RS-tracker/m10/m10ptu.c

1366 wiersze
41 KiB
C

/* big endian forest
*
* gcc m10ptu.c -lm -o m10ptu
* M10 w/ trimble GPS
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#ifdef CYGWIN
#include <fcntl.h> // cygwin: _setmode()
#include <io.h>
#endif
typedef unsigned char ui8_t;
typedef unsigned short ui16_t;
typedef unsigned int ui32_t;
typedef int i32_t;
typedef struct {
int week; int gpssec;
int jahr; int monat; int tag;
int wday;
int std; int min; int sek;
double lat; double lon; double alt;
double vH; double vD; double vV;
double vx; double vy; double vD2;
char SN[12];
} datum_t;
datum_t datum;
int option_verbose = 0, // ausfuehrliche Anzeige
option_raw = 0, // rohe Frames
option_inv = 0, // invertiert Signal
option_res = 0, // genauere Bitmessung
option_avg = 0, // moving average
option_b = 0,
option_color = 0,
option_ptu = 0,
option_sat = 0,
wavloaded = 0;
int wav_channel = 0; // audio channel: left
/* -------------------------------------------------------------------------- */
/*
* Convert GPS Week and Seconds to Modified Julian Day.
* - Adapted from sci.astro FAQ.
* - Ignores UTC leap seconds.
*/
void Gps2Date(long GpsWeek, long GpsSeconds, int *Year, int *Month, int *Day) {
long GpsDays, Mjd;
long J, C, Y, M;
GpsDays = GpsWeek * 7 + (GpsSeconds / 86400);
Mjd = 44244 + GpsDays;
J = Mjd + 2468570;
C = 4 * J / 146097;
J = J - (146097 * C + 3) / 4;
Y = 4000 * (J + 1) / 1461001;
J = J - 1461 * Y / 4 + 31;
M = 80 * J / 2447;
*Day = J - 2447 * M / 80;
J = M / 11;
*Month = M + 2 - (12 * J);
*Year = 100 * (C - 49) + Y + J;
}
/* -------------------------------------------------------------------------- */
/*
alternative Demodulation: M10 problematisch
bits_per_sample klein, sync laeuft auseinander
exakte Baudrate entscheidend
9600 baud -> 9616 baud ?
*/
// option_b: exakte Baudrate wichtig!
// im Prinzip in sync-preamble ermittelbar
#define BAUD_RATE 9616 //2*4800
int sample_rate = 0, bits_sample = 0, channels = 0;
float samples_per_bit = 0;
int findstr(char *buf, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buf[(pos+i)%4] != str[i]) break;
}
return i;
}
int read_wav_header(FILE *fp) {
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4)) return -1;
if (fread(txt, 1, 4, fp) < 4) return -1;
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 4, fp) < 4) return -1;
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
//byte = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
fprintf(stderr, "sample_rate: %d\n", sample_rate);
fprintf(stderr, "bits : %d\n", bits_sample);
fprintf(stderr, "channels : %d\n", channels);
if ((bits_sample != 8) && (bits_sample != 16)) return -1;
samples_per_bit = sample_rate/(float)BAUD_RATE;
fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit);
return 0;
}
#define EOF_INT 0x1000000
#define LEN_movAvg 3
int movAvg[LEN_movAvg];
unsigned long sample_count = 0;
double bitgrenze = 0;
int read_signed_sample(FILE *fp) { // int = i32_t
int byte, i, sample=0, s=0; // EOF -> 0x1000000
for (i = 0; i < channels; i++) {
// i = 0: links bzw. mono
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == wav_channel) sample = byte;
if (bits_sample == 16) {
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == wav_channel) sample += byte << 8;
}
}
if (bits_sample == 8) s = sample-128; // 8bit: 00..FF, centerpoint 0x80=128
if (bits_sample == 16) s = (short)sample;
if (option_avg) {
movAvg[sample_count % LEN_movAvg] = s;
s = 0;
for (i = 0; i < LEN_movAvg; i++) s += movAvg[i];
s = (s+0.5) / LEN_movAvg;
}
sample_count++;
return s;
}
int par=1, par_alt=1;
int read_bits_fsk(FILE *fp, int *bit, int *len) {
static int sample;
int n, y0;
float l, x1;
static float x0;
n = 0;
do{
y0 = sample;
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
par_alt = par;
par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
n++;
} while (par*par_alt > 0);
if (!option_res) l = (float)n / samples_per_bit;
else { // genauere Bitlaengen-Messung
x1 = sample/(float)(sample-y0); // hilft bei niedriger sample rate
l = (n+x0-x1) / samples_per_bit; // meist mehr frames (nicht immer)
x0 = x1;
}
*len = (int)(l+0.5);
if (!option_inv) *bit = (1+par_alt)/2; // oben 1, unten -1
else *bit = (1-par_alt)/2; // sdr#<rev1381?, invers: unten 1, oben -1
// *bit = (1+inv*par_alt)/2; // ausser inv=0
/* Y-offset ? */
return 0;
}
int bitstart = 0;
unsigned long scount = 0;
int read_rawbit(FILE *fp, int *bit) {
int sample;
int sum;
sum = 0;
if (bitstart) {
scount = 0; // eigentlich scount = 1
bitgrenze = 0; // oder bitgrenze = -1
bitstart = 0;
}
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum += sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
if (option_inv) *bit ^= 1;
return 0;
}
int read_rawbit2(FILE *fp, int *bit) {
int sample;
int sum;
sum = 0;
if (bitstart) {
scount = 0; // eigentlich scount = 1
bitgrenze = 0; // oder bitgrenze = -1
bitstart = 0;
}
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum += sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum -= sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
if (option_inv) *bit ^= 1;
return 0;
}
/* -------------------------------------------------------------------------- */
/*
Header = Sync-Header + Sonde-Header:
1100110011001100 1010011001001100 1101010011010011 0100110101010101 0011010011001100
uudduudduudduudd ududduuddudduudd uudududduududduu dudduudududududu dduududduudduudd (oder:)
dduudduudduudduu duduudduuduudduu ddududuudduduudd uduuddududududud uudduduudduudduu (komplement)
0 0 0 0 0 0 0 0 1 1 - - - 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0
*/
#define BITS 8
#define HEADLEN 32 // HEADLEN+HEADOFS=32 <= strlen(header)
#define HEADOFS 0
// Sync-Header (raw) // Sonde-Header (bits)
//char head[] = "11001100110011001010011001001100"; //"011001001001111100100000"; // M10: 64 9F , M2K2: 64 8F
//"011101101001111100100000"; // M10: 76 9F , aux-data?
//"011001000100100100001001"; // M10-dop: 64 49
char header[] = "10011001100110010100110010011001";
#define FRAME_LEN (100+1) // 0x64+1
#define BITFRAME_LEN (FRAME_LEN*BITS)
#define RAWBITFRAME_LEN (BITFRAME_LEN*2)
char buf[HEADLEN];
int bufpos = -1;
#define FRAMESTART 0
#define AUX_LEN 20
#define BITAUX_LEN (AUX_LEN*BITS)
#define RAWBITAUX_LEN (BITAUX_LEN*2)
ui8_t frame_bytes[FRAME_LEN+AUX_LEN+2];
char frame_rawbits[RAWBITFRAME_LEN+RAWBITAUX_LEN+16]; // frame_rawbits-32="11001100110011001010011001001100";
char frame_bits[BITFRAME_LEN+BITAUX_LEN+8];
int auxlen = 0; // 0 .. 0x76-0x64
void inc_bufpos() {
bufpos = (bufpos+1) % HEADLEN;
}
char cb_inv(char c) {
if (c == '0') return '1';
if (c == '1') return '0';
return c;
}
// Gefahr bei Manchester-Codierung: inverser Header wird leicht fehl-erkannt
// da manchester1 und manchester2 nur um 1 bit verschoben
int compare2() {
int i, j;
i = 0;
j = bufpos;
while (i < HEADLEN) {
if (j < 0) j = HEADLEN-1;
if (buf[j] != header[HEADOFS+HEADLEN-1-i]) break;
j--;
i++;
}
if (i == HEADLEN) return 1;
i = 0;
j = bufpos;
while (i < HEADLEN) {
if (j < 0) j = HEADLEN-1;
if (buf[j] != cb_inv(header[HEADOFS+HEADLEN-1-i])) break;
j--;
i++;
}
if (i == HEADLEN) return -1;
return 0;
}
int bits2bytes(char *bitstr, ui8_t *bytes) {
int i, bit, d, byteval;
int bitpos, bytepos;
bitpos = 0;
bytepos = 0;
while (bytepos < FRAME_LEN+AUX_LEN) {
byteval = 0;
d = 1;
for (i = 0; i < BITS; i++) {
//bit=*(bitstr+bitpos+i); /* little endian */
bit=*(bitstr+bitpos+7-i); /* big endian */
// bit == 'x' ?
if (bit == '1') byteval += d;
else /*if ((bit == '0') || (bit == 'x'))*/ byteval += 0;
d <<= 1;
}
bitpos += BITS;
bytes[bytepos++] = byteval & 0xFF;
}
//while (bytepos < FRAME_LEN+AUX_LEN) bytes[bytepos++] = 0;
return 0;
}
/* -------------------------------------------------------------------------- */
// PSK (bzw. biphase-M (oder differential Manchester?))
// nach Synchronisation: 00,11->0 ; 01,10->1 (Phasenwechsel)
void psk_bpm(char* frame_rawbits, char *frame_bits) {
int i;
char bit;
//int err = 0;
for (i = 0; i < BITFRAME_LEN+BITAUX_LEN; i++) {
//if (i > 0 && (frame_rawbits[2*i] == frame_rawbits[2*i-1])) err = 1;
if (frame_rawbits[2*i] == frame_rawbits[2*i+1]) bit = '0';
else bit = '1';
//if (err) frame_bits[i] = 'x'; else
frame_bits[i] = bit;
//err = 0;
}
}
/*
Header = Sync-Header + Sonde-Header:
1100110011001100 1010011001001100 1101010011010011 0100110101010101 0011010011001100
uudduudduudduudd ududduuddudduudd uudududduududduu dudduudududududu dduududduudduudd (oder:)
dduudduudduudduu duduudduuduudduu ddududuudduduudd uduuddududududud uudduduudduudduu (komplement)
0 0 0 0 0 0 0 0 1 1 - - - 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0
*/
/*
110101001101001101001101010101010011010011001100
101010011010011010011010101010100110100110011001011001100101011001100110011001100110011001100101100110011001100110011001100101010101010101010101010101101010100110011010011001011001011010101010010101100110100110010101100110011001011001100110100101011010101001100101010101101010011001010101100110010110100110010101100101100101100110101010011001100110010110011001100110011001100110100101011010101001101010100101100101100110011001100110011001100110011001100110011001011001101010011001100110011010101001100101100110100110011001010101101001100110010110011010100110100110011010100110011001010101101001100110010101100110011010101001100110101001100110011001100101100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011010011010100110100110011001100110011001100110011001100101101001011010100101101001101001100110100110100110010110010110101010010110010110011001011001010101010101010110011001100110011010011010100110011001011001100110011001100110011001100110011001100110011001100110101001011010011010010110010110010101010110010110011001101001101010101010011010100110011010011010011010100110101001100110011010100110010110011001010110101001101001100110100101011001100110011010011001100110011001100110010101011001100110011001100110100110101001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011010101001101001011001100101010101100110101001011001100110011001100110101001010110011001100110010110011001010110011001100110011001100110011001011001100101011010100101100110010110101001101001011001101001011001101010011010010110101001010101100110011001101010100110011001100000
*/
int dpsk_bpm(char* frame_rawbits, char *frame_bits, int len) {
int i;
char bit;
char bit0;
//int err = 0;
bit0 = (frame_rawbits[0] & 1) ^ 1;
for (i = 0; i < len/2; i++) {
if ((frame_rawbits[2*i ] & 1) == 1 &&
(frame_rawbits[2*i+1] & 1) == 0 ) bit = 1;
else if ((frame_rawbits[2*i ] & 1) == 0 &&
(frame_rawbits[2*i+1] & 1) == 1 ) bit = 0;
else {
bit = 2;
frame_bits[i] = 'x';
bit0 = bit&1;
continue;
//err = 1;
}
if (bit0 == bit) frame_bits[i] = '1';
else frame_bits[i] = '0';
// frame_bits[i] = 0x31 ^ (bit0 ^ bit);
bit0 = bit;
}
return bit0;
}
/* ------------------------------------------------------------------------------------------------------------- */
/*
M10 w/ trimble GPS
frame[0x0] = framelen
frame[0x1] = 0x9F (type M10)
init/noGPS: frame[0x2]=0x23
GPS: frame[0x2]=0x20 (GPS trimble pck 0x8F-20 sub-id)
frame[0x02..0x21] = GPS trimble pck 0x8F-20 byte 0..31 (sub-id, vel, tow, lat, lon, alt, fix, NumSV, UTC-ofs, week)
frame[0x22..0x2D] = GPS trimble pck 0x8F-20 byte 32..55:2 (PRN 1..12 only)
Trimble Copernicus II
GPS packet 0x8F-20 (p.138)
byte
0 sub-pck id (always 0x20)
2-3 velE (i16) 0.005m/s
4-5 velN (i16) 0.005m/s
6-7 velU (i16) 0.005m/s
8-11 TOW (ms)
12-15 lat (scale 2^32/360) (i32) -90..90
16-19 lon (scale 2^32/360) (ui32) 0..360 <-> (i32) -180..180
20-23 alt (i32) mm above ellipsoid)
24 bit0: vel-scale (0: 0.005m/s)
26 datum (1: WGS-84)
27 fix: bit0(0:valid fix, 1:invalid fix), bit2(0:3D, 1:2D)
28 numSVs
29 UTC offset = (GPS - UTC) sec
30-31 GPS week
32+2*n PRN_(n+1), bit0-5
frame[0x32..0x5C] sensors (rel.hum., temp.)
frame[0x5D..0x61] SN
frame[0x62] counter
frame[0x63..0x64] check (AUX len=0x76: frame[0x63..0x74], frame[0x75..0x76])
6449/10sec-frame:
GPS trimble pck 0x47 (signal levels): numSats sat1 lev1 sat2 lev2 ..
frame[0x0] = framelen
frame[0x1] = 0x49
frame[0x2] = numSats (max 12)
frame[0x3+2*n] = PRN_(n+1)
frame[0x4+2*n] = signal level (float32 -> i8-byte level)
*/
#define stdFLEN 0x64 // pos[0]=0x64
#define pos_GPSTOW 0x0A // 4 byte
#define pos_GPSlat 0x0E // 4 byte
#define pos_GPSlon 0x12 // 4 byte
#define pos_GPSalt 0x16 // 4 byte
#define pos_GPSweek 0x20 // 2 byte
//Velocity East-North-Up (ENU)
#define pos_GPSvE 0x04 // 2 byte
#define pos_GPSvN 0x06 // 2 byte
#define pos_GPSvU 0x08 // 2 byte
#define pos_SN 0x5D // 2+3 byte
#define pos_Check (stdFLEN-1) // 2 byte
#define ANSI_COLOR_RED "\x1b[31m"
#define ANSI_COLOR_GREEN "\x1b[32m"
#define ANSI_COLOR_YELLOW "\x1b[33m"
#define ANSI_COLOR_BLUE "\x1b[34m"
#define ANSI_COLOR_MAGENTA "\x1b[35m"
#define ANSI_COLOR_CYAN "\x1b[36m"
#define ANSI_COLOR_RESET "\x1b[0m"
#define XTERM_COLOR_BROWN "\x1b[38;5;94m" // 38;5;{0..255}m
#define col_GPSweek "\x1b[38;5;20m" // 2 byte
#define col_GPSTOW "\x1b[38;5;27m" // 4 byte
#define col_GPSdate "\x1b[38;5;94m" //111
#define col_GPSlat "\x1b[38;5;34m" // 4 byte
#define col_GPSlon "\x1b[38;5;70m" // 4 byte
#define col_GPSalt "\x1b[38;5;82m" // 4 byte
#define col_GPSvel "\x1b[38;5;36m" // 6 byte
#define col_SN "\x1b[38;5;58m" // 3 byte
#define col_Check "\x1b[38;5;11m" // 2 byte
#define col_TXT "\x1b[38;5;244m"
#define col_FRTXT "\x1b[38;5;244m"
#define col_CSok "\x1b[38;5;2m"
#define col_CSno "\x1b[38;5;1m"
/*
$ for code in {0..255}
> do echo -e "\e[38;5;${code}m"'\\e[38;5;'"$code"m"\e[0m"
> done
*/
int get_GPSweek() {
int i;
unsigned byte;
ui8_t gpsweek_bytes[2];
int gpsweek;
for (i = 0; i < 2; i++) {
byte = frame_bytes[pos_GPSweek + i];
gpsweek_bytes[i] = byte;
}
gpsweek = (gpsweek_bytes[0] << 8) + gpsweek_bytes[1];
datum.week = gpsweek;
if (gpsweek < 0 || gpsweek > 3000) return -1;
return 0;
}
char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"};
int get_GPStime() {
int i;
unsigned byte;
ui8_t gpstime_bytes[4];
int gpstime, day; // int ms;
for (i = 0; i < 4; i++) {
byte = frame_bytes[pos_GPSTOW + i];
gpstime_bytes[i] = byte;
}
gpstime = 0;
for (i = 0; i < 4; i++) {
gpstime |= gpstime_bytes[i] << (8*(3-i));
}
//ms = gpstime % 1000;
gpstime /= 1000;
datum.gpssec = gpstime;
day = gpstime / (24 * 3600);
gpstime %= (24*3600);
if ((day < 0) || (day > 6)) return -1;
datum.wday = day;
datum.std = gpstime/3600;
datum.min = (gpstime%3600)/60;
datum.sek = gpstime%60;
return 0;
}
double B60B60 = 0xB60B60; // 2^32/360 = 0xB60B60.xxx
int get_GPSlat() {
int i;
unsigned byte;
ui8_t gpslat_bytes[4];
i32_t gpslat;
double lat;
for (i = 0; i < 4; i++) {
byte = frame_bytes[pos_GPSlat + i];
gpslat_bytes[i] = byte;
}
gpslat = 0;
for (i = 0; i < 4; i++) {
gpslat |= gpslat_bytes[i] << (8*(3-i));
}
lat = gpslat / B60B60;
datum.lat = lat;
return 0;
}
int get_GPSlon() {
int i;
unsigned byte;
ui8_t gpslon_bytes[4];
i32_t gpslon; // (ui32) 0..360 <-> (i32) -180..180
double lon;
for (i = 0; i < 4; i++) {
byte = frame_bytes[pos_GPSlon + i];
gpslon_bytes[i] = byte;
}
gpslon = 0;
for (i = 0; i < 4; i++) {
gpslon |= gpslon_bytes[i] << (8*(3-i));
}
lon = gpslon / B60B60;
datum.lon = lon;
return 0;
}
int get_GPSalt() {
int i;
unsigned byte;
ui8_t gpsalt_bytes[4];
i32_t gpsalt;
double alt;
for (i = 0; i < 4; i++) {
byte = frame_bytes[pos_GPSalt + i];
gpsalt_bytes[i] = byte;
}
gpsalt = 0;
for (i = 0; i < 4; i++) {
gpsalt |= gpsalt_bytes[i] << (8*(3-i));
}
alt = gpsalt / 1000.0;
datum.alt = alt;
return 0;
}
int get_GPSvel() {
int i;
unsigned byte;
ui8_t gpsVel_bytes[2];
short vel16; // i16_t
double vx, vy, dir, alpha;
const double sc5 = 2e2; // scale 0.005m/s
for (i = 0; i < 2; i++) {
byte = frame_bytes[pos_GPSvE + i];
gpsVel_bytes[i] = byte;
}
vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1];
vx = vel16 / sc5; // ost
for (i = 0; i < 2; i++) {
byte = frame_bytes[pos_GPSvN + i];
gpsVel_bytes[i] = byte;
}
vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1];
vy= vel16 / sc5; // nord
datum.vx = vx;
datum.vy = vy;
datum.vH = sqrt(vx*vx+vy*vy);
///*
alpha = atan2(vy, vx)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts)
dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht
if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t)
datum.vD2 = dir;
//*/
dir = atan2(vx, vy) * 180 / M_PI;
if (dir < 0) dir += 360;
datum.vD = dir;
for (i = 0; i < 2; i++) {
byte = frame_bytes[pos_GPSvU + i];
gpsVel_bytes[i] = byte;
}
vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1];
datum.vV = vel16 / sc5;
return 0;
}
int get_SN() {
int i;
unsigned byte;
ui8_t sn_bytes[5];
for (i = 0; i < 11; i++) datum.SN[i] = ' '; datum.SN[11] = '\0';
for (i = 0; i < 5; i++) {
byte = frame_bytes[pos_SN + i];
sn_bytes[i] = byte;
}
byte = sn_bytes[2];
sprintf(datum.SN, "%1X%02u", (byte>>4)&0xF, byte&0xF);
byte = sn_bytes[3] | (sn_bytes[4]<<8);
sprintf(datum.SN+3, " %1X %1u%04u", sn_bytes[0]&0xF, (byte>>13)&0x7, byte&0x1FFF);
return 0;
}
/* -------------------------------------------------------------------------- */
/*
g : F^n -> F^16 // checksum, linear
g(m||b) = f(g(m),b)
// update checksum
f : F^16 x F^8 -> F^16 linear
010100001000000101000000
001010000100000010100000
000101000010000001010000
000010100001000000101000
000001010000100000010100
100000100000010000001010
000000011010100000000100
100000000101010000000010
000000001000000000000000
000000000100000000000000
000000000010000000000000
000000000001000000000000
000000000000100000000000
000000000000010000000000
000000000000001000000000
000000000000000100000000
*/
int update_checkM10(int c, ui8_t b) {
int c0, c1, t, t6, t7, s;
c1 = c & 0xFF;
// B
b = (b >> 1) | ((b & 1) << 7);
b ^= (b >> 2) & 0xFF;
// A1
t6 = ( c & 1) ^ ((c>>2) & 1) ^ ((c>>4) & 1);
t7 = ((c>>1) & 1) ^ ((c>>3) & 1) ^ ((c>>5) & 1);
t = (c & 0x3F) | (t6 << 6) | (t7 << 7);
// A2
s = (c >> 7) & 0xFF;
s ^= (s >> 2) & 0xFF;
c0 = b ^ t ^ s;
return ((c1<<8) | c0) & 0xFFFF;
}
int checkM10(ui8_t *msg, int len) {
int i, cs;
cs = 0;
for (i = 0; i < len; i++) {
cs = update_checkM10(cs, msg[i]);
}
return cs & 0xFFFF;
}
/* -------------------------------------------------------------------------- */
// https://www.gruan.org/gruan/editor/documents/meetings/icm-6/pres/pres_306_Haeffelin.pdf
//
// Temperature Sensor
// NTC-Thermistor Shibaura PB5-41E
//
float get_Temp(int csOK) {
// NTC-Thermistor Shibaura PB5-41E
// T00 = 273.15 + 0.0 , R00 = 15e3
// T25 = 273.15 + 25.0 , R25 = 5.369e3
// B00 = 3450.0 Kelvin // 0C..100C, poor fit low temps
// [ T/C , R/1e3 ] ( [P__-43]/2.0 ):
// [ -50.0 , 204.0 ]
// [ -45.0 , 150.7 ]
// [ -40.0 , 112.6 ]
// [ -35.0 , 84.90 ]
// [ -30.0 , 64.65 ]
// [ -25.0 , 49.66 ]
// [ -20.0 , 38.48 ]
// [ -15.0 , 30.06 ]
// [ -10.0 , 23.67 ]
// [ -5.0 , 18.78 ]
// [ 0.0 , 15.00 ]
// [ 5.0 , 12.06 ]
// [ 10.0 , 9.765 ]
// [ 15.0 , 7.955 ]
// [ 20.0 , 6.515 ]
// [ 25.0 , 5.370 ]
// [ 30.0 , 4.448 ]
// [ 35.0 , 3.704 ]
// [ 40.0 , 3.100 ]
// -> Steinhart–Hart coefficients (polyfit):
float p0 = 1.07303516e-03,
p1 = 2.41296733e-04,
p2 = 2.26744154e-06,
p3 = 6.52855181e-08;
// T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 )
// range/scale 0, 1, 2: // M10-pcb
float Rs[3] = { 12.1e3 , 36.5e3 , 475.0e3 }; // bias/series
float Rp[3] = { 1e20 , 330.0e3 , 2000.0e3 }; // parallel, Rp[0]=inf
ui8_t scT; // {0,1,2}, range/scale voltage divider
ui16_t ADC_RT; // ADC12 P6.7(A7) , adr_0377h,adr_0376h
ui16_t Tcal[2]; // adr_1000h[scT*4]
float adc_max = 4095.0; // ADC12
float x, R;
float T = 0; // T/Kelvin
scT = frame_bytes[0x3E]; // adr_0455h
ADC_RT = (frame_bytes[0x40] << 8) | frame_bytes[0x3F];
ADC_RT -= 0xA000;
Tcal[0] = (frame_bytes[0x42] << 8) | frame_bytes[0x41];
Tcal[1] = (frame_bytes[0x44] << 8) | frame_bytes[0x43];
x = (adc_max-ADC_RT)/ADC_RT; // (Vcc-Vout)/Vout
if (scT < 3) R = Rs[scT] /( x - Rs[scT]/Rp[scT] );
else R = -1;
if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) );
if (option_verbose >= 3 && csOK) { // on-chip temperature
ui16_t ADC_Ti_raw = (frame_bytes[0x49] << 8) | frame_bytes[0x48]; // int.temp.diode, ref: 4095->1.5V
float vti, ti;
// INCH1A (temp.diode), slau144
vti = ADC_Ti_raw/4095.0 * 1.5; // V_REF+ = 1.5V, no calibration
ti = (vti-0.986)/0.00355; // 0.986/0.00355=277.75, 1.5/4095/0.00355=0.1032
fprintf(stdout, " (Ti:%.1fC)", ti);
// SegmentA-Calibration:
//ui16_t T30 = adr_10e2h; // CAL_ADC_15T30
//ui16_t T85 = adr_10e4h; // CAL_ADC_15T85
//float tic = (ADC_Ti_raw-T30)*(85.0-30.0)/(T85-T30) + 30.0;
//fprintf(stdout, " (Tic:%.1fC)", tic);
}
return T - 273.15; // Celsius
}
/*
frame[0x32]: adr_1074h
frame[0x33]: adr_1075h
frame[0x34]: adr_1076h
frame[0x35..0x37]: TBCCR1 ; relHumCap-freq
frame[0x38]: adr_1078h
frame[0x39]: adr_1079h
frame[0x3A]: adr_1077h
frame[0x3B]: adr_100Ch
frame[0x3C..3D]: 0
frame[0x3E]: scale_index ; scale/range-index
frame[0x3F..40] = ADC12_A7 | 0xA000, V_R+=AVcc ; Thermistor
frame[0x41]: adr_1000h[scale_index*4]
frame[0x42]: adr_1000h[scale_index*4+1]
frame[0x43]: adr_1000h[scale_index*4+2]
frame[0x44]: adr_1000h[scale_index*4+3]
frame[0x45..46]: ADC12_A5/4, V_R+=2.5V
frame[0x47]: ADC12_A2/16 , V_R+=2.5V
frame[0x48..49]: ADC12_iT, V_R+=1.5V (int.Temp.diode)
frame[0x4C..4D]: ADC12_A6, V_R+=2.5V
frame[0x4E..4F]: ADC12_A3, V_R+=AVcc
frame[0x50..54]: 0;
frame[0x55..56]: ADC12_A1, V_R+=AVcc
frame[0x57..58]: ADC12_A0, V_R+=AVcc
frame[0x59..5A]: ADC12_A4, V_R+=AVcc // ntc2: R(25C)=2.2k, Rs=22.1e3 (relHumCap-Temp)
frame[0x5B]:
frame[0x5C]: adr_108Eh
frame[0x5D]: adr_1082h (SN)
frame[0x5E]: adr_1083h (SN)
frame[0x5F]: adr_1084h (SN)
frame[0x60]: adr_1080h (SN)
frame[0x61]: adr_1081h (SN)
*/
float get_Tntc2(int csOK) {
// SMD ntc
float Rs = 22.1e3; // P5.6=Vcc
// float R25 = 2.2e3;
// float b = 3650.0; // B/Kelvin
// float T25 = 25.0 + 273.15; // T0=25C, R0=R25=5k
// -> Steinhart–Hart coefficients (polyfit):
float p0 = 4.42606809e-03,
p1 = -6.58184309e-04,
p2 = 8.95735557e-05,
p3 = -2.84347503e-06;
float T = 0.0; // T/Kelvin
ui16_t ADC_ntc2; // ADC12 P6.4(A4)
float x, R;
if (csOK)
{
ADC_ntc2 = (frame_bytes[0x5A] << 8) | frame_bytes[0x59];
x = (4095.0 - ADC_ntc2)/ADC_ntc2; // (Vcc-Vout)/Vout
R = Rs / x;
//if (R > 0) T = 1/(1/T25 + 1/b * log(R/R25));
if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) );
}
return T - 273.15;
}
// Humidity Sensor
// U.P.S.I.
//
#define FREQ_CAPCLK (8e6/2) // 8 MHz XT2 crystal, InputDivider IDx=01 (/2)
#define LN2 0.693147181
#define ADR_108A 1000.0 // 0x3E8=1000
float get_count_55() { // CalRef 55%RH , T=20C ?
ui32_t TBCREF_1000 = frame_bytes[0x32] | (frame_bytes[0x33]<<8) | (frame_bytes[0x34]<<16);
return TBCREF_1000 / ADR_108A;
}
float get_count_RH() { // capture 1000 rising edges
ui32_t TBCCR1_1000 = frame_bytes[0x35] | (frame_bytes[0x36]<<8) | (frame_bytes[0x37]<<16);
return TBCCR1_1000 / ADR_108A;
}
float get_TLC555freq(float count) {
return FREQ_CAPCLK / count;
}
float get_C_RH(float freq, float T) { // TLC555 astable: R_A=3.65k, R_B=338k
float R_B = 338e3;
float R_A = 3.65e3;
float td = 0;
float C_RH = (1/freq - 2*td) / (LN2 * (R_A + 2*R_B));
// freq/T compensation ...
return C_RH;
}
float cRHc55_RH(float cRHc55) { // C_RH / C_55
// U.P.S.I.
// C_RH/C_55 = 0.8955 + 0.002*RH , T=20C
// C_RH = C_RH(RH,T) , RH = RH(C_RH,T)
// C_RH/C_55 approx.eq. count_RH/count_ref
float TH = get_Tntc2(0);
float Tc = get_Temp(0);
float rh = (cRHc55-0.8955)/0.002; // UPSI linear transfer function
// temperature compensation
float T0 = 0.0, T1 = -30.0; // T/C
float T = Tc; // TH, TH-Tc (sensorT - T)
if (T < T0) rh += T0 - T/5.5; // approx/empirical
if (T < T1) rh *= 1.0 + (T1-T)/75.0; // approx/empirical
if (rh < 0.0) rh = 0.0;
if (rh > 100.0) rh = 100.0;
return rh;
}
float get_RHc(int csOK) { // experimental/raw, errors~10%
float Tc = get_Temp(0);
float count_ref = get_count_55(); // CalRef 55%RH , T=20C ?
float count_RH = get_count_RH();
float C_55 = get_C_RH(get_TLC555freq(count_ref), 20.0); // CalRef 55%RH , T=20C ?
float C_RH = get_C_RH(get_TLC555freq(count_RH), Tc); // Tc == T_555 ?
float cRHc55 = C_RH / C_55;
return cRHc55_RH(cRHc55);
}
float get_RH(int csOK) { // experimental/raw, errors~10%
//ui32_t TBCREF_1000 = frame_bytes[0x32] | (frame_bytes[0x33]<<8) | (frame_bytes[0x34]<<16); // CalRef 55%RH , T=20C ?
//ui32_t TBCCR1_1000 = frame_bytes[0x35] | (frame_bytes[0x36]<<8) | (frame_bytes[0x37]<<16); // FrqCnt TLC555
//float cRHc55 = TBCCR1_1000 / (float)TBCREF_1000; // CalRef 55%RH , T=20C ?
float cRHc55 = get_count_RH() / get_count_55(); // CalRef 55%RH , T=20C ?
return cRHc55_RH(cRHc55);
}
/* -------------------------------------------------------------------------- */
int print_pos(int csOK) {
int err;
err = 0;
err |= get_GPSweek();
err |= get_GPStime();
err |= get_GPSlat();
err |= get_GPSlon();
err |= get_GPSalt();
if (!err) {
Gps2Date(datum.week, datum.gpssec, &datum.jahr, &datum.monat, &datum.tag);
if (option_color) {
fprintf(stdout, col_TXT);
fprintf(stdout, " (W "col_GPSweek"%d"col_TXT") ", datum.week);
fprintf(stdout, col_GPSTOW"%s"col_TXT" ", weekday[datum.wday]);
fprintf(stdout, col_GPSdate"%04d-%02d-%02d"col_TXT" ("col_GPSTOW"%02d:%02d:%02d"col_TXT") ",
datum.jahr, datum.monat, datum.tag, datum.std, datum.min, datum.sek);
fprintf(stdout, " lat: "col_GPSlat"%.6f"col_TXT" ", datum.lat);
fprintf(stdout, " lon: "col_GPSlon"%.6f"col_TXT" ", datum.lon);
fprintf(stdout, " alt: "col_GPSalt"%.2f"col_TXT" ", datum.alt);
if (option_verbose) {
err |= get_GPSvel();
if (!err) {
//if (option_verbose == 2) fprintf(stdout, " "col_GPSvel"(%.1f , %.1f : %.1f)"col_TXT" ", datum.vx, datum.vy, datum.vD2);
fprintf(stdout, " vH: "col_GPSvel"%.1f"col_TXT" D: "col_GPSvel"%.1f"col_TXT" vV: "col_GPSvel"%.1f"col_TXT" ", datum.vH, datum.vD, datum.vV);
}
if (option_verbose >= 2) {
get_SN();
fprintf(stdout, " SN: "col_SN"%s"col_TXT, datum.SN);
}
if (option_verbose >= 2) {
fprintf(stdout, " # ");
if (csOK) fprintf(stdout, " "col_CSok"[OK]"col_TXT);
else fprintf(stdout, " "col_CSno"[NO]"col_TXT);
}
}
if (option_ptu) {
float t = get_Temp(csOK);
float rh = get_RH(csOK);
fprintf(stdout, " ");
if (t > -270.0) fprintf(stdout, "T=%.1fC ", t);
if (option_verbose >= 3) { if (rh > -0.5) fprintf(stdout, "_RH=%.0f%% ", rh); }
if (option_verbose >= 3) {
float t2 = get_Tntc2(csOK);
float fq555 = get_TLC555freq(get_count_RH());
if (t2 > -270.0) fprintf(stdout, " (T2:%.1fC) (%.3fkHz) ", t2, fq555/1e3);
fprintf(stdout, "(cRH=%.1f%%) ", get_RHc(csOK));
}
}
fprintf(stdout, ANSI_COLOR_RESET"");
}
else {
fprintf(stdout, " (W %d) ", datum.week);
fprintf(stdout, "%s ", weekday[datum.wday]);
fprintf(stdout, "%04d-%02d-%02d (%02d:%02d:%02d) ",
datum.jahr, datum.monat, datum.tag, datum.std, datum.min, datum.sek);
fprintf(stdout, " lat: %.6f ", datum.lat);
fprintf(stdout, " lon: %.6f ", datum.lon);
fprintf(stdout, " alt: %.2f ", datum.alt);
if (option_verbose) {
err |= get_GPSvel();
if (!err) {
//if (option_verbose == 2) fprintf(stdout, " (%.1f , %.1f : %.1f) ", datum.vx, datum.vy, datum.vD2);
fprintf(stdout, " vH: %.1f D: %.1f vV: %.1f ", datum.vH, datum.vD, datum.vV);
}
if (option_verbose >= 2) {
get_SN();
fprintf(stdout, " SN: %s", datum.SN);
}
if (option_verbose >= 2) {
fprintf(stdout, " # ");
if (csOK) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]");
}
}
if (option_ptu) {
float t = get_Temp(csOK);
float rh = get_RH(csOK);
fprintf(stdout, " ");
if (t > -270.0) fprintf(stdout, "T=%.1fC ", t);
if (option_verbose >= 3) { if (rh > -0.5) fprintf(stdout, "_RH=%.0f%% ", rh); }
if (option_verbose >= 3) {
float t2 = get_Tntc2(csOK);
float fq555 = get_TLC555freq(get_count_RH());
if (t2 > -270.0) fprintf(stdout, " (T2:%.1fC) (%.3fkHz) ", t2, fq555/1e3);
fprintf(stdout, "(cRH=%.1f%%) ", get_RHc(csOK));
}
}
}
fprintf(stdout, "\n");
if (csOK && option_sat) {
int i;
fprintf(stdout, " %2d", frame_bytes[pos_GPSweek-2]); // GPS-sats
fprintf(stdout, " : ");
for (i = 0; i < frame_bytes[pos_GPSweek-2]; i++) { // PRN
fprintf(stdout, " %2d", frame_bytes[pos_GPSweek+2+i]&0x3F);
}
fprintf(stdout, "\n");
}
}
return err;
}
void print_frame(int pos) {
int i;
ui8_t byte;
int cs1, cs2;
int flen = stdFLEN; // stdFLEN=0x64, auxFLEN=0x76
if (option_b < 2) {
dpsk_bpm(frame_rawbits, frame_bits, RAWBITFRAME_LEN+RAWBITAUX_LEN);
}
bits2bytes(frame_bits, frame_bytes);
flen = frame_bytes[0];
if (flen == stdFLEN) auxlen = 0;
else {
auxlen = flen - stdFLEN;
if (auxlen < 0 || auxlen > AUX_LEN) auxlen = 0;
}
cs1 = (frame_bytes[pos_Check+auxlen] << 8) | frame_bytes[pos_Check+auxlen+1];
cs2 = checkM10(frame_bytes, pos_Check+auxlen);
if (option_raw) {
if (option_color && frame_bytes[1] != 0x49) {
fprintf(stdout, col_FRTXT);
for (i = 0; i < FRAME_LEN+auxlen; i++) {
byte = frame_bytes[i];
if ((i >= pos_GPSTOW) && (i < pos_GPSTOW+4)) fprintf(stdout, col_GPSTOW);
if ((i >= pos_GPSlat) && (i < pos_GPSlat+4)) fprintf(stdout, col_GPSlat);
if ((i >= pos_GPSlon) && (i < pos_GPSlon+4)) fprintf(stdout, col_GPSlon);
if ((i >= pos_GPSalt) && (i < pos_GPSalt+4)) fprintf(stdout, col_GPSalt);
if ((i >= pos_GPSweek) && (i < pos_GPSweek+2)) fprintf(stdout, col_GPSweek);
if ((i >= pos_GPSvE) && (i < pos_GPSvE+6)) fprintf(stdout, col_GPSvel);
if ((i >= pos_SN) && (i < pos_SN+5)) fprintf(stdout, col_SN);
if ((i >= pos_Check+auxlen) && (i < pos_Check+auxlen+2)) fprintf(stdout, col_Check);
fprintf(stdout, "%02x", byte);
fprintf(stdout, col_FRTXT);
}
if (option_verbose) {
fprintf(stdout, " # "col_Check"%04x"col_FRTXT, cs2);
if (cs1 == cs2) fprintf(stdout, " "col_CSok"[OK]"col_TXT);
else fprintf(stdout, " "col_CSno"[NO]"col_TXT);
}
fprintf(stdout, ANSI_COLOR_RESET"\n");
}
else {
for (i = 0; i < FRAME_LEN+auxlen; i++) {
byte = frame_bytes[i];
fprintf(stdout, "%02x", byte);
}
if (option_verbose) {
fprintf(stdout, " # %04x", cs2);
if (cs1 == cs2) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]");
}
fprintf(stdout, "\n");
}
}
else if (frame_bytes[1] == 0x49) {
if (option_verbose == 3) {
for (i = 0; i < FRAME_LEN+auxlen; i++) {
byte = frame_bytes[i];
fprintf(stdout, "%02x", byte);
}
fprintf(stdout, "\n");
}
}
else print_pos(cs1 == cs2);
}
int main(int argc, char **argv) {
FILE *fp;
char *fpname;
int i, len;
int bit, bit0;
int pos;
int header_found = 0;
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY);
#endif
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
//fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " -r, --raw\n");
fprintf(stderr, " -c, --color\n");
//fprintf(stderr, " -o, --offset\n");
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
option_verbose = 1;
}
else if ( (strcmp(*argv, "-vv" ) == 0) ) option_verbose = 2;
else if ( (strcmp(*argv, "-vvv") == 0) ) option_verbose = 3;
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
option_raw = 1;
}
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
option_inv = 1; // nicht noetig
}
else if ( (strcmp(*argv, "-c") == 0) || (strcmp(*argv, "--color") == 0) ) {
option_color = 1;
}
else if (strcmp(*argv, "--res") == 0) { option_res = 1; }
else if ( (strcmp(*argv, "--avg") == 0) ) {
option_avg = 1;
}
else if (strcmp(*argv, "-b" ) == 0) { option_b = 1; }
else if (strcmp(*argv, "-b2") == 0) { option_b = 2; }
else if ( (strcmp(*argv, "--ptu") == 0) ) {
option_ptu = 1;
}
else if ( (strcmp(*argv, "--sat") == 0) ) {
option_sat = 1;
}
else if (strcmp(*argv, "--ch2") == 0) { wav_channel = 1; } // right channel (default: 0=left)
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
i = read_wav_header(fp);
if (i) {
fclose(fp);
return -1;
}
pos = FRAMESTART;
while (!read_bits_fsk(fp, &bit, &len)) {
if (len == 0) { // reset_frame();
if (pos > (pos_GPSweek+2)*2*BITS) {
for (i = pos; i < RAWBITFRAME_LEN+RAWBITAUX_LEN; i++) frame_rawbits[i] = 0x30 + 0;
print_frame(pos);//byte_count
header_found = 0;
pos = FRAMESTART;
}
//inc_bufpos();
//buf[bufpos] = 'x';
continue; // ...
}
for (i = 0; i < len; i++) {
inc_bufpos();
buf[bufpos] = 0x30 + bit; // Ascii
if (!header_found) {
header_found = compare2();
}
else {
frame_rawbits[pos] = 0x30 + bit; // Ascii
pos++;
if (pos == RAWBITFRAME_LEN+RAWBITAUX_LEN) {
frame_rawbits[pos] = '\0';
print_frame(pos);//FRAME_LEN
header_found = 0;
pos = FRAMESTART;
}
}
}
if (header_found && option_b==1) {
bitstart = 1;
while ( pos < RAWBITFRAME_LEN+RAWBITAUX_LEN ) {
if (read_rawbit(fp, &bit) == EOF) break;
frame_rawbits[pos] = 0x30 + bit;
pos++;
}
frame_rawbits[pos] = '\0';
print_frame(pos);
header_found = 0;
pos = FRAMESTART;
}
if (header_found && option_b>=2) {
bitstart = 1;
bit0 = 0;
if (pos%2) {
if (read_rawbit(fp, &bit) == EOF) break;
frame_rawbits[pos] = 0x30 + bit;
pos++;
}
bit0 = dpsk_bpm(frame_rawbits, frame_bits, pos);
pos /= 2;
while ( pos < BITFRAME_LEN+BITAUX_LEN ) {
if (read_rawbit2(fp, &bit) == EOF) break;
frame_bits[pos] = 0x31 ^ (bit0 ^ bit);
pos++;
bit0 = bit;
}
frame_bits[pos] = '\0';
print_frame(pos);
header_found = 0;
pos = FRAMESTART;
}
}
fprintf(stdout, "\n");
fclose(fp);
return 0;
}