);
esp_timer_start_once(p_args->timer, next_interval * 1000);
}
TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
{
test_timers_ordered_correctly_common_t common = {
.order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2},
.count = 0
};
SemaphoreHandle_t done = xSemaphoreCreateCounting(3, 0);
ref_clock_init();
int64_t now = ref_clock_get();
test_timers_ordered_correctly_args_t args1 = {
.timer_index = 1,
.intervals = {10, 40, 20, 40, 30},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
test_timers_ordered_correctly_args_t args2 = {
.timer_index = 2,
.intervals = {20, 20, 60, 30, 40},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
test_timers_ordered_correctly_args_t args3 = {
.timer_index = 3,
.intervals = {30, 30, 60, 30, 10},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
esp_timer_create_args_t create_args = {
.callback = &test_timers_ordered_correctly_timer_func,
.arg = &args1,
.name = "1"
};
TEST_ESP_OK(esp_timer_create(&create_args, &args1.timer));
create_args.name = "2";
create_args.arg = &args2;
TEST_ESP_OK(esp_timer_create(&create_args, &args2.timer));
create_args.name = "3";
create_args.arg = &args3;
TEST_ESP_OK(esp_timer_create(&create_args, &args3.timer));
esp_timer_start_once(args1.timer, args1.intervals[0] * 1000);
esp_timer_start_once(args2.timer, args2.intervals[0] * 1000);
esp_timer_start_once(args3.timer, args3.intervals[0] * 1000);
for (int i = 0; i < 3; ++i) {
int result = xSemaphoreTake(done, 1000 / portTICK_PERIOD_MS);
TEST_ASSERT_TRUE(result == pdPASS);
}
TEST_ASSERT_TRUE(args1.pass);
TEST_ASSERT_TRUE(args2.pass);
TEST_ASSERT_TRUE(args3.pass);
ref_clock_deinit();
TEST_ESP_OK(esp_timer_dump(stdout));
TEST_ESP_OK(esp_timer_delete(args1.timer));
TEST_ESP_OK(esp_timer_delete(args2.timer));
TEST_ESP_OK(esp_timer_delete(args3.timer));
}
#undef N
static void test_short_intervals_timer_func(void* arg)
{
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
xSemaphoreGive(done);
printf(".");
}
/* Create two timers, start them around the same time, and search through
* timeout delta values to reproduce the case when timeouts occur close to
* each other, testing the "multiple timers triggered" code path in timer_process_alarm.
*/
TEST_CASE("esp_timer for very short intervals", "[esp_timer]")
{
SemaphoreHandle_t semaphore = xSemaphoreCreateCounting(2, 0);
esp_timer_create_args_t timer_args = {
.callback = &test_short_intervals_timer_func,
.arg = (void*) semaphore,
.name = "foo"
};
esp_timer_handle_t timer1, timer2;
ESP_ERROR_CHECK(esp_timer_create(&timer_args, &timer1));
ESP_ERROR_CHECK(esp_timer_create(&timer_args, &timer2));
const int timeout_ms = 10;
for (int timeout_delta_us = -150; timeout_delta_us < 150; timeout_delta_us++) {
printf("delta=%d", timeout_delta_us);
ESP_ERROR_CHECK(esp_timer_start_once(timer1, timeout_ms * 1000));
ESP_ERROR_CHECK(esp_timer_start_once(timer2, timeout_ms * 1000 + timeout_delta_us));
TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2));
TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2));
printf("\n");
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer1));
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer2));
}
vSemaphoreDelete(semaphore);
TEST_ESP_OK(esp_timer_delete(timer1));
TEST_ESP_OK(esp_timer_delete(timer2));
}
TEST_CASE("esp_timer_get_time call takes less than 1us", "[esp_timer]")
{
int64_t begin = esp_timer_get_time();
volatile int64_t end;
const int iter_count = 10000;
for (int i = 0; i < iter_count; ++i) {
end = esp_timer_get_time();
}
int ns_per_call = (int)((end - begin) * 1000 / iter_count);
TEST_PERFORMANCE_LESS_THAN(ESP_TIMER_GET_TIME_PER_CALL, "%dns", ns_per_call);
}
static int64_t IRAM_ATTR __attribute__((noinline)) get_clock_diff(void)
{
uint64_t hs_time = esp_timer_get_time();
uint64_t ref_time = ref_clock_get();
return hs_time - ref_time;
}
typedef struct {
SemaphoreHandle_t done;
bool pass;
int test_cnt;
int error_cnt;
int64_t max_error;
int64_t avg_diff;
int64_t dummy;
} test_monotonic_values_state_t;
static void timer_test_monotonic_values_task(void* arg)
{
test_monotonic_values_state_t* state = (test_monotonic_values_state_t*) arg;
state->pass = true;
/* make sure both functions are in cache */
state->dummy = get_clock_diff();
/* calculate the difference between the two clocks */
portDISABLE_INTERRUPTS();
int64_t delta = get_clock_diff();
portENABLE_INTERRUPTS();
int64_t start_time = ref_clock_get();
int error_repeat_cnt = 0;
while (ref_clock_get() - start_time < 10000000) { /* 10 seconds */
/* Get values of both clocks again, and check that they are close to 'delta'.
* We don't disable interrupts here, because esp_timer_get_time doesn't lock
* interrupts internally, so we check if it can get "broken" by a well placed
* interrupt.
*/
int64_t diff = get_clock_diff() - delta;
/* Allow some difference due to rtos tick interrupting task between
* getting 'hs_now' and 'now'.
*/
if (llabs(diff) > 100) {
error_repeat_cnt++;
state->error_cnt++;
} else {
error_repeat_cnt = 0;
}
if (error_repeat_cnt > 2) {
printf("diff=%lld\n", diff);
state->pass = false;
}
state->avg_diff += diff;
state->max_error = MAX(state->max_error, llabs(diff));
state->test_cnt++;
}
state->avg_diff /= state->test_cnt;
xSemaphoreGive(state->done);
vTaskDelete(NULL);
}
TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer]")
{
ref_clock_init();
test_monotonic_values_state_t states[CONFIG_FREERTOS_NUMBER_OF_CORES] = {0};
SemaphoreHandle_t done = xSemaphoreCreateCounting(CONFIG_FREERTOS_NUMBER_OF_CORES, 0);
for (int i = 0; i < CONFIG_FREERTOS_NUMBER_OF_CORES; ++i) {
states[i].done = done;
xTaskCreatePinnedToCore(&timer_test_monotonic_values_task, "test", 4096, &states[i], 6, NULL, i);
}
for (int i = 0; i < CONFIG_FREERTOS_NUMBER_OF_CORES; ++i) {
TEST_ASSERT_TRUE(xSemaphoreTake(done, portMAX_DELAY));
printf("CPU%d: %s test_cnt=%d error_cnt=%d avg_diff=%d |max_error|=%d\n",
i, states[i].pass ? "PASS" : "FAIL",
states[i].test_cnt, states[i].error_cnt,
(int) states[i].avg_diff, (int) states[i].max_error);
}
vSemaphoreDelete(done);
ref_clock_deinit();
for (int i = 0; i < CONFIG_FREERTOS_NUMBER_OF_CORES; ++i) {
TEST_ASSERT(states[i].pass);
}
}
TEST_CASE("Can dump esp_timer stats", "[esp_timer]")
{
esp_timer_dump(stdout);
}
typedef struct {
SemaphoreHandle_t notify_from_timer_cb;
esp_timer_handle_t timer;
} test_delete_from_callback_arg_t;
static void test_delete_from_callback_timer_func(void* varg)
{
test_delete_from_callback_arg_t arg = *(test_delete_from_callback_arg_t*) varg;
esp_timer_delete(arg.timer);
printf("Timer %p is deleted\n", arg.timer);
xSemaphoreGive(arg.notify_from_timer_cb);
}
TEST_CASE("Can delete timer from callback", "[esp_timer]")
{
test_delete_from_callback_arg_t args = {
.notify_from_timer_cb = xSemaphoreCreateBinary(),
};
esp_timer_create_args_t timer_args = {
.callback = &test_delete_from_callback_timer_func,
.arg = &args,
.name = "self_deleter"
};
esp_timer_create(&timer_args, &args.timer);
esp_timer_start_once(args.timer, 10000);
TEST_ASSERT_TRUE(xSemaphoreTake(args.notify_from_timer_cb, 1000 / portTICK_PERIOD_MS));
printf("Checking heap at %p\n", args.timer);
TEST_ASSERT_TRUE(heap_caps_check_integrity_addr((intptr_t) args.timer, true));
vSemaphoreDelete(args.notify_from_timer_cb);
}
typedef struct {
SemaphoreHandle_t delete_start;
SemaphoreHandle_t delete_done;
SemaphoreHandle_t test_done;
esp_timer_handle_t timer;
} timer_delete_test_args_t;
static void timer_delete_task(void* arg)
{
timer_delete_test_args_t* args = (timer_delete_test_args_t*) arg;
xSemaphoreTake(args->delete_start, portMAX_DELAY);
printf("Deleting the timer\n");
esp_timer_delete(args->timer);
printf("Timer deleted\n");
xSemaphoreGive(args->delete_done);
vTaskDelete(NULL);
}
static void timer_delete_test_callback(void* arg)
{
timer_delete_test_args_t* args = (timer_delete_test_args_t*) arg;
printf("Timer callback called\n");
xSemaphoreGive(args->delete_start);
xSemaphoreTake(args->delete_done, portMAX_DELAY);
printf("Callback complete\n");
xSemaphoreGive(args->test_done);
}
TEST_CASE("Can delete timer from a separate task, triggered from callback", "[esp_timer]")
{
timer_delete_test_args_t args = {
.delete_start = xSemaphoreCreateBinary(),
.delete_done = xSemaphoreCreateBinary(),
.test_done = xSemaphoreCreateBinary(),
};
esp_timer_create_args_t timer_args = {
.callback = &timer_delete_test_callback,
.arg = &args
};
esp_timer_handle_t timer;
TEST_ESP_OK(esp_timer_create(&timer_args, &timer));
args.timer = timer;
xTaskCreate(timer_delete_task, "deleter", 4096, &args, 5, NULL);
esp_timer_start_once(timer, 100);
TEST_ASSERT(xSemaphoreTake(args.test_done, pdMS_TO_TICKS(1000)));
vSemaphoreDelete(args.delete_done);
vSemaphoreDelete(args.delete_start);
vSemaphoreDelete(args.test_done);
}
TEST_CASE("esp_timer_impl_advance moves time base correctly", "[esp_timer]")
{
int64_t t0 = esp_timer_get_time();
const int64_t diff_us = 1000000;
esp_timer_impl_advance(diff_us);
int64_t t1 = esp_timer_get_time();
int64_t t_delta = t1 - t0;
printf("diff_us=%lld t0=%lld t1=%lld t1-t0=%lld\n", diff_us, t0, t1, t_delta);
TEST_ASSERT_INT_WITHIN(1000, diff_us, (int) t_delta);
}
typedef struct {
int64_t cb_time;
} test_run_when_expected_state_t;
static void test_run_when_expected_timer_func(void* varg)
{
test_run_when_expected_state_t* arg = (test_run_when_expected_state_t*) varg;
arg->cb_time = ref_clock_get();
}
TEST_CASE("after esp_timer_impl_advance, timers run when expected", "[esp_timer]")
{
ref_clock_init();
test_run_when_expected_state_t state = { 0 };
esp_timer_create_args_t timer_args = {
.callback = &test_run_when_expected_timer_func,
.arg = &state
};
esp_timer_handle_t timer;
TEST_ESP_OK(esp_timer_create(&timer_args, &timer));
const int64_t interval = 10000;
const int64_t advance = 2000;
printf("test 1\n");
int64_t t_start = ref_clock_get();
esp_timer_start_once(timer, interval);
esp_timer_impl_advance(advance);
vTaskDelay(2 * interval / 1000 / portTICK_PERIOD_MS);
TEST_ASSERT_INT_WITHIN(portTICK_PERIOD_MS * 1000, interval - advance, state.cb_time - t_start);
printf("test 2\n");
state.cb_time = 0;
t_start = ref_clock_get();
esp_timer_start_once(timer, interval);
esp_timer_impl_advance(interval);
vTaskDelay(1);
TEST_ASSERT(state.cb_time > t_start);
ref_clock_deinit();
TEST_ESP_OK(esp_timer_delete(timer));
}
static esp_timer_handle_t timer1;
static SemaphoreHandle_t sem;
static void IRAM_ATTR test_tick_hook(void)
{
static int i;
const int iterations = 16;
if (++i <= iterations) {
if (i & 0x1) {
TEST_ESP_OK(esp_timer_start_once(timer1, 5000));
} else {
TEST_ESP_OK(esp_timer_stop(timer1));
}
} else {
xSemaphoreGiveFromISR(sem, 0);
}
}
static void test_start_stop_timer_func(void* arg)
{
printf("timer cb\n");
}
TEST_CASE("Can start/stop timer from ISR context", "[esp_timer]")
{
esp_timer_create_args_t create_args = {
.callback = &test_start_stop_timer_func,
};
TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
sem = xSemaphoreCreateBinary();
esp_register_freertos_tick_hook(test_tick_hook);
TEST_ASSERT(xSemaphoreTake(sem, portMAX_DELAY));
esp_deregister_freertos_tick_hook(test_tick_hook);
TEST_ESP_OK(esp_timer_delete(timer1));
vSemaphoreDelete(sem);
}
#if !defined(CONFIG_FREERTOS_UNICORE) && SOC_DPORT_WORKAROUND
#include "dport_access.h"
static bool task_stop;
static bool time_jumped;
static void task_check_time(void *p)
{
int64_t t1 = 0, t2 = 0;
while (task_stop == false) {
t1 = t2;
t2 = esp_timer_get_time();
if (t1 > t2) {
int64_t shift_us = t2 - t1;
time_jumped = true;
printf("System clock jumps back: %lli us\n", shift_us);
}
vTaskDelay(1);
}
vTaskDelete(NULL);
}
static void timer_callback(void* arg)
{
}
static void dport_task(void *pvParameters)
{
while (task_stop == false) {
DPORT_STALL_OTHER_CPU_START();
esp_rom_delay_us(3);
DPORT_STALL_OTHER_CPU_END();
}
vTaskDelete(NULL);
}
TEST_CASE("esp_timer_impl_set_alarm does not set an alarm below the current time", "[esp_timer][timeout=62]")
{
const int max_timers = 2;
time_jumped = false;
task_stop = false;
xTaskCreatePinnedToCore(task_check_time, "task_check_time", 4096, NULL, 5, NULL, 0);
// dport_task is used here to interrupt the esp_timer_impl_set_alarm function.
// To interrupt it we can use an interrupt with 4 or 5 levels which will run on CPU0.
// Instead, an interrupt we use the dport workaround which has 4 interrupt level for stall CPU0.
xTaskCreatePinnedToCore(dport_task, "dport_task", 4096, NULL, 5, NULL, 1);
const esp_timer_create_args_t periodic_timer_args = {
.callback = &timer_callback,
};
esp_timer_handle_t periodic_timer[max_timers];
printf("timers created\n");
esp_timer_create(&periodic_timer_args, &periodic_timer[0]);
esp_timer_start_periodic(periodic_timer[0], 9000);
esp_timer_create(&periodic_timer_args, &periodic_timer[1]);
esp_timer_start_periodic(periodic_timer[1], 9000);
vTaskDelay(60 * 1000 / portTICK_PERIOD_MS);
task_stop = true;
esp_timer_stop(periodic_timer[0]);
esp_timer_delete(periodic_timer[0]);
esp_timer_stop(periodic_timer[1]);
esp_timer_delete(periodic_timer[1]);
printf("timers deleted\n");
vTaskDelay(1000 / portTICK_PERIOD_MS);
TEST_ASSERT(time_jumped == false);
}
static esp_timer_handle_t oneshot_timer;
static void oneshot_timer_callback(void* arg)
{
esp_timer_start_once(oneshot_timer, 5000);
}
static const esp_timer_create_args_t oneshot_timer_args = {
.callback = &oneshot_timer_callback,
};
TEST_CASE("esp_timer_impl_set_alarm and using start_once do not lead that the System time jumps back", "[esp_timer][timeout=62]")
{
time_jumped = false;
task_stop = false;
xTaskCreatePinnedToCore(task_check_time, "task_check_time", 4096, NULL, 5, NULL, 0);
// dport_task is used here to interrupt the esp_timer_impl_set_alarm function.
// To interrupt it we can use an interrupt with 4 or 5 levels which will run on CPU0.
// Instead, an interrupt we use the dport workaround which has 4 interrupt level for stall CPU0.
xTaskCreatePinnedToCore(dport_task, "dport_task", 4096, NULL, 5, NULL, 1);
const esp_timer_create_args_t periodic_timer_args = {
.callback = &timer_callback,
};
esp_timer_handle_t periodic_timer;
esp_timer_create(&periodic_timer_args, &periodic_timer);
esp_timer_start_periodic(periodic_timer, 5000);
esp_timer_create(&oneshot_timer_args, &oneshot_timer);
esp_timer_start_once(oneshot_timer, 9990);
printf("timers created\n");
vTaskDelay(60 * 1000 / portTICK_PERIOD_MS);
task_stop = true;
esp_timer_stop(oneshot_timer);
esp_timer_delete(oneshot_timer);
esp_timer_stop(periodic_timer);
esp_timer_delete(periodic_timer);
printf("timers deleted\n");
vTaskDelay(1000 / portTICK_PERIOD_MS);
TEST_ASSERT(time_jumped == false);
}
#endif // !defined(CONFIG_FREERTOS_UNICORE) && SOC_DPORT_WORKAROUND
TEST_CASE("Test case when esp_timer_impl_set_alarm needs set timer < now_time", "[esp_timer]")
{
esp_timer_impl_advance(50331648); // 0xefffffff/80 = 50331647
esp_rom_delay_us(2);
portDISABLE_INTERRUPTS();
esp_timer_impl_set_alarm(50331647);
uint64_t alarm_reg = esp_timer_impl_get_alarm_reg();
uint64_t count_reg = esp_timer_impl_get_counter_reg();
portENABLE_INTERRUPTS();
const uint32_t offset = 2;
printf("alarm_reg = 0x%llx, count_reg 0x%llx\n", alarm_reg, count_reg);
TEST_ASSERT(alarm_reg <= (count_reg + offset));
}
static void timer_callback5(void* arg)
{
*(int64_t *)arg = esp_timer_get_time();
}
TEST_CASE("Test a latency between a call of callback and real event", "[esp_timer]")
{
int64_t callback_time = 0;
const esp_timer_create_args_t periodic_timer_args = {
.arg = &callback_time,
.callback = &timer_callback5,
};
esp_timer_handle_t periodic_timer;
TEST_ESP_OK(esp_timer_create(&periodic_timer_args, &periodic_timer));
int interval_ms = 50;
TEST_ESP_OK(esp_timer_start_periodic(periodic_timer, interval_ms * 1000));
for (int i = 0; i < 5; ++i) {
int64_t expected_time = esp_timer_get_next_alarm();
int64_t saved_callback_time = callback_time;
while (saved_callback_time == callback_time) {
vTaskDelay(10 / portTICK_PERIOD_MS);
}
int diff = callback_time - expected_time;
printf("%d us\n", diff);
#ifndef CONFIG_IDF_ENV_FPGA
if (i != 0) {
// skip the first measurement
// if CPU_FREQ = 240MHz. 14 - 16us
TEST_ASSERT_LESS_OR_EQUAL(50, diff);
}
#endif // not CONFIG_IDF_ENV_FPGA
}
TEST_ESP_OK(esp_timer_dump(stdout));
TEST_ESP_OK(esp_timer_stop(periodic_timer));
TEST_ESP_OK(esp_timer_delete(periodic_timer));
}
static void test_timer_triggered(void* timer1_trig)
{
int* timer = (int *)timer1_trig;
*timer = *timer + 1;
}
TEST_CASE("periodic esp_timer can be restarted", "[esp_timer]")
{
const int delay_ms = 100;
int timer_trig = 0;
esp_timer_handle_t timer1;
esp_timer_create_args_t create_args = {
.callback = &test_timer_triggered,
.arg = &timer_trig,
.name = "timer1",
};
TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000));
/* Sleep for delay_ms/2 and restart the timer */
vTaskDelay((delay_ms / 2) * portTICK_PERIOD_MS);
/* Check that the alarm was not triggered */
TEST_ASSERT_EQUAL(0, timer_trig);
/* Reaching this point, the timer will be triggered in delay_ms/2.
* Let's restart the timer now with the same period. */
TEST_ESP_OK(esp_timer_restart(timer1, delay_ms * 1000));
/* Sleep for a bit more than delay_ms/2 */
vTaskDelay(((delay_ms / 2) + 1) * portTICK_PERIOD_MS);
/* If the alarm was triggered, restart didn't work */
TEST_ASSERT_EQUAL(0, timer_trig);
/* Else, wait for another delay_ms/2, which should trigger the alarm */
vTaskDelay(((delay_ms / 2) + 2) * portTICK_PERIOD_MS);
TEST_ASSERT_EQUAL(1, timer_trig);
/* Now wait for another delay_ms to make sure the timer is still periodic */
timer_trig = 0;
vTaskDelay((delay_ms * portTICK_PERIOD_MS) + 1);
/* Make sure the timer was triggered */
TEST_ASSERT_EQUAL(1, timer_trig);
/* Reduce the period of the timer to delay/2 */
timer_trig = 0;
TEST_ESP_OK(esp_timer_restart(timer1, delay_ms / 2 * 1000));
vTaskDelay((delay_ms * portTICK_PERIOD_MS) + 1);
/* Check that the alarm was triggered twice */
TEST_ASSERT_EQUAL(2, timer_trig);
TEST_ESP_OK(esp_timer_stop(timer1));
TEST_ESP_OK(esp_timer_delete(timer1));
}
TEST_CASE("one-shot esp_timer can be restarted", "[esp_timer]")
{
const int delay_ms = 100;
int timer_trig = 0;
esp_timer_handle_t timer1;
esp_timer_create_args_t create_args = {
.callback = &test_timer_triggered,
.arg = &timer_trig,
.name = "timer1",
};
TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
TEST_ESP_OK(esp_timer_start_once(timer1, delay_ms * 1000));
vTaskDelay((delay_ms / 2) * portTICK_PERIOD_MS);
/* Check that the alarm was not triggered */
TEST_ASSERT_EQUAL(0, timer_trig);
/* Reaching this point, the timer will be triggered in delay_ms/2.
* Let's restart the timer now with the same timeout. */
TEST_ESP_OK(esp_timer_restart(timer1, delay_ms * 1000));
vTaskDelay(((delay_ms / 2) + 1) * portTICK_PERIOD_MS);
/* If the alarm was triggered, restart didn't work */
TEST_ASSERT_EQUAL(0, timer_trig);
/* Else, wait for another delay_ms/2, which should trigger the alarm */
vTaskDelay(((delay_ms / 2) + 2) * portTICK_PERIOD_MS);
TEST_ASSERT_EQUAL(1, timer_trig);
/* Make sure the timer is NOT periodic, wait for another delay and make sure
* our callback was not called */
timer_trig = 0;
vTaskDelay(delay_ms * 2 * portTICK_PERIOD_MS);
/* Make sure the timer was triggered */
TEST_ASSERT_EQUAL(0, timer_trig);
TEST_ESP_OK(esp_timer_delete(timer1));
}
#ifdef CONFIG_ESP_TIMER_SUPPORTS_ISR_DISPATCH_METHOD
static int64_t old_time[2];
static void timer_isr_callback(void* arg)
{
int num_timer = *((int*)arg);
int64_t now = esp_timer_get_time();
int64_t dt = now - old_time[num_timer];
old_time[num_timer] = now;
if (num_timer == 0) {
esp_rom_printf("(%lld): \t\t\t\t timer ISR, dt: %lld us\n", now, dt);
assert(xPortInIsrContext());
} else {
esp_rom_printf("(%lld): timer TASK, dt: %lld us\n", now, dt);
assert(!xPortInIsrContext());
}
}
TEST_CASE("Test ESP_TIMER_ISR dispatch method", "[esp_timer]")
{
TEST_ESP_OK(esp_timer_dump(stdout));
int timer[2] = {0, 1};
const esp_timer_create_args_t periodic_timer1_args = {
.callback = &timer_isr_callback,
.dispatch_method = ESP_TIMER_ISR,
.arg = &timer[0],
.name = "ISR",
};
esp_timer_handle_t periodic_timer1;
TEST_ESP_OK(esp_timer_create(&periodic_timer1_args, &periodic_timer1));
TEST_ESP_OK(esp_timer_start_periodic(periodic_timer1, 400000));
const esp_timer_create_args_t periodic_timer2_args = {
.callback = &timer_isr_callback,
.dispatch_method = ESP_TIMER_TASK,
.arg = &timer[1],
.name = "TASK",
};
esp_timer_handle_t periodic_timer2;
TEST_ESP_OK(esp_timer_create(&periodic_timer2_args, &periodic_timer2));
TEST_ESP_OK(esp_timer_start_periodic(periodic_timer2, 500000));
printf("timers created\n");
vTaskDelay(10 * 1000 / portTICK_PERIOD_MS);
TEST_ESP_OK(esp_timer_stop(periodic_timer1));
TEST_ESP_OK(esp_timer_stop(periodic_timer2));
TEST_ESP_OK(esp_timer_dump(stdout));
TEST_ESP_OK(esp_timer_delete(periodic_timer1));
TEST_ESP_OK(esp_timer_delete(periodic_timer2));
printf("timers deleted\n");
TEST_ESP_OK(esp_timer_dump(stdout));
}
static void dump_task(void* arg)
{
bool* stop_dump_task = (bool*) arg;
while (*stop_dump_task == false) {
TEST_ESP_OK(esp_timer_dump(NULL));
}
vTaskDelete(NULL);
}
static void isr_callback(void* arg)
{
assert(xPortInIsrContext());
}
static void task_callback(void* arg)
{
assert(!xPortInIsrContext());
}
TEST_CASE("Test ESP_TIMER_ISR dispatch method is not blocked", "[esp_timer]")
{
const esp_timer_create_args_t periodic_timer1_args = {
.callback = &isr_callback,
.dispatch_method = ESP_TIMER_ISR,
.arg = NULL,
.name = "ISR",
};
esp_timer_handle_t periodic_timer1;
TEST_ESP_OK(esp_timer_create(&periodic_timer1_args, &periodic_timer1));
TEST_ESP_OK(esp_timer_start_periodic(periodic_timer1, 500));
const esp_timer_create_args_t periodic_timer2_args = {
.callback = &task_callback,
.dispatch_method = ESP_TIMER_TASK,
.arg = NULL,
.name = "TASK",
};
esp_timer_handle_t periodic_timer2;
TEST_ESP_OK(esp_timer_create(&periodic_timer2_args, &periodic_timer2));
TEST_ESP_OK(esp_timer_start_periodic(periodic_timer2, 5000));
printf("timers created\n");
bool stop_dump_task = false;
xTaskCreatePinnedToCore(&dump_task, "dump", 4096, &stop_dump_task, UNITY_FREERTOS_PRIORITY, NULL, 0);
vTaskDelay(10 * 1000 / portTICK_PERIOD_MS);
stop_dump_task = true;
vTaskDelay(100 / portTICK_PERIOD_MS);
TEST_ESP_OK(esp_timer_stop(periodic_timer1));
TEST_ESP_OK(esp_timer_stop(periodic_timer2));
TEST_ESP_OK(esp_timer_dump(stdout));
TEST_ESP_OK(esp_timer_delete(periodic_timer1));
TEST_ESP_OK(esp_timer_delete(periodic_timer2));
printf("timer deleted\n");
}
static void isr_callback1(void* arg)
{
assert(xPortInIsrContext());
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
esp_rom_printf("isr_callback1: timer ISR\n");
SemaphoreHandle_t done = *(SemaphoreHandle_t*) arg;
xSemaphoreGiveFromISR(done, &xHigherPriorityTaskWoken);
if (xHigherPriorityTaskWoken) {
esp_timer_isr_dispatch_need_yield();
}
}
static void task_callback1(void* arg)
{
assert(0);
}
TEST_CASE("Test ESP_TIMER_ISR, stop API cleans alarm reg if TASK timer list is empty", "[esp_timer]")
{
SemaphoreHandle_t done = xSemaphoreCreateBinary();
const esp_timer_create_args_t timer1_args = {
.callback = &isr_callback1,
.dispatch_method = ESP_TIMER_ISR,
.arg = &done,
.name = "ISR",
};
esp_timer_handle_t timer1;
TEST_ESP_OK(esp_timer_create(&timer1_args, &timer1));
TEST_ESP_OK(esp_timer_start_periodic(timer1, 5 * SEC));
const esp_timer_create_args_t timer2_args = {
.callback = &task_callback1,
.dispatch_method = ESP_TIMER_TASK,
.arg = NULL,
.name = "TASK",
};
esp_timer_handle_t timer2;
TEST_ESP_OK(esp_timer_create(&timer2_args, &timer2));
TEST_ESP_OK(esp_timer_start_once(timer2, 3 * SEC));
printf("timers created\n");
printf("stop timer2\n");
TEST_ESP_OK(esp_timer_stop(timer2));
TEST_ASSERT(xSemaphoreTake(done, 6 * 1000 / portTICK_PERIOD_MS));
printf("stop timer1\n");
TEST_ESP_OK(esp_timer_stop(timer1));
TEST_ESP_OK(esp_timer_dump(stdout));
TEST_ESP_OK(esp_timer_delete(timer1));
TEST_ESP_OK(esp_timer_delete(timer2));
vSemaphoreDelete(done);
printf("timer deleted\n");
}
static void isr_callback2(void* arg)
{
assert(0);
}
static void task_callback2(void* arg)
{
assert(!xPortInIsrContext());
esp_rom_printf("task_callback2: timer TASK\n");
SemaphoreHandle_t done = *(SemaphoreHandle_t*) arg;
xSemaphoreGive(done);
}
TEST_CASE("Test ESP_TIMER_ISR, stop API cleans alarm reg if ISR timer list is empty", "[esp_timer]")
{
SemaphoreHandle_t done = xSemaphoreCreateBinary();
const esp_timer_create_args_t timer1_args = {
.callback = &isr_callback2,
.dispatch_method = ESP_TIMER_ISR,
.arg = NULL,
.name = "ISR",
};
esp_timer_handle_t timer1;
TEST_ESP_OK(esp_timer_create(&timer1_args, &timer1));
TEST_ESP_OK(esp_timer_start_once(timer1, 3 * SEC));
const esp_timer_create_args_t timer2_args = {
.callback = &task_callback2,
.dispatch_method = ESP_TIMER_TASK,
.arg = &done,
.name = "TASK",
};
esp_timer_handle_t timer2;
TEST_ESP_OK(esp_timer_create(&timer2_args, &timer2));
TEST_ESP_OK(esp_timer_start_periodic(timer2, 5 * SEC));
printf("timers created\n");
printf("stop timer1\n");
TEST_ESP_OK(esp_timer_stop(timer1));
TEST_ASSERT(xSemaphoreTake(done, 6 * 1000 / portTICK_PERIOD_MS));
printf("stop timer2\n");
TEST_ESP_OK(esp_timer_stop(timer2));
TEST_ESP_OK(esp_timer_dump(stdout));
TEST_ESP_OK(esp_timer_delete(timer1));
TEST_ESP_OK(esp_timer_delete(timer2));
vSemaphoreDelete(done);
printf("timer deleted\n");
}
#ifndef CONFIG_FREERTOS_UNICORE
static void task_callback3(void* arg)
{
int *data = (int *)arg;
++*data;
esp_rom_printf("callback from CPU%d\n", xPortGetCoreID());
#if defined(CONFIG_ESP_TIMER_ISR_AFFINITY_NO_AFFINITY) || defined(CONFIG_ESP_TIMER_ISR_AFFINITY_CPU1)
TEST_ASSERT_EQUAL_INT(1, xPortGetCoreID());
#endif // CONFIG_ESP_TIMER_AFFINITY_NO_AFFINITY
}
TEST_CASE("Test that CPU1 can handle esp_timer ISR even when CPU0 is blocked", "[esp_timer][isr_dispatch]")
{
int data = 0;
esp_timer_handle_t timer;
const esp_timer_create_args_t timer_args = {
.callback = &task_callback3,
.dispatch_method = ESP_TIMER_ISR,
.arg = &data,
.name = "test",
};
TEST_ESP_OK(esp_timer_create(&timer_args, &timer));
TEST_ESP_OK(esp_timer_start_periodic(timer, 10000));
portDISABLE_INTERRUPTS();
TEST_ASSERT_EQUAL_INT(0, xPortGetCoreID());
esp_rom_printf("CPU%d is blocked\n", xPortGetCoreID());
esp_rom_delay_us(100000);
esp_rom_printf("CPU%d is released\n", xPortGetCoreID());
portENABLE_INTERRUPTS();
TEST_ESP_OK(esp_timer_stop(timer));
TEST_ESP_OK(esp_timer_dump(stdout));
TEST_ASSERT_INT_WITHIN(3, 10, data);
TEST_ESP_OK(esp_timer_delete(timer));
}
#endif // not CONFIG_FREERTOS_UNICORE
volatile uint64_t task_t1;
volatile uint64_t isr_t1;
const uint64_t period_task_ms = 200;
const uint64_t period_isr_ms = 20;
void task_timer_cb(void *arg)
{
uint64_t t2 = esp_timer_get_time();
uint64_t dt_task_ms = (t2 - task_t1) / 1000;
task_t1 = t2;
printf("task callback, %d msec\n", (int)dt_task_ms);
vTaskDelay((period_task_ms / 2) / portTICK_PERIOD_MS); // very long callback in timer task
static bool first_run = true;
if (first_run) {
first_run = false;
} else {
TEST_ASSERT_INT_WITHIN(period_task_ms / 3, period_task_ms, dt_task_ms);
}
}
void IRAM_ATTR isr_timer_cb(void *arg)
{
uint64_t t2 = esp_timer_get_time();
uint64_t dt_isr_ms = (t2 - isr_t1) / 1000;
isr_t1 = t2;
esp_rom_printf("isr callback, %d msec\n", (int)dt_isr_ms);
static bool first_run = true;
if (first_run) {
first_run = false;
} else {
TEST_ASSERT_INT_WITHIN(period_isr_ms / 3, period_isr_ms, dt_isr_ms);
}
}
TEST_CASE("Test ISR dispatch callbacks are not blocked even if TASK callbacks take more time", "[esp_timer][isr_dispatch]")
{
esp_timer_handle_t task_timer_handle;
esp_timer_handle_t isr_timer_handle;
const esp_timer_create_args_t task_timer_args = {
.callback = &task_timer_cb,
.arg = NULL,
.dispatch_method = ESP_TIMER_TASK,
.name = "task_timer",
.skip_unhandled_events = true,
};
const esp_timer_create_args_t isr_timer_args = {
.callback = &isr_timer_cb,
.arg = NULL,
.dispatch_method = ESP_TIMER_ISR,
.name = "isr_timer",
.skip_unhandled_events = true,
};
ESP_ERROR_CHECK(esp_timer_create(&task_timer_args, &task_timer_handle));
ESP_ERROR_CHECK(esp_timer_create(&isr_timer_args, &isr_timer_handle));
ESP_ERROR_CHECK(esp_timer_start_periodic(task_timer_handle, period_task_ms * 1000));
task_t1 = esp_timer_get_time();
ESP_ERROR_CHECK(esp_timer_start_periodic(isr_timer_handle, period_isr_ms * 1000));
isr_t1 = esp_timer_get_time();
vTaskDelay(period_task_ms * 5 / portTICK_PERIOD_MS);
TEST_ESP_OK(esp_timer_stop(task_timer_handle));
TEST_ESP_OK(esp_timer_stop(isr_timer_handle));
TEST_ESP_OK(esp_timer_delete(task_timer_handle));
TEST_ESP_OK(esp_timer_delete(isr_timer_handle));
}
#endif // CONFIG_ESP_TIMER_SUPPORTS_ISR_DISPATCH_METHOD