/* * SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "sdkconfig.h" #include #include #include #include #include #include #include "esp_timer.h" #include "esp_timer_impl.h" #include "unity.h" #include "soc/timer_group_reg.h" #include "esp_heap_caps.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "test_utils.h" #include "esp_freertos_hooks.h" #include "esp_rom_sys.h" #define SEC (1000000) #ifdef CONFIG_ESP_TIMER_PROFILING #define WITH_PROFILING 1 #endif static void dummy_cb(void* arg) { } TEST_CASE("esp_timer orders timers correctly", "[esp_timer]") { uint64_t timeouts[] = { 10000, 1000, 10000, 5000, 20000, 1000 }; size_t indices[] = { 3, 0, 4, 2, 5, 1 }; const size_t num_timers = sizeof(timeouts) / sizeof(timeouts[0]); esp_timer_handle_t handles[num_timers]; char* names[num_timers]; for (size_t i = 0; i < num_timers; ++i) { asprintf(&names[i], "timer%d", i); esp_timer_create_args_t args = { .callback = &dummy_cb, .name = names[i] }; TEST_ESP_OK(esp_timer_create(&args, &handles[i])); TEST_ESP_OK(esp_timer_start_once(handles[i], timeouts[i] * 100)); } char* stream_str[1024]; FILE* stream = fmemopen(stream_str, sizeof(stream_str), "r+"); TEST_ESP_OK(esp_timer_dump(stream)); for (size_t i = 0; i < num_timers; ++i) { TEST_ESP_OK(esp_timer_stop(handles[i])); TEST_ESP_OK(esp_timer_delete(handles[i])); free(names[i]); } fflush(stream); fseek(stream, 0, SEEK_SET); /* Discard header lines */ char line[128]; TEST_ASSERT_NOT_NULL(fgets(line, sizeof(line), stream)); TEST_ASSERT_NOT_NULL(fgets(line, sizeof(line), stream)); for (size_t i = 0; i < num_timers; ++i) { TEST_ASSERT_NOT_NULL(fgets(line, sizeof(line), stream)); #if WITH_PROFILING int timer_id; sscanf(line, "timer%d", &timer_id); TEST_ASSERT_EQUAL(indices[timer_id], i); #else intptr_t timer_ptr; sscanf(line, "timer@0x%x", &timer_ptr); for (size_t j = 0; j < num_timers; ++j) { if (indices[j] == i) { TEST_ASSERT_EQUAL_PTR(handles[j], timer_ptr); break; } } #endif } fclose(stream); } static const int test_time_sec = 10; static void set_alarm_task(void* arg) { SemaphoreHandle_t done = (SemaphoreHandle_t) arg; int64_t start = esp_timer_impl_get_time(); int64_t now = start; int count = 0; const int delays[] = {50, 5000, 10000000}; const int delays_count = sizeof(delays) / sizeof(delays[0]); while (now - start < test_time_sec * 1000000) { now = esp_timer_impl_get_time(); esp_timer_impl_set_alarm(now + delays[count % delays_count]); ++count; } xSemaphoreGive(done); vTaskDelete(NULL); } TEST_CASE("esp_timer_impl_set_alarm stress test", "[esp_timer]") { SemaphoreHandle_t done = xSemaphoreCreateCounting(CONFIG_FREERTOS_NUMBER_OF_CORES, 0); xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_0", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 0); #if CONFIG_FREERTOS_NUMBER_OF_CORES == 2 xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_1", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 1); #endif TEST_ASSERT(xSemaphoreTake(done, test_time_sec * 2 * 1000 / portTICK_PERIOD_MS)); #if CONFIG_FREERTOS_NUMBER_OF_CORES == 2 TEST_ASSERT(xSemaphoreTake(done, test_time_sec * 2 * 1000 / portTICK_PERIOD_MS)); #endif vSemaphoreDelete(done); } static void test_correct_delay_timer_func(void* arg) { int64_t* p_end = (int64_t*) arg; *p_end = ref_clock_get(); } TEST_CASE("esp_timer produces correct delay", "[esp_timer]") { int64_t t_end; esp_timer_handle_t timer1; esp_timer_create_args_t args = { .callback = &test_correct_delay_timer_func, .arg = &t_end, .name = "timer1" }; TEST_ESP_OK(esp_timer_create(&args, &timer1)); const int delays_ms[] = {20, 100, 200, 250}; const size_t delays_count = sizeof(delays_ms) / sizeof(delays_ms[0]); ref_clock_init(); for (size_t i = 0; i < delays_count; ++i) { t_end = 0; int64_t t_start = ref_clock_get(); TEST_ESP_OK(esp_timer_start_once(timer1, delays_ms[i] * 1000)); vTaskDelay(delays_ms[i] * 2 / portTICK_PERIOD_MS); TEST_ASSERT(t_end != 0); int32_t ms_diff = (t_end - t_start) / 1000; printf("%d %"PRIi32"\n", delays_ms[i], ms_diff); TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, delays_ms[i], ms_diff); } ref_clock_deinit(); TEST_ESP_OK(esp_timer_dump(stdout)); esp_timer_delete(timer1); } // no, we can't make this a const size_t (ยง6.7.5.2) #define NUM_INTERVALS 16 typedef struct { esp_timer_handle_t timer; size_t cur_interval; int intervals[NUM_INTERVALS]; int64_t t_start; SemaphoreHandle_t done; } test_periodic_correct_delays_args_t; static void test_periodic_correct_delays_timer_func(void* arg) { test_periodic_correct_delays_args_t* p_args = (test_periodic_correct_delays_args_t*) arg; int64_t t_end = ref_clock_get(); int32_t ms_diff = (t_end - p_args->t_start) / 1000; printf("timer #%d %"PRIi32"ms\n", p_args->cur_interval, ms_diff); p_args->intervals[p_args->cur_interval++] = ms_diff; // Deliberately make timer handler run longer. // We check that this doesn't affect the result. esp_rom_delay_us(10 * 1000); if (p_args->cur_interval == NUM_INTERVALS) { printf("done\n"); TEST_ESP_OK(esp_timer_stop(p_args->timer)); xSemaphoreGive(p_args->done); } } TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]") { const int delay_ms = 100; test_periodic_correct_delays_args_t args = {0}; esp_timer_handle_t timer1; esp_timer_create_args_t create_args = { .callback = &test_periodic_correct_delays_timer_func, .arg = &args, .name = "timer1", }; TEST_ESP_OK(esp_timer_create(&create_args, &timer1)); ref_clock_init(); args.timer = timer1; args.t_start = ref_clock_get(); args.done = xSemaphoreCreateBinary(); TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000)); TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * NUM_INTERVALS * 2)); TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval); for (size_t i = 0; i < NUM_INTERVALS; ++i) { TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]); } ref_clock_deinit(); TEST_ESP_OK(esp_timer_dump(stdout)); TEST_ESP_OK(esp_timer_delete(timer1)); vSemaphoreDelete(args.done); } #undef NUM_INTERVALS #define N 5 typedef struct { const int order[N * 3]; size_t count; } test_timers_ordered_correctly_common_t; typedef struct { int timer_index; const int intervals[N]; size_t intervals_count; esp_timer_handle_t timer; test_timers_ordered_correctly_common_t* common; bool pass; SemaphoreHandle_t done; int64_t t_start; } test_timers_ordered_correctly_args_t; static void test_timers_ordered_correctly_timer_func(void* arg) { test_timers_ordered_correctly_args_t* p_args = (test_timers_ordered_correctly_args_t*) arg; // check order size_t count = p_args->common->count; int expected_index = p_args->common->order[count]; int ms_since_start = (ref_clock_get() - p_args->t_start) / 1000; printf("Time %dms, at count %d, expected timer %d, got timer %d\n", ms_since_start, count, expected_index, p_args->timer_index); if (expected_index != p_args->timer_index) { p_args->pass = false; esp_timer_stop(p_args->timer); xSemaphoreGive(p_args->done); return; } p_args->common->count++; if (++p_args->intervals_count == N) { esp_timer_stop(p_args->timer); xSemaphoreGive(p_args->done); return; } int next_interval = p_args->intervals[p_args->intervals_count]; printf("starting timer %d interval #%d, %d ms\n", p_args->timer_index, p_args->intervals_count, next_interval); esp_timer_start_once(p_args->timer, next_interval * 1000); } TEST_CASE("multiple timers are ordered correctly", "[esp_timer]") { test_timers_ordered_correctly_common_t common = { .order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2}, .count = 0 }; SemaphoreHandle_t done = xSemaphoreCreateCounting(3, 0); ref_clock_init(); int64_t now = ref_clock_get(); test_timers_ordered_correctly_args_t args1 = { .timer_index = 1, .intervals = {10, 40, 20, 40, 30}, .common = &common, .pass = true, .done = done, .t_start = now }; test_timers_ordered_correctly_args_t args2 = { .timer_index = 2, .intervals = {20, 20, 60, 30, 40}, .common = &common, .pass = true, .done = done, .t_start = now }; test_timers_ordered_correctly_args_t args3 = { .timer_index = 3, .intervals = {30, 30, 60, 30, 10}, .common = &common, .pass = true, .done = done, .t_start = now }; esp_timer_create_args_t create_args = { .callback = &test_timers_ordered_correctly_timer_func, .arg = &args1, .name = "1" }; TEST_ESP_OK(esp_timer_create(&create_args, &args1.timer)); create_args.name = "2"; create_args.arg = &args2; TEST_ESP_OK(esp_timer_create(&create_args, &args2.timer)); create_args.name = "3"; create_args.arg = &args3; TEST_ESP_OK(esp_timer_create(&create_args, &args3.timer)); esp_timer_start_once(args1.timer, args1.intervals[0] * 1000); esp_timer_start_once(args2.timer, args2.intervals[0] * 1000); esp_timer_start_once(args3.timer, args3.intervals[0] * 1000); for (int i = 0; i < 3; ++i) { int result = xSemaphoreTake(done, 1000 / portTICK_PERIOD_MS); TEST_ASSERT_TRUE(result == pdPASS); } TEST_ASSERT_TRUE(args1.pass); TEST_ASSERT_TRUE(args2.pass); TEST_ASSERT_TRUE(args3.pass); ref_clock_deinit(); TEST_ESP_OK(esp_timer_dump(stdout)); TEST_ESP_OK(esp_timer_delete(args1.timer)); TEST_ESP_OK(esp_timer_delete(args2.timer)); TEST_ESP_OK(esp_timer_delete(args3.timer)); } #undef N static void test_short_intervals_timer_func(void* arg) { SemaphoreHandle_t done = (SemaphoreHandle_t) arg; xSemaphoreGive(done); printf("."); } /* Create two timers, start them around the same time, and search through * timeout delta values to reproduce the case when timeouts occur close to * each other, testing the "multiple timers triggered" code path in timer_process_alarm. */ TEST_CASE("esp_timer for very short intervals", "[esp_timer]") { SemaphoreHandle_t semaphore = xSemaphoreCreateCounting(2, 0); esp_timer_create_args_t timer_args = { .callback = &test_short_intervals_timer_func, .arg = (void*) semaphore, .name = "foo" }; esp_timer_handle_t timer1, timer2; ESP_ERROR_CHECK(esp_timer_create(&timer_args, &timer1)); ESP_ERROR_CHECK(esp_timer_create(&timer_args, &timer2)); const int timeout_ms = 10; for (int timeout_delta_us = -150; timeout_delta_us < 150; timeout_delta_us++) { printf("delta=%d", timeout_delta_us); ESP_ERROR_CHECK(esp_timer_start_once(timer1, timeout_ms * 1000)); ESP_ERROR_CHECK(esp_timer_start_once(timer2, timeout_ms * 1000 + timeout_delta_us)); TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2)); TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2)); printf("\n"); TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer1)); TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer2)); } vSemaphoreDelete(semaphore); TEST_ESP_OK(esp_timer_delete(timer1)); TEST_ESP_OK(esp_timer_delete(timer2)); } TEST_CASE("esp_timer_get_time call takes less than 1us", "[esp_timer]") { int64_t begin = esp_timer_get_time(); volatile int64_t end; const int iter_count = 10000; for (int i = 0; i < iter_count; ++i) { end = esp_timer_get_time(); } int ns_per_call = (int)((end - begin) * 1000 / iter_count); TEST_PERFORMANCE_LESS_THAN(ESP_TIMER_GET_TIME_PER_CALL, "%dns", ns_per_call); } static int64_t IRAM_ATTR __attribute__((noinline)) get_clock_diff(void) { uint64_t hs_time = esp_timer_get_time(); uint64_t ref_time = ref_clock_get(); return hs_time - ref_time; } typedef struct { SemaphoreHandle_t done; bool pass; int test_cnt; int error_cnt; int64_t max_error; int64_t avg_diff; int64_t dummy; } test_monotonic_values_state_t; static void timer_test_monotonic_values_task(void* arg) { test_monotonic_values_state_t* state = (test_monotonic_values_state_t*) arg; state->pass = true; /* make sure both functions are in cache */ state->dummy = get_clock_diff(); /* calculate the difference between the two clocks */ portDISABLE_INTERRUPTS(); int64_t delta = get_clock_diff(); portENABLE_INTERRUPTS(); int64_t start_time = ref_clock_get(); int error_repeat_cnt = 0; while (ref_clock_get() - start_time < 10000000) { /* 10 seconds */ /* Get values of both clocks again, and check that they are close to 'delta'. * We don't disable interrupts here, because esp_timer_get_time doesn't lock * interrupts internally, so we check if it can get "broken" by a well placed * interrupt. */ int64_t diff = get_clock_diff() - delta; /* Allow some difference due to rtos tick interrupting task between * getting 'hs_now' and 'now'. */ if (llabs(diff) > 100) { error_repeat_cnt++; state->error_cnt++; } else { error_repeat_cnt = 0; } if (error_repeat_cnt > 2) { printf("diff=%lld\n", diff); state->pass = false; } state->avg_diff += diff; state->max_error = MAX(state->max_error, llabs(diff)); state->test_cnt++; } state->avg_diff /= state->test_cnt; xSemaphoreGive(state->done); vTaskDelete(NULL); } TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer]") { ref_clock_init(); test_monotonic_values_state_t states[CONFIG_FREERTOS_NUMBER_OF_CORES] = {0}; SemaphoreHandle_t done = xSemaphoreCreateCounting(CONFIG_FREERTOS_NUMBER_OF_CORES, 0); for (int i = 0; i < CONFIG_FREERTOS_NUMBER_OF_CORES; ++i) { states[i].done = done; xTaskCreatePinnedToCore(&timer_test_monotonic_values_task, "test", 4096, &states[i], 6, NULL, i); } for (int i = 0; i < CONFIG_FREERTOS_NUMBER_OF_CORES; ++i) { TEST_ASSERT_TRUE(xSemaphoreTake(done, portMAX_DELAY)); printf("CPU%d: %s test_cnt=%d error_cnt=%d avg_diff=%d |max_error|=%d\n", i, states[i].pass ? "PASS" : "FAIL", states[i].test_cnt, states[i].error_cnt, (int) states[i].avg_diff, (int) states[i].max_error); } vSemaphoreDelete(done); ref_clock_deinit(); for (int i = 0; i < CONFIG_FREERTOS_NUMBER_OF_CORES; ++i) { TEST_ASSERT(states[i].pass); } } TEST_CASE("Can dump esp_timer stats", "[esp_timer]") { esp_timer_dump(stdout); } typedef struct { SemaphoreHandle_t notify_from_timer_cb; esp_timer_handle_t timer; } test_delete_from_callback_arg_t; static void test_delete_from_callback_timer_func(void* varg) { test_delete_from_callback_arg_t arg = *(test_delete_from_callback_arg_t*) varg; esp_timer_delete(arg.timer); printf("Timer %p is deleted\n", arg.timer); xSemaphoreGive(arg.notify_from_timer_cb); } TEST_CASE("Can delete timer from callback", "[esp_timer]") { test_delete_from_callback_arg_t args = { .notify_from_timer_cb = xSemaphoreCreateBinary(), }; esp_timer_create_args_t timer_args = { .callback = &test_delete_from_callback_timer_func, .arg = &args, .name = "self_deleter" }; esp_timer_create(&timer_args, &args.timer); esp_timer_start_once(args.timer, 10000); TEST_ASSERT_TRUE(xSemaphoreTake(args.notify_from_timer_cb, 1000 / portTICK_PERIOD_MS)); printf("Checking heap at %p\n", args.timer); TEST_ASSERT_TRUE(heap_caps_check_integrity_addr((intptr_t) args.timer, true)); vSemaphoreDelete(args.notify_from_timer_cb); } typedef struct { SemaphoreHandle_t delete_start; SemaphoreHandle_t delete_done; SemaphoreHandle_t test_done; esp_timer_handle_t timer; } timer_delete_test_args_t; static void timer_delete_task(void* arg) { timer_delete_test_args_t* args = (timer_delete_test_args_t*) arg; xSemaphoreTake(args->delete_start, portMAX_DELAY); printf("Deleting the timer\n"); esp_timer_delete(args->timer); printf("Timer deleted\n"); xSemaphoreGive(args->delete_done); vTaskDelete(NULL); } static void timer_delete_test_callback(void* arg) { timer_delete_test_args_t* args = (timer_delete_test_args_t*) arg; printf("Timer callback called\n"); xSemaphoreGive(args->delete_start); xSemaphoreTake(args->delete_done, portMAX_DELAY); printf("Callback complete\n"); xSemaphoreGive(args->test_done); } TEST_CASE("Can delete timer from a separate task, triggered from callback", "[esp_timer]") { timer_delete_test_args_t args = { .delete_start = xSemaphoreCreateBinary(), .delete_done = xSemaphoreCreateBinary(), .test_done = xSemaphoreCreateBinary(), }; esp_timer_create_args_t timer_args = { .callback = &timer_delete_test_callback, .arg = &args }; esp_timer_handle_t timer; TEST_ESP_OK(esp_timer_create(&timer_args, &timer)); args.timer = timer; xTaskCreate(timer_delete_task, "deleter", 4096, &args, 5, NULL); esp_timer_start_once(timer, 100); TEST_ASSERT(xSemaphoreTake(args.test_done, pdMS_TO_TICKS(1000))); vSemaphoreDelete(args.delete_done); vSemaphoreDelete(args.delete_start); vSemaphoreDelete(args.test_done); } TEST_CASE("esp_timer_impl_advance moves time base correctly", "[esp_timer]") { int64_t t0 = esp_timer_get_time(); const int64_t diff_us = 1000000; esp_timer_impl_advance(diff_us); int64_t t1 = esp_timer_get_time(); int64_t t_delta = t1 - t0; printf("diff_us=%lld t0=%lld t1=%lld t1-t0=%lld\n", diff_us, t0, t1, t_delta); TEST_ASSERT_INT_WITHIN(1000, diff_us, (int) t_delta); } typedef struct { int64_t cb_time; } test_run_when_expected_state_t; static void test_run_when_expected_timer_func(void* varg) { test_run_when_expected_state_t* arg = (test_run_when_expected_state_t*) varg; arg->cb_time = ref_clock_get(); } TEST_CASE("after esp_timer_impl_advance, timers run when expected", "[esp_timer]") { ref_clock_init(); test_run_when_expected_state_t state = { 0 }; esp_timer_create_args_t timer_args = { .callback = &test_run_when_expected_timer_func, .arg = &state }; esp_timer_handle_t timer; TEST_ESP_OK(esp_timer_create(&timer_args, &timer)); const int64_t interval = 10000; const int64_t advance = 2000; printf("test 1\n"); int64_t t_start = ref_clock_get(); esp_timer_start_once(timer, interval); esp_timer_impl_advance(advance); vTaskDelay(2 * interval / 1000 / portTICK_PERIOD_MS); TEST_ASSERT_INT_WITHIN(portTICK_PERIOD_MS * 1000, interval - advance, state.cb_time - t_start); printf("test 2\n"); state.cb_time = 0; t_start = ref_clock_get(); esp_timer_start_once(timer, interval); esp_timer_impl_advance(interval); vTaskDelay(1); TEST_ASSERT(state.cb_time > t_start); ref_clock_deinit(); TEST_ESP_OK(esp_timer_delete(timer)); } static esp_timer_handle_t timer1; static SemaphoreHandle_t sem; static void IRAM_ATTR test_tick_hook(void) { static int i; const int iterations = 16; if (++i <= iterations) { if (i & 0x1) { TEST_ESP_OK(esp_timer_start_once(timer1, 5000)); } else { TEST_ESP_OK(esp_timer_stop(timer1)); } } else { xSemaphoreGiveFromISR(sem, 0); } } static void test_start_stop_timer_func(void* arg) { printf("timer cb\n"); } TEST_CASE("Can start/stop timer from ISR context", "[esp_timer]") { esp_timer_create_args_t create_args = { .callback = &test_start_stop_timer_func, }; TEST_ESP_OK(esp_timer_create(&create_args, &timer1)); sem = xSemaphoreCreateBinary(); esp_register_freertos_tick_hook(test_tick_hook); TEST_ASSERT(xSemaphoreTake(sem, portMAX_DELAY)); esp_deregister_freertos_tick_hook(test_tick_hook); TEST_ESP_OK(esp_timer_delete(timer1)); vSemaphoreDelete(sem); } #if !defined(CONFIG_FREERTOS_UNICORE) && SOC_DPORT_WORKAROUND #include "dport_access.h" static bool task_stop; static bool time_jumped; static void task_check_time(void *p) { int64_t t1 = 0, t2 = 0; while (task_stop == false) { t1 = t2; t2 = esp_timer_get_time(); if (t1 > t2) { int64_t shift_us = t2 - t1; time_jumped = true; printf("System clock jumps back: %lli us\n", shift_us); } vTaskDelay(1); } vTaskDelete(NULL); } static void timer_callback(void* arg) { } static void dport_task(void *pvParameters) { while (task_stop == false) { DPORT_STALL_OTHER_CPU_START(); esp_rom_delay_us(3); DPORT_STALL_OTHER_CPU_END(); } vTaskDelete(NULL); } TEST_CASE("esp_timer_impl_set_alarm does not set an alarm below the current time", "[esp_timer][timeout=62]") { const int max_timers = 2; time_jumped = false; task_stop = false; xTaskCreatePinnedToCore(task_check_time, "task_check_time", 4096, NULL, 5, NULL, 0); // dport_task is used here to interrupt the esp_timer_impl_set_alarm function. // To interrupt it we can use an interrupt with 4 or 5 levels which will run on CPU0. // Instead, an interrupt we use the dport workaround which has 4 interrupt level for stall CPU0. xTaskCreatePinnedToCore(dport_task, "dport_task", 4096, NULL, 5, NULL, 1); const esp_timer_create_args_t periodic_timer_args = { .callback = &timer_callback, }; esp_timer_handle_t periodic_timer[max_timers]; printf("timers created\n"); esp_timer_create(&periodic_timer_args, &periodic_timer[0]); esp_timer_start_periodic(periodic_timer[0], 9000); esp_timer_create(&periodic_timer_args, &periodic_timer[1]); esp_timer_start_periodic(periodic_timer[1], 9000); vTaskDelay(60 * 1000 / portTICK_PERIOD_MS); task_stop = true; esp_timer_stop(periodic_timer[0]); esp_timer_delete(periodic_timer[0]); esp_timer_stop(periodic_timer[1]); esp_timer_delete(periodic_timer[1]); printf("timers deleted\n"); vTaskDelay(1000 / portTICK_PERIOD_MS); TEST_ASSERT(time_jumped == false); } static esp_timer_handle_t oneshot_timer; static void oneshot_timer_callback(void* arg) { esp_timer_start_once(oneshot_timer, 5000); } static const esp_timer_create_args_t oneshot_timer_args = { .callback = &oneshot_timer_callback, }; TEST_CASE("esp_timer_impl_set_alarm and using start_once do not lead that the System time jumps back", "[esp_timer][timeout=62]") { time_jumped = false; task_stop = false; xTaskCreatePinnedToCore(task_check_time, "task_check_time", 4096, NULL, 5, NULL, 0); // dport_task is used here to interrupt the esp_timer_impl_set_alarm function. // To interrupt it we can use an interrupt with 4 or 5 levels which will run on CPU0. // Instead, an interrupt we use the dport workaround which has 4 interrupt level for stall CPU0. xTaskCreatePinnedToCore(dport_task, "dport_task", 4096, NULL, 5, NULL, 1); const esp_timer_create_args_t periodic_timer_args = { .callback = &timer_callback, }; esp_timer_handle_t periodic_timer; esp_timer_create(&periodic_timer_args, &periodic_timer); esp_timer_start_periodic(periodic_timer, 5000); esp_timer_create(&oneshot_timer_args, &oneshot_timer); esp_timer_start_once(oneshot_timer, 9990); printf("timers created\n"); vTaskDelay(60 * 1000 / portTICK_PERIOD_MS); task_stop = true; esp_timer_stop(oneshot_timer); esp_timer_delete(oneshot_timer); esp_timer_stop(periodic_timer); esp_timer_delete(periodic_timer); printf("timers deleted\n"); vTaskDelay(1000 / portTICK_PERIOD_MS); TEST_ASSERT(time_jumped == false); } #endif // !defined(CONFIG_FREERTOS_UNICORE) && SOC_DPORT_WORKAROUND TEST_CASE("Test case when esp_timer_impl_set_alarm needs set timer < now_time", "[esp_timer]") { esp_timer_impl_advance(50331648); // 0xefffffff/80 = 50331647 esp_rom_delay_us(2); portDISABLE_INTERRUPTS(); esp_timer_impl_set_alarm(50331647); uint64_t alarm_reg = esp_timer_impl_get_alarm_reg(); uint64_t count_reg = esp_timer_impl_get_counter_reg(); portENABLE_INTERRUPTS(); const uint32_t offset = 2; printf("alarm_reg = 0x%llx, count_reg 0x%llx\n", alarm_reg, count_reg); TEST_ASSERT(alarm_reg <= (count_reg + offset)); } static void timer_callback5(void* arg) { *(int64_t *)arg = esp_timer_get_time(); } TEST_CASE("Test a latency between a call of callback and real event", "[esp_timer]") { int64_t callback_time = 0; const esp_timer_create_args_t periodic_timer_args = { .arg = &callback_time, .callback = &timer_callback5, }; esp_timer_handle_t periodic_timer; TEST_ESP_OK(esp_timer_create(&periodic_timer_args, &periodic_timer)); int interval_ms = 50; TEST_ESP_OK(esp_timer_start_periodic(periodic_timer, interval_ms * 1000)); for (int i = 0; i < 5; ++i) { int64_t expected_time = esp_timer_get_next_alarm(); int64_t saved_callback_time = callback_time; while (saved_callback_time == callback_time) { vTaskDelay(10 / portTICK_PERIOD_MS); } int diff = callback_time - expected_time; printf("%d us\n", diff); #ifndef CONFIG_IDF_ENV_FPGA if (i != 0) { // skip the first measurement // if CPU_FREQ = 240MHz. 14 - 16us TEST_ASSERT_LESS_OR_EQUAL(50, diff); } #endif // not CONFIG_IDF_ENV_FPGA } TEST_ESP_OK(esp_timer_dump(stdout)); TEST_ESP_OK(esp_timer_stop(periodic_timer)); TEST_ESP_OK(esp_timer_delete(periodic_timer)); } static void test_timer_triggered(void* timer1_trig) { int* timer = (int *)timer1_trig; *timer = *timer + 1; } TEST_CASE("periodic esp_timer can be restarted", "[esp_timer]") { const int delay_ms = 100; int timer_trig = 0; esp_timer_handle_t timer1; esp_timer_create_args_t create_args = { .callback = &test_timer_triggered, .arg = &timer_trig, .name = "timer1", }; TEST_ESP_OK(esp_timer_create(&create_args, &timer1)); TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000)); /* Sleep for delay_ms/2 and restart the timer */ vTaskDelay((delay_ms / 2) * portTICK_PERIOD_MS); /* Check that the alarm was not triggered */ TEST_ASSERT_EQUAL(0, timer_trig); /* Reaching this point, the timer will be triggered in delay_ms/2. * Let's restart the timer now with the same period. */ TEST_ESP_OK(esp_timer_restart(timer1, delay_ms * 1000)); /* Sleep for a bit more than delay_ms/2 */ vTaskDelay(((delay_ms / 2) + 1) * portTICK_PERIOD_MS); /* If the alarm was triggered, restart didn't work */ TEST_ASSERT_EQUAL(0, timer_trig); /* Else, wait for another delay_ms/2, which should trigger the alarm */ vTaskDelay(((delay_ms / 2) + 2) * portTICK_PERIOD_MS); TEST_ASSERT_EQUAL(1, timer_trig); /* Now wait for another delay_ms to make sure the timer is still periodic */ timer_trig = 0; vTaskDelay((delay_ms * portTICK_PERIOD_MS) + 1); /* Make sure the timer was triggered */ TEST_ASSERT_EQUAL(1, timer_trig); /* Reduce the period of the timer to delay/2 */ timer_trig = 0; TEST_ESP_OK(esp_timer_restart(timer1, delay_ms / 2 * 1000)); vTaskDelay((delay_ms * portTICK_PERIOD_MS) + 1); /* Check that the alarm was triggered twice */ TEST_ASSERT_EQUAL(2, timer_trig); TEST_ESP_OK(esp_timer_stop(timer1)); TEST_ESP_OK(esp_timer_delete(timer1)); } TEST_CASE("one-shot esp_timer can be restarted", "[esp_timer]") { const int delay_ms = 100; int timer_trig = 0; esp_timer_handle_t timer1; esp_timer_create_args_t create_args = { .callback = &test_timer_triggered, .arg = &timer_trig, .name = "timer1", }; TEST_ESP_OK(esp_timer_create(&create_args, &timer1)); TEST_ESP_OK(esp_timer_start_once(timer1, delay_ms * 1000)); vTaskDelay((delay_ms / 2) * portTICK_PERIOD_MS); /* Check that the alarm was not triggered */ TEST_ASSERT_EQUAL(0, timer_trig); /* Reaching this point, the timer will be triggered in delay_ms/2. * Let's restart the timer now with the same timeout. */ TEST_ESP_OK(esp_timer_restart(timer1, delay_ms * 1000)); vTaskDelay(((delay_ms / 2) + 1) * portTICK_PERIOD_MS); /* If the alarm was triggered, restart didn't work */ TEST_ASSERT_EQUAL(0, timer_trig); /* Else, wait for another delay_ms/2, which should trigger the alarm */ vTaskDelay(((delay_ms / 2) + 2) * portTICK_PERIOD_MS); TEST_ASSERT_EQUAL(1, timer_trig); /* Make sure the timer is NOT periodic, wait for another delay and make sure * our callback was not called */ timer_trig = 0; vTaskDelay(delay_ms * 2 * portTICK_PERIOD_MS); /* Make sure the timer was triggered */ TEST_ASSERT_EQUAL(0, timer_trig); TEST_ESP_OK(esp_timer_delete(timer1)); } #ifdef CONFIG_ESP_TIMER_SUPPORTS_ISR_DISPATCH_METHOD static int64_t old_time[2]; static void timer_isr_callback(void* arg) { int num_timer = *((int*)arg); int64_t now = esp_timer_get_time(); int64_t dt = now - old_time[num_timer]; old_time[num_timer] = now; if (num_timer == 0) { esp_rom_printf("(%lld): \t\t\t\t timer ISR, dt: %lld us\n", now, dt); assert(xPortInIsrContext()); } else { esp_rom_printf("(%lld): timer TASK, dt: %lld us\n", now, dt); assert(!xPortInIsrContext()); } } TEST_CASE("Test ESP_TIMER_ISR dispatch method", "[esp_timer]") { TEST_ESP_OK(esp_timer_dump(stdout)); int timer[2] = {0, 1}; const esp_timer_create_args_t periodic_timer1_args = { .callback = &timer_isr_callback, .dispatch_method = ESP_TIMER_ISR, .arg = &timer[0], .name = "ISR", }; esp_timer_handle_t periodic_timer1; TEST_ESP_OK(esp_timer_create(&periodic_timer1_args, &periodic_timer1)); TEST_ESP_OK(esp_timer_start_periodic(periodic_timer1, 400000)); const esp_timer_create_args_t periodic_timer2_args = { .callback = &timer_isr_callback, .dispatch_method = ESP_TIMER_TASK, .arg = &timer[1], .name = "TASK", }; esp_timer_handle_t periodic_timer2; TEST_ESP_OK(esp_timer_create(&periodic_timer2_args, &periodic_timer2)); TEST_ESP_OK(esp_timer_start_periodic(periodic_timer2, 500000)); printf("timers created\n"); vTaskDelay(10 * 1000 / portTICK_PERIOD_MS); TEST_ESP_OK(esp_timer_stop(periodic_timer1)); TEST_ESP_OK(esp_timer_stop(periodic_timer2)); TEST_ESP_OK(esp_timer_dump(stdout)); TEST_ESP_OK(esp_timer_delete(periodic_timer1)); TEST_ESP_OK(esp_timer_delete(periodic_timer2)); printf("timers deleted\n"); TEST_ESP_OK(esp_timer_dump(stdout)); } static void dump_task(void* arg) { bool* stop_dump_task = (bool*) arg; while (*stop_dump_task == false) { TEST_ESP_OK(esp_timer_dump(NULL)); } vTaskDelete(NULL); } static void isr_callback(void* arg) { assert(xPortInIsrContext()); } static void task_callback(void* arg) { assert(!xPortInIsrContext()); } TEST_CASE("Test ESP_TIMER_ISR dispatch method is not blocked", "[esp_timer]") { const esp_timer_create_args_t periodic_timer1_args = { .callback = &isr_callback, .dispatch_method = ESP_TIMER_ISR, .arg = NULL, .name = "ISR", }; esp_timer_handle_t periodic_timer1; TEST_ESP_OK(esp_timer_create(&periodic_timer1_args, &periodic_timer1)); TEST_ESP_OK(esp_timer_start_periodic(periodic_timer1, 500)); const esp_timer_create_args_t periodic_timer2_args = { .callback = &task_callback, .dispatch_method = ESP_TIMER_TASK, .arg = NULL, .name = "TASK", }; esp_timer_handle_t periodic_timer2; TEST_ESP_OK(esp_timer_create(&periodic_timer2_args, &periodic_timer2)); TEST_ESP_OK(esp_timer_start_periodic(periodic_timer2, 5000)); printf("timers created\n"); bool stop_dump_task = false; xTaskCreatePinnedToCore(&dump_task, "dump", 4096, &stop_dump_task, UNITY_FREERTOS_PRIORITY, NULL, 0); vTaskDelay(10 * 1000 / portTICK_PERIOD_MS); stop_dump_task = true; vTaskDelay(100 / portTICK_PERIOD_MS); TEST_ESP_OK(esp_timer_stop(periodic_timer1)); TEST_ESP_OK(esp_timer_stop(periodic_timer2)); TEST_ESP_OK(esp_timer_dump(stdout)); TEST_ESP_OK(esp_timer_delete(periodic_timer1)); TEST_ESP_OK(esp_timer_delete(periodic_timer2)); printf("timer deleted\n"); } static void isr_callback1(void* arg) { assert(xPortInIsrContext()); BaseType_t xHigherPriorityTaskWoken = pdFALSE; esp_rom_printf("isr_callback1: timer ISR\n"); SemaphoreHandle_t done = *(SemaphoreHandle_t*) arg; xSemaphoreGiveFromISR(done, &xHigherPriorityTaskWoken); if (xHigherPriorityTaskWoken) { esp_timer_isr_dispatch_need_yield(); } } static void task_callback1(void* arg) { assert(0); } TEST_CASE("Test ESP_TIMER_ISR, stop API cleans alarm reg if TASK timer list is empty", "[esp_timer]") { SemaphoreHandle_t done = xSemaphoreCreateBinary(); const esp_timer_create_args_t timer1_args = { .callback = &isr_callback1, .dispatch_method = ESP_TIMER_ISR, .arg = &done, .name = "ISR", }; esp_timer_handle_t timer1; TEST_ESP_OK(esp_timer_create(&timer1_args, &timer1)); TEST_ESP_OK(esp_timer_start_periodic(timer1, 5 * SEC)); const esp_timer_create_args_t timer2_args = { .callback = &task_callback1, .dispatch_method = ESP_TIMER_TASK, .arg = NULL, .name = "TASK", }; esp_timer_handle_t timer2; TEST_ESP_OK(esp_timer_create(&timer2_args, &timer2)); TEST_ESP_OK(esp_timer_start_once(timer2, 3 * SEC)); printf("timers created\n"); printf("stop timer2\n"); TEST_ESP_OK(esp_timer_stop(timer2)); TEST_ASSERT(xSemaphoreTake(done, 6 * 1000 / portTICK_PERIOD_MS)); printf("stop timer1\n"); TEST_ESP_OK(esp_timer_stop(timer1)); TEST_ESP_OK(esp_timer_dump(stdout)); TEST_ESP_OK(esp_timer_delete(timer1)); TEST_ESP_OK(esp_timer_delete(timer2)); vSemaphoreDelete(done); printf("timer deleted\n"); } static void isr_callback2(void* arg) { assert(0); } static void task_callback2(void* arg) { assert(!xPortInIsrContext()); esp_rom_printf("task_callback2: timer TASK\n"); SemaphoreHandle_t done = *(SemaphoreHandle_t*) arg; xSemaphoreGive(done); } TEST_CASE("Test ESP_TIMER_ISR, stop API cleans alarm reg if ISR timer list is empty", "[esp_timer]") { SemaphoreHandle_t done = xSemaphoreCreateBinary(); const esp_timer_create_args_t timer1_args = { .callback = &isr_callback2, .dispatch_method = ESP_TIMER_ISR, .arg = NULL, .name = "ISR", }; esp_timer_handle_t timer1; TEST_ESP_OK(esp_timer_create(&timer1_args, &timer1)); TEST_ESP_OK(esp_timer_start_once(timer1, 3 * SEC)); const esp_timer_create_args_t timer2_args = { .callback = &task_callback2, .dispatch_method = ESP_TIMER_TASK, .arg = &done, .name = "TASK", }; esp_timer_handle_t timer2; TEST_ESP_OK(esp_timer_create(&timer2_args, &timer2)); TEST_ESP_OK(esp_timer_start_periodic(timer2, 5 * SEC)); printf("timers created\n"); printf("stop timer1\n"); TEST_ESP_OK(esp_timer_stop(timer1)); TEST_ASSERT(xSemaphoreTake(done, 6 * 1000 / portTICK_PERIOD_MS)); printf("stop timer2\n"); TEST_ESP_OK(esp_timer_stop(timer2)); TEST_ESP_OK(esp_timer_dump(stdout)); TEST_ESP_OK(esp_timer_delete(timer1)); TEST_ESP_OK(esp_timer_delete(timer2)); vSemaphoreDelete(done); printf("timer deleted\n"); } #ifndef CONFIG_FREERTOS_UNICORE static void task_callback3(void* arg) { int *data = (int *)arg; ++*data; esp_rom_printf("callback from CPU%d\n", xPortGetCoreID()); #if defined(CONFIG_ESP_TIMER_ISR_AFFINITY_NO_AFFINITY) || defined(CONFIG_ESP_TIMER_ISR_AFFINITY_CPU1) TEST_ASSERT_EQUAL_INT(1, xPortGetCoreID()); #endif // CONFIG_ESP_TIMER_AFFINITY_NO_AFFINITY } TEST_CASE("Test that CPU1 can handle esp_timer ISR even when CPU0 is blocked", "[esp_timer][isr_dispatch]") { int data = 0; esp_timer_handle_t timer; const esp_timer_create_args_t timer_args = { .callback = &task_callback3, .dispatch_method = ESP_TIMER_ISR, .arg = &data, .name = "test", }; TEST_ESP_OK(esp_timer_create(&timer_args, &timer)); TEST_ESP_OK(esp_timer_start_periodic(timer, 10000)); portDISABLE_INTERRUPTS(); TEST_ASSERT_EQUAL_INT(0, xPortGetCoreID()); esp_rom_printf("CPU%d is blocked\n", xPortGetCoreID()); esp_rom_delay_us(100000); esp_rom_printf("CPU%d is released\n", xPortGetCoreID()); portENABLE_INTERRUPTS(); TEST_ESP_OK(esp_timer_stop(timer)); TEST_ESP_OK(esp_timer_dump(stdout)); TEST_ASSERT_INT_WITHIN(3, 10, data); TEST_ESP_OK(esp_timer_delete(timer)); } #endif // not CONFIG_FREERTOS_UNICORE volatile uint64_t task_t1; volatile uint64_t isr_t1; const uint64_t period_task_ms = 200; const uint64_t period_isr_ms = 20; void task_timer_cb(void *arg) { uint64_t t2 = esp_timer_get_time(); uint64_t dt_task_ms = (t2 - task_t1) / 1000; task_t1 = t2; printf("task callback, %d msec\n", (int)dt_task_ms); vTaskDelay((period_task_ms / 2) / portTICK_PERIOD_MS); // very long callback in timer task static bool first_run = true; if (first_run) { first_run = false; } else { TEST_ASSERT_INT_WITHIN(period_task_ms / 3, period_task_ms, dt_task_ms); } } void IRAM_ATTR isr_timer_cb(void *arg) { uint64_t t2 = esp_timer_get_time(); uint64_t dt_isr_ms = (t2 - isr_t1) / 1000; isr_t1 = t2; esp_rom_printf("isr callback, %d msec\n", (int)dt_isr_ms); static bool first_run = true; if (first_run) { first_run = false; } else { TEST_ASSERT_INT_WITHIN(period_isr_ms / 3, period_isr_ms, dt_isr_ms); } } TEST_CASE("Test ISR dispatch callbacks are not blocked even if TASK callbacks take more time", "[esp_timer][isr_dispatch]") { esp_timer_handle_t task_timer_handle; esp_timer_handle_t isr_timer_handle; const esp_timer_create_args_t task_timer_args = { .callback = &task_timer_cb, .arg = NULL, .dispatch_method = ESP_TIMER_TASK, .name = "task_timer", .skip_unhandled_events = true, }; const esp_timer_create_args_t isr_timer_args = { .callback = &isr_timer_cb, .arg = NULL, .dispatch_method = ESP_TIMER_ISR, .name = "isr_timer", .skip_unhandled_events = true, }; ESP_ERROR_CHECK(esp_timer_create(&task_timer_args, &task_timer_handle)); ESP_ERROR_CHECK(esp_timer_create(&isr_timer_args, &isr_timer_handle)); ESP_ERROR_CHECK(esp_timer_start_periodic(task_timer_handle, period_task_ms * 1000)); task_t1 = esp_timer_get_time(); ESP_ERROR_CHECK(esp_timer_start_periodic(isr_timer_handle, period_isr_ms * 1000)); isr_t1 = esp_timer_get_time(); vTaskDelay(period_task_ms * 5 / portTICK_PERIOD_MS); TEST_ESP_OK(esp_timer_stop(task_timer_handle)); TEST_ESP_OK(esp_timer_stop(isr_timer_handle)); TEST_ESP_OK(esp_timer_delete(task_timer_handle)); TEST_ESP_OK(esp_timer_delete(isr_timer_handle)); } #endif // CONFIG_ESP_TIMER_SUPPORTS_ISR_DISPATCH_METHOD