/* big endian forest * * gcc m10ptu.c -lm -o m10ptu * M10 w/ trimble GPS */ #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif typedef unsigned char ui8_t; typedef unsigned short ui16_t; typedef unsigned int ui32_t; typedef int i32_t; typedef struct { int week; int gpssec; int jahr; int monat; int tag; int wday; int std; int min; int sek; double lat; double lon; double alt; double vH; double vD; double vV; double vx; double vy; double vD2; char SN[12]; } datum_t; datum_t datum; int option_verbose = 0, // ausfuehrliche Anzeige option_raw = 0, // rohe Frames option_inv = 0, // invertiert Signal option_res = 0, // genauere Bitmessung option_avg = 0, // moving average option_b = 0, option_color = 0, option_ptu = 0, option_sat = 0, wavloaded = 0; int wav_channel = 0; // audio channel: left /* -------------------------------------------------------------------------- */ /* * Convert GPS Week and Seconds to Modified Julian Day. * - Adapted from sci.astro FAQ. * - Ignores UTC leap seconds. */ void Gps2Date(long GpsWeek, long GpsSeconds, int *Year, int *Month, int *Day) { long GpsDays, Mjd; long J, C, Y, M; GpsDays = GpsWeek * 7 + (GpsSeconds / 86400); Mjd = 44244 + GpsDays; J = Mjd + 2468570; C = 4 * J / 146097; J = J - (146097 * C + 3) / 4; Y = 4000 * (J + 1) / 1461001; J = J - 1461 * Y / 4 + 31; M = 80 * J / 2447; *Day = J - 2447 * M / 80; J = M / 11; *Month = M + 2 - (12 * J); *Year = 100 * (C - 49) + Y + J; } /* -------------------------------------------------------------------------- */ /* alternative Demodulation: M10 problematisch bits_per_sample klein, sync laeuft auseinander exakte Baudrate entscheidend 9600 baud -> 9616 baud ? */ // option_b: exakte Baudrate wichtig! // im Prinzip in sync-preamble ermittelbar #define BAUD_RATE 9616 //2*4800 int sample_rate = 0, bits_sample = 0, channels = 0; float samples_per_bit = 0; int findstr(char *buf, char *str, int pos) { int i; for (i = 0; i < 4; i++) { if (buf[(pos+i)%4] != str[i]) break; } return i; } int read_wav_header(FILE *fp) { char txt[4+1] = "\0\0\0\0"; unsigned char dat[4]; int byte, p=0; if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "RIFF", 4)) return -1; if (fread(txt, 1, 4, fp) < 4) return -1; // pos_WAVE = 8L if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "WAVE", 4)) return -1; // pos_fmt = 12L for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "fmt ", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; channels = dat[0] + (dat[1] << 8); if (fread(dat, 1, 4, fp) < 4) return -1; memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24); if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; //byte = dat[0] + (dat[1] << 8); if (fread(dat, 1, 2, fp) < 2) return -1; bits_sample = dat[0] + (dat[1] << 8); // pos_dat = 36L + info for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "data", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; fprintf(stderr, "sample_rate: %d\n", sample_rate); fprintf(stderr, "bits : %d\n", bits_sample); fprintf(stderr, "channels : %d\n", channels); if ((bits_sample != 8) && (bits_sample != 16)) return -1; samples_per_bit = sample_rate/(float)BAUD_RATE; fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit); return 0; } #define EOF_INT 0x1000000 #define LEN_movAvg 3 int movAvg[LEN_movAvg]; unsigned long sample_count = 0; double bitgrenze = 0; int read_signed_sample(FILE *fp) { // int = i32_t int byte, i, sample=0, s=0; // EOF -> 0x1000000 for (i = 0; i < channels; i++) { // i = 0: links bzw. mono byte = fgetc(fp); if (byte == EOF) return EOF_INT; if (i == wav_channel) sample = byte; if (bits_sample == 16) { byte = fgetc(fp); if (byte == EOF) return EOF_INT; if (i == wav_channel) sample += byte << 8; } } if (bits_sample == 8) s = sample-128; // 8bit: 00..FF, centerpoint 0x80=128 if (bits_sample == 16) s = (short)sample; if (option_avg) { movAvg[sample_count % LEN_movAvg] = s; s = 0; for (i = 0; i < LEN_movAvg; i++) s += movAvg[i]; s = (s+0.5) / LEN_movAvg; } sample_count++; return s; } int par=1, par_alt=1; int read_bits_fsk(FILE *fp, int *bit, int *len) { static int sample; int n, y0; float l, x1; static float x0; n = 0; do{ y0 = sample; sample = read_signed_sample(fp); if (sample == EOF_INT) return EOF; //sample_count++; // in read_signed_sample() par_alt = par; par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127) n++; } while (par*par_alt > 0); if (!option_res) l = (float)n / samples_per_bit; else { // genauere Bitlaengen-Messung x1 = sample/(float)(sample-y0); // hilft bei niedriger sample rate l = (n+x0-x1) / samples_per_bit; // meist mehr frames (nicht immer) x0 = x1; } *len = (int)(l+0.5); if (!option_inv) *bit = (1+par_alt)/2; // oben 1, unten -1 else *bit = (1-par_alt)/2; // sdr#= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127) sum += sample; scount++; } while (scount < bitgrenze); // n < samples_per_bit if (sum >= 0) *bit = 1; else *bit = 0; if (option_inv) *bit ^= 1; return 0; } int read_rawbit2(FILE *fp, int *bit) { int sample; int sum; sum = 0; if (bitstart) { scount = 0; // eigentlich scount = 1 bitgrenze = 0; // oder bitgrenze = -1 bitstart = 0; } bitgrenze += samples_per_bit; do { sample = read_signed_sample(fp); if (sample == EOF_INT) return EOF; //sample_count++; // in read_signed_sample() //par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127) sum += sample; scount++; } while (scount < bitgrenze); // n < samples_per_bit bitgrenze += samples_per_bit; do { sample = read_signed_sample(fp); if (sample == EOF_INT) return EOF; //sample_count++; // in read_signed_sample() //par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127) sum -= sample; scount++; } while (scount < bitgrenze); // n < samples_per_bit if (sum >= 0) *bit = 1; else *bit = 0; if (option_inv) *bit ^= 1; return 0; } /* -------------------------------------------------------------------------- */ /* Header = Sync-Header + Sonde-Header: 1100110011001100 1010011001001100 1101010011010011 0100110101010101 0011010011001100 uudduudduudduudd ududduuddudduudd uudududduududduu dudduudududududu dduududduudduudd (oder:) dduudduudduudduu duduudduuduudduu ddududuudduduudd uduuddududududud uudduduudduudduu (komplement) 0 0 0 0 0 0 0 0 1 1 - - - 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 */ #define BITS 8 #define HEADLEN 32 // HEADLEN+HEADOFS=32 <= strlen(header) #define HEADOFS 0 // Sync-Header (raw) // Sonde-Header (bits) //char head[] = "11001100110011001010011001001100"; //"011001001001111100100000"; // M10: 64 9F , M2K2: 64 8F //"011101101001111100100000"; // M10: 76 9F , aux-data? //"011001000100100100001001"; // M10-dop: 64 49 char header[] = "10011001100110010100110010011001"; #define FRAME_LEN (100+1) // 0x64+1 #define BITFRAME_LEN (FRAME_LEN*BITS) #define RAWBITFRAME_LEN (BITFRAME_LEN*2) char buf[HEADLEN]; int bufpos = -1; #define FRAMESTART 0 #define AUX_LEN 20 #define BITAUX_LEN (AUX_LEN*BITS) #define RAWBITAUX_LEN (BITAUX_LEN*2) ui8_t frame_bytes[FRAME_LEN+AUX_LEN+2]; char frame_rawbits[RAWBITFRAME_LEN+RAWBITAUX_LEN+16]; // frame_rawbits-32="11001100110011001010011001001100"; char frame_bits[BITFRAME_LEN+BITAUX_LEN+8]; int auxlen = 0; // 0 .. 0x76-0x64 void inc_bufpos() { bufpos = (bufpos+1) % HEADLEN; } char cb_inv(char c) { if (c == '0') return '1'; if (c == '1') return '0'; return c; } // Gefahr bei Manchester-Codierung: inverser Header wird leicht fehl-erkannt // da manchester1 und manchester2 nur um 1 bit verschoben int compare2() { int i, j; i = 0; j = bufpos; while (i < HEADLEN) { if (j < 0) j = HEADLEN-1; if (buf[j] != header[HEADOFS+HEADLEN-1-i]) break; j--; i++; } if (i == HEADLEN) return 1; i = 0; j = bufpos; while (i < HEADLEN) { if (j < 0) j = HEADLEN-1; if (buf[j] != cb_inv(header[HEADOFS+HEADLEN-1-i])) break; j--; i++; } if (i == HEADLEN) return -1; return 0; } int bits2bytes(char *bitstr, ui8_t *bytes) { int i, bit, d, byteval; int bitpos, bytepos; bitpos = 0; bytepos = 0; while (bytepos < FRAME_LEN+AUX_LEN) { byteval = 0; d = 1; for (i = 0; i < BITS; i++) { //bit=*(bitstr+bitpos+i); /* little endian */ bit=*(bitstr+bitpos+7-i); /* big endian */ // bit == 'x' ? if (bit == '1') byteval += d; else /*if ((bit == '0') || (bit == 'x'))*/ byteval += 0; d <<= 1; } bitpos += BITS; bytes[bytepos++] = byteval & 0xFF; } //while (bytepos < FRAME_LEN+AUX_LEN) bytes[bytepos++] = 0; return 0; } /* -------------------------------------------------------------------------- */ // PSK (bzw. biphase-M (oder differential Manchester?)) // nach Synchronisation: 00,11->0 ; 01,10->1 (Phasenwechsel) void psk_bpm(char* frame_rawbits, char *frame_bits) { int i; char bit; //int err = 0; for (i = 0; i < BITFRAME_LEN+BITAUX_LEN; i++) { //if (i > 0 && (frame_rawbits[2*i] == frame_rawbits[2*i-1])) err = 1; if (frame_rawbits[2*i] == frame_rawbits[2*i+1]) bit = '0'; else bit = '1'; //if (err) frame_bits[i] = 'x'; else frame_bits[i] = bit; //err = 0; } } /* Header = Sync-Header + Sonde-Header: 1100110011001100 1010011001001100 1101010011010011 0100110101010101 0011010011001100 uudduudduudduudd ududduuddudduudd uudududduududduu dudduudududududu dduududduudduudd (oder:) dduudduudduudduu duduudduuduudduu ddududuudduduudd uduuddududududud uudduduudduudduu (komplement) 0 0 0 0 0 0 0 0 1 1 - - - 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 */ /* 110101001101001101001101010101010011010011001100 101010011010011010011010101010100110100110011001011001100101011001100110011001100110011001100101100110011001100110011001100101010101010101010101010101101010100110011010011001011001011010101010010101100110100110010101100110011001011001100110100101011010101001100101010101101010011001010101100110010110100110010101100101100101100110101010011001100110010110011001100110011001100110100101011010101001101010100101100101100110011001100110011001100110011001100110011001011001101010011001100110011010101001100101100110100110011001010101101001100110010110011010100110100110011010100110011001010101101001100110010101100110011010101001100110101001100110011001100101100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011010011010100110100110011001100110011001100110011001100101101001011010100101101001101001100110100110100110010110010110101010010110010110011001011001010101010101010110011001100110011010011010100110011001011001100110011001100110011001100110011001100110011001100110101001011010011010010110010110010101010110010110011001101001101010101010011010100110011010011010011010100110101001100110011010100110010110011001010110101001101001100110100101011001100110011010011001100110011001100110010101011001100110011001100110100110101001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011010101001101001011001100101010101100110101001011001100110011001100110101001010110011001100110010110011001010110011001100110011001100110011001011001100101011010100101100110010110101001101001011001101001011001101010011010010110101001010101100110011001101010100110011001100000 */ int dpsk_bpm(char* frame_rawbits, char *frame_bits, int len) { int i; char bit; char bit0; //int err = 0; bit0 = (frame_rawbits[0] & 1) ^ 1; for (i = 0; i < len/2; i++) { if ((frame_rawbits[2*i ] & 1) == 1 && (frame_rawbits[2*i+1] & 1) == 0 ) bit = 1; else if ((frame_rawbits[2*i ] & 1) == 0 && (frame_rawbits[2*i+1] & 1) == 1 ) bit = 0; else { bit = 2; frame_bits[i] = 'x'; bit0 = bit&1; continue; //err = 1; } if (bit0 == bit) frame_bits[i] = '1'; else frame_bits[i] = '0'; // frame_bits[i] = 0x31 ^ (bit0 ^ bit); bit0 = bit; } return bit0; } /* ------------------------------------------------------------------------------------------------------------- */ /* M10 w/ trimble GPS frame[0x0] = framelen frame[0x1] = 0x9F (type M10) init/noGPS: frame[0x2]=0x23 GPS: frame[0x2]=0x20 (GPS trimble pck 0x8F-20 sub-id) frame[0x02..0x21] = GPS trimble pck 0x8F-20 byte 0..31 (sub-id, vel, tow, lat, lon, alt, fix, NumSV, UTC-ofs, week) frame[0x22..0x2D] = GPS trimble pck 0x8F-20 byte 32..55:2 (PRN 1..12 only) Trimble Copernicus II GPS packet 0x8F-20 (p.138) byte 0 sub-pck id (always 0x20) 2-3 velE (i16) 0.005m/s 4-5 velN (i16) 0.005m/s 6-7 velU (i16) 0.005m/s 8-11 TOW (ms) 12-15 lat (scale 2^32/360) (i32) -90..90 16-19 lon (scale 2^32/360) (ui32) 0..360 <-> (i32) -180..180 20-23 alt (i32) mm above ellipsoid) 24 bit0: vel-scale (0: 0.005m/s) 26 datum (1: WGS-84) 27 fix: bit0(0:valid fix, 1:invalid fix), bit2(0:3D, 1:2D) 28 numSVs 29 UTC offset = (GPS - UTC) sec 30-31 GPS week 32+2*n PRN_(n+1), bit0-5 frame[0x32..0x5C] sensors (rel.hum., temp.) frame[0x5D..0x61] SN frame[0x62] counter frame[0x63..0x64] check (AUX len=0x76: frame[0x63..0x74], frame[0x75..0x76]) 6449/10sec-frame: GPS trimble pck 0x47 (signal levels): numSats sat1 lev1 sat2 lev2 .. frame[0x0] = framelen frame[0x1] = 0x49 frame[0x2] = numSats (max 12) frame[0x3+2*n] = PRN_(n+1) frame[0x4+2*n] = signal level (float32 -> i8-byte level) */ #define stdFLEN 0x64 // pos[0]=0x64 #define pos_GPSTOW 0x0A // 4 byte #define pos_GPSlat 0x0E // 4 byte #define pos_GPSlon 0x12 // 4 byte #define pos_GPSalt 0x16 // 4 byte #define pos_GPSweek 0x20 // 2 byte //Velocity East-North-Up (ENU) #define pos_GPSvE 0x04 // 2 byte #define pos_GPSvN 0x06 // 2 byte #define pos_GPSvU 0x08 // 2 byte #define pos_SN 0x5D // 2+3 byte #define pos_Check (stdFLEN-1) // 2 byte #define ANSI_COLOR_RED "\x1b[31m" #define ANSI_COLOR_GREEN "\x1b[32m" #define ANSI_COLOR_YELLOW "\x1b[33m" #define ANSI_COLOR_BLUE "\x1b[34m" #define ANSI_COLOR_MAGENTA "\x1b[35m" #define ANSI_COLOR_CYAN "\x1b[36m" #define ANSI_COLOR_RESET "\x1b[0m" #define XTERM_COLOR_BROWN "\x1b[38;5;94m" // 38;5;{0..255}m #define col_GPSweek "\x1b[38;5;20m" // 2 byte #define col_GPSTOW "\x1b[38;5;27m" // 4 byte #define col_GPSdate "\x1b[38;5;94m" //111 #define col_GPSlat "\x1b[38;5;34m" // 4 byte #define col_GPSlon "\x1b[38;5;70m" // 4 byte #define col_GPSalt "\x1b[38;5;82m" // 4 byte #define col_GPSvel "\x1b[38;5;36m" // 6 byte #define col_SN "\x1b[38;5;58m" // 3 byte #define col_Check "\x1b[38;5;11m" // 2 byte #define col_TXT "\x1b[38;5;244m" #define col_FRTXT "\x1b[38;5;244m" #define col_CSok "\x1b[38;5;2m" #define col_CSno "\x1b[38;5;1m" /* $ for code in {0..255} > do echo -e "\e[38;5;${code}m"'\\e[38;5;'"$code"m"\e[0m" > done */ int get_GPSweek() { int i; unsigned byte; ui8_t gpsweek_bytes[2]; int gpsweek; for (i = 0; i < 2; i++) { byte = frame_bytes[pos_GPSweek + i]; gpsweek_bytes[i] = byte; } gpsweek = (gpsweek_bytes[0] << 8) + gpsweek_bytes[1]; datum.week = gpsweek; if (gpsweek < 0 || gpsweek > 3000) return -1; return 0; } char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"}; int get_GPStime() { int i; unsigned byte; ui8_t gpstime_bytes[4]; int gpstime, day; // int ms; for (i = 0; i < 4; i++) { byte = frame_bytes[pos_GPSTOW + i]; gpstime_bytes[i] = byte; } gpstime = 0; for (i = 0; i < 4; i++) { gpstime |= gpstime_bytes[i] << (8*(3-i)); } //ms = gpstime % 1000; gpstime /= 1000; datum.gpssec = gpstime; day = gpstime / (24 * 3600); gpstime %= (24*3600); if ((day < 0) || (day > 6)) return -1; datum.wday = day; datum.std = gpstime/3600; datum.min = (gpstime%3600)/60; datum.sek = gpstime%60; return 0; } double B60B60 = 0xB60B60; // 2^32/360 = 0xB60B60.xxx int get_GPSlat() { int i; unsigned byte; ui8_t gpslat_bytes[4]; i32_t gpslat; double lat; for (i = 0; i < 4; i++) { byte = frame_bytes[pos_GPSlat + i]; gpslat_bytes[i] = byte; } gpslat = 0; for (i = 0; i < 4; i++) { gpslat |= gpslat_bytes[i] << (8*(3-i)); } lat = gpslat / B60B60; datum.lat = lat; return 0; } int get_GPSlon() { int i; unsigned byte; ui8_t gpslon_bytes[4]; i32_t gpslon; // (ui32) 0..360 <-> (i32) -180..180 double lon; for (i = 0; i < 4; i++) { byte = frame_bytes[pos_GPSlon + i]; gpslon_bytes[i] = byte; } gpslon = 0; for (i = 0; i < 4; i++) { gpslon |= gpslon_bytes[i] << (8*(3-i)); } lon = gpslon / B60B60; datum.lon = lon; return 0; } int get_GPSalt() { int i; unsigned byte; ui8_t gpsalt_bytes[4]; i32_t gpsalt; double alt; for (i = 0; i < 4; i++) { byte = frame_bytes[pos_GPSalt + i]; gpsalt_bytes[i] = byte; } gpsalt = 0; for (i = 0; i < 4; i++) { gpsalt |= gpsalt_bytes[i] << (8*(3-i)); } alt = gpsalt / 1000.0; datum.alt = alt; return 0; } int get_GPSvel() { int i; unsigned byte; ui8_t gpsVel_bytes[2]; short vel16; // i16_t double vx, vy, dir, alpha; const double sc5 = 2e2; // scale 0.005m/s for (i = 0; i < 2; i++) { byte = frame_bytes[pos_GPSvE + i]; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1]; vx = vel16 / sc5; // ost for (i = 0; i < 2; i++) { byte = frame_bytes[pos_GPSvN + i]; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1]; vy= vel16 / sc5; // nord datum.vx = vx; datum.vy = vy; datum.vH = sqrt(vx*vx+vy*vy); ///* alpha = atan2(vy, vx)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts) dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t) datum.vD2 = dir; //*/ dir = atan2(vx, vy) * 180 / M_PI; if (dir < 0) dir += 360; datum.vD = dir; for (i = 0; i < 2; i++) { byte = frame_bytes[pos_GPSvU + i]; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1]; datum.vV = vel16 / sc5; return 0; } int get_SN() { int i; unsigned byte; ui8_t sn_bytes[5]; for (i = 0; i < 11; i++) datum.SN[i] = ' '; datum.SN[11] = '\0'; for (i = 0; i < 5; i++) { byte = frame_bytes[pos_SN + i]; sn_bytes[i] = byte; } byte = sn_bytes[2]; sprintf(datum.SN, "%1X%02u", (byte>>4)&0xF, byte&0xF); byte = sn_bytes[3] | (sn_bytes[4]<<8); sprintf(datum.SN+3, " %1X %1u%04u", sn_bytes[0]&0xF, (byte>>13)&0x7, byte&0x1FFF); return 0; } /* -------------------------------------------------------------------------- */ /* g : F^n -> F^16 // checksum, linear g(m||b) = f(g(m),b) // update checksum f : F^16 x F^8 -> F^16 linear 010100001000000101000000 001010000100000010100000 000101000010000001010000 000010100001000000101000 000001010000100000010100 100000100000010000001010 000000011010100000000100 100000000101010000000010 000000001000000000000000 000000000100000000000000 000000000010000000000000 000000000001000000000000 000000000000100000000000 000000000000010000000000 000000000000001000000000 000000000000000100000000 */ int update_checkM10(int c, ui8_t b) { int c0, c1, t, t6, t7, s; c1 = c & 0xFF; // B b = (b >> 1) | ((b & 1) << 7); b ^= (b >> 2) & 0xFF; // A1 t6 = ( c & 1) ^ ((c>>2) & 1) ^ ((c>>4) & 1); t7 = ((c>>1) & 1) ^ ((c>>3) & 1) ^ ((c>>5) & 1); t = (c & 0x3F) | (t6 << 6) | (t7 << 7); // A2 s = (c >> 7) & 0xFF; s ^= (s >> 2) & 0xFF; c0 = b ^ t ^ s; return ((c1<<8) | c0) & 0xFFFF; } int checkM10(ui8_t *msg, int len) { int i, cs; cs = 0; for (i = 0; i < len; i++) { cs = update_checkM10(cs, msg[i]); } return cs & 0xFFFF; } /* -------------------------------------------------------------------------- */ // https://www.gruan.org/gruan/editor/documents/meetings/icm-6/pres/pres_306_Haeffelin.pdf // // Temperature Sensor // NTC-Thermistor Shibaura PB5-41E // float get_Temp(int csOK) { // NTC-Thermistor Shibaura PB5-41E // T00 = 273.15 + 0.0 , R00 = 15e3 // T25 = 273.15 + 25.0 , R25 = 5.369e3 // B00 = 3450.0 Kelvin // 0C..100C, poor fit low temps // [ T/C , R/1e3 ] ( [P__-43]/2.0 ): // [ -50.0 , 204.0 ] // [ -45.0 , 150.7 ] // [ -40.0 , 112.6 ] // [ -35.0 , 84.90 ] // [ -30.0 , 64.65 ] // [ -25.0 , 49.66 ] // [ -20.0 , 38.48 ] // [ -15.0 , 30.06 ] // [ -10.0 , 23.67 ] // [ -5.0 , 18.78 ] // [ 0.0 , 15.00 ] // [ 5.0 , 12.06 ] // [ 10.0 , 9.765 ] // [ 15.0 , 7.955 ] // [ 20.0 , 6.515 ] // [ 25.0 , 5.370 ] // [ 30.0 , 4.448 ] // [ 35.0 , 3.704 ] // [ 40.0 , 3.100 ] // -> Steinhart–Hart coefficients (polyfit): float p0 = 1.07303516e-03, p1 = 2.41296733e-04, p2 = 2.26744154e-06, p3 = 6.52855181e-08; // T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 ) // range/scale 0, 1, 2: // M10-pcb float Rs[3] = { 12.1e3 , 36.5e3 , 475.0e3 }; // bias/series float Rp[3] = { 1e20 , 330.0e3 , 2000.0e3 }; // parallel, Rp[0]=inf ui8_t scT; // {0,1,2}, range/scale voltage divider ui16_t ADC_RT; // ADC12 P6.7(A7) , adr_0377h,adr_0376h ui16_t Tcal[2]; // adr_1000h[scT*4] float adc_max = 4095.0; // ADC12 float x, R; float T = 0; // T/Kelvin scT = frame_bytes[0x3E]; // adr_0455h ADC_RT = (frame_bytes[0x40] << 8) | frame_bytes[0x3F]; ADC_RT -= 0xA000; Tcal[0] = (frame_bytes[0x42] << 8) | frame_bytes[0x41]; Tcal[1] = (frame_bytes[0x44] << 8) | frame_bytes[0x43]; x = (adc_max-ADC_RT)/ADC_RT; // (Vcc-Vout)/Vout if (scT < 3) R = Rs[scT] /( x - Rs[scT]/Rp[scT] ); else R = -1; if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) ); if (option_verbose >= 3 && csOK) { // on-chip temperature ui16_t ADC_Ti_raw = (frame_bytes[0x49] << 8) | frame_bytes[0x48]; // int.temp.diode, ref: 4095->1.5V float vti, ti; // INCH1A (temp.diode), slau144 vti = ADC_Ti_raw/4095.0 * 1.5; // V_REF+ = 1.5V, no calibration ti = (vti-0.986)/0.00355; // 0.986/0.00355=277.75, 1.5/4095/0.00355=0.1032 fprintf(stdout, " (Ti:%.1fC)", ti); // SegmentA-Calibration: //ui16_t T30 = adr_10e2h; // CAL_ADC_15T30 //ui16_t T85 = adr_10e4h; // CAL_ADC_15T85 //float tic = (ADC_Ti_raw-T30)*(85.0-30.0)/(T85-T30) + 30.0; //fprintf(stdout, " (Tic:%.1fC)", tic); } return T - 273.15; // Celsius } /* frame[0x32]: adr_1074h frame[0x33]: adr_1075h frame[0x34]: adr_1076h frame[0x35..0x37]: TBCCR1 ; relHumCap-freq frame[0x38]: adr_1078h frame[0x39]: adr_1079h frame[0x3A]: adr_1077h frame[0x3B]: adr_100Ch frame[0x3C..3D]: 0 frame[0x3E]: scale_index ; scale/range-index frame[0x3F..40] = ADC12_A7 | 0xA000, V_R+=AVcc ; Thermistor frame[0x41]: adr_1000h[scale_index*4] frame[0x42]: adr_1000h[scale_index*4+1] frame[0x43]: adr_1000h[scale_index*4+2] frame[0x44]: adr_1000h[scale_index*4+3] frame[0x45..46]: ADC12_A5/4, V_R+=2.5V frame[0x47]: ADC12_A2/16 , V_R+=2.5V frame[0x48..49]: ADC12_iT, V_R+=1.5V (int.Temp.diode) frame[0x4C..4D]: ADC12_A6, V_R+=2.5V frame[0x4E..4F]: ADC12_A3, V_R+=AVcc frame[0x50..54]: 0; frame[0x55..56]: ADC12_A1, V_R+=AVcc frame[0x57..58]: ADC12_A0, V_R+=AVcc frame[0x59..5A]: ADC12_A4, V_R+=AVcc // ntc2: R(25C)=2.2k, Rs=22.1e3 (relHumCap-Temp) frame[0x5B]: frame[0x5C]: adr_108Eh frame[0x5D]: adr_1082h (SN) frame[0x5E]: adr_1083h (SN) frame[0x5F]: adr_1084h (SN) frame[0x60]: adr_1080h (SN) frame[0x61]: adr_1081h (SN) */ float get_Tntc2(int csOK) { // SMD ntc float Rs = 22.1e3; // P5.6=Vcc // float R25 = 2.2e3; // float b = 3650.0; // B/Kelvin // float T25 = 25.0 + 273.15; // T0=25C, R0=R25=5k // -> Steinhart–Hart coefficients (polyfit): float p0 = 4.42606809e-03, p1 = -6.58184309e-04, p2 = 8.95735557e-05, p3 = -2.84347503e-06; float T = 0.0; // T/Kelvin ui16_t ADC_ntc2; // ADC12 P6.4(A4) float x, R; if (csOK) { ADC_ntc2 = (frame_bytes[0x5A] << 8) | frame_bytes[0x59]; x = (4095.0 - ADC_ntc2)/ADC_ntc2; // (Vcc-Vout)/Vout R = Rs / x; //if (R > 0) T = 1/(1/T25 + 1/b * log(R/R25)); if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) ); } return T - 273.15; } // Humidity Sensor // U.P.S.I. // #define FREQ_CAPCLK (8e6/2) // 8 MHz XT2 crystal, InputDivider IDx=01 (/2) #define LN2 0.693147181 #define ADR_108A 1000.0 // 0x3E8=1000 float get_count_55() { // CalRef 55%RH , T=20C ? ui32_t TBCREF_1000 = frame_bytes[0x32] | (frame_bytes[0x33]<<8) | (frame_bytes[0x34]<<16); return TBCREF_1000 / ADR_108A; } float get_count_RH() { // capture 1000 rising edges ui32_t TBCCR1_1000 = frame_bytes[0x35] | (frame_bytes[0x36]<<8) | (frame_bytes[0x37]<<16); return TBCCR1_1000 / ADR_108A; } float get_TLC555freq(float count) { return FREQ_CAPCLK / count; } float get_C_RH(float freq, float T) { // TLC555 astable: R_A=3.65k, R_B=338k float R_B = 338e3; float R_A = 3.65e3; float td = 0; float C_RH = (1/freq - 2*td) / (LN2 * (R_A + 2*R_B)); // freq/T compensation ... return C_RH; } float cRHc55_RH(float cRHc55) { // C_RH / C_55 // U.P.S.I. // C_RH/C_55 = 0.8955 + 0.002*RH , T=20C // C_RH = C_RH(RH,T) , RH = RH(C_RH,T) // C_RH/C_55 approx.eq. count_RH/count_ref float TH = get_Tntc2(0); float Tc = get_Temp(0); float rh = (cRHc55-0.8955)/0.002; // UPSI linear transfer function // temperature compensation float T0 = 0.0, T1 = -30.0; // T/C float T = Tc; // TH, TH-Tc (sensorT - T) if (T < T0) rh += T0 - T/5.5; // approx/empirical if (T < T1) rh *= 1.0 + (T1-T)/75.0; // approx/empirical if (rh < 0.0) rh = 0.0; if (rh > 100.0) rh = 100.0; return rh; } float get_RHc(int csOK) { // experimental/raw, errors~10% float Tc = get_Temp(0); float count_ref = get_count_55(); // CalRef 55%RH , T=20C ? float count_RH = get_count_RH(); float C_55 = get_C_RH(get_TLC555freq(count_ref), 20.0); // CalRef 55%RH , T=20C ? float C_RH = get_C_RH(get_TLC555freq(count_RH), Tc); // Tc == T_555 ? float cRHc55 = C_RH / C_55; return cRHc55_RH(cRHc55); } float get_RH(int csOK) { // experimental/raw, errors~10% //ui32_t TBCREF_1000 = frame_bytes[0x32] | (frame_bytes[0x33]<<8) | (frame_bytes[0x34]<<16); // CalRef 55%RH , T=20C ? //ui32_t TBCCR1_1000 = frame_bytes[0x35] | (frame_bytes[0x36]<<8) | (frame_bytes[0x37]<<16); // FrqCnt TLC555 //float cRHc55 = TBCCR1_1000 / (float)TBCREF_1000; // CalRef 55%RH , T=20C ? float cRHc55 = get_count_RH() / get_count_55(); // CalRef 55%RH , T=20C ? return cRHc55_RH(cRHc55); } /* -------------------------------------------------------------------------- */ int print_pos(int csOK) { int err; err = 0; err |= get_GPSweek(); err |= get_GPStime(); err |= get_GPSlat(); err |= get_GPSlon(); err |= get_GPSalt(); if (!err) { Gps2Date(datum.week, datum.gpssec, &datum.jahr, &datum.monat, &datum.tag); if (option_color) { fprintf(stdout, col_TXT); fprintf(stdout, " (W "col_GPSweek"%d"col_TXT") ", datum.week); fprintf(stdout, col_GPSTOW"%s"col_TXT" ", weekday[datum.wday]); fprintf(stdout, col_GPSdate"%04d-%02d-%02d"col_TXT" ("col_GPSTOW"%02d:%02d:%02d"col_TXT") ", datum.jahr, datum.monat, datum.tag, datum.std, datum.min, datum.sek); fprintf(stdout, " lat: "col_GPSlat"%.6f"col_TXT" ", datum.lat); fprintf(stdout, " lon: "col_GPSlon"%.6f"col_TXT" ", datum.lon); fprintf(stdout, " alt: "col_GPSalt"%.2f"col_TXT" ", datum.alt); if (option_verbose) { err |= get_GPSvel(); if (!err) { //if (option_verbose == 2) fprintf(stdout, " "col_GPSvel"(%.1f , %.1f : %.1f)"col_TXT" ", datum.vx, datum.vy, datum.vD2); fprintf(stdout, " vH: "col_GPSvel"%.1f"col_TXT" D: "col_GPSvel"%.1f"col_TXT" vV: "col_GPSvel"%.1f"col_TXT" ", datum.vH, datum.vD, datum.vV); } if (option_verbose >= 2) { get_SN(); fprintf(stdout, " SN: "col_SN"%s"col_TXT, datum.SN); } if (option_verbose >= 2) { fprintf(stdout, " # "); if (csOK) fprintf(stdout, " "col_CSok"[OK]"col_TXT); else fprintf(stdout, " "col_CSno"[NO]"col_TXT); } } if (option_ptu) { float t = get_Temp(csOK); float rh = get_RH(csOK); fprintf(stdout, " "); if (t > -270.0) fprintf(stdout, "T=%.1fC ", t); if (option_verbose >= 3) { if (rh > -0.5) fprintf(stdout, "_RH=%.0f%% ", rh); } if (option_verbose >= 3) { float t2 = get_Tntc2(csOK); float fq555 = get_TLC555freq(get_count_RH()); if (t2 > -270.0) fprintf(stdout, " (T2:%.1fC) (%.3fkHz) ", t2, fq555/1e3); fprintf(stdout, "(cRH=%.1f%%) ", get_RHc(csOK)); } } fprintf(stdout, ANSI_COLOR_RESET""); } else { fprintf(stdout, " (W %d) ", datum.week); fprintf(stdout, "%s ", weekday[datum.wday]); fprintf(stdout, "%04d-%02d-%02d (%02d:%02d:%02d) ", datum.jahr, datum.monat, datum.tag, datum.std, datum.min, datum.sek); fprintf(stdout, " lat: %.6f ", datum.lat); fprintf(stdout, " lon: %.6f ", datum.lon); fprintf(stdout, " alt: %.2f ", datum.alt); if (option_verbose) { err |= get_GPSvel(); if (!err) { //if (option_verbose == 2) fprintf(stdout, " (%.1f , %.1f : %.1f) ", datum.vx, datum.vy, datum.vD2); fprintf(stdout, " vH: %.1f D: %.1f vV: %.1f ", datum.vH, datum.vD, datum.vV); } if (option_verbose >= 2) { get_SN(); fprintf(stdout, " SN: %s", datum.SN); } if (option_verbose >= 2) { fprintf(stdout, " # "); if (csOK) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]"); } } if (option_ptu) { float t = get_Temp(csOK); float rh = get_RH(csOK); fprintf(stdout, " "); if (t > -270.0) fprintf(stdout, "T=%.1fC ", t); if (option_verbose >= 3) { if (rh > -0.5) fprintf(stdout, "_RH=%.0f%% ", rh); } if (option_verbose >= 3) { float t2 = get_Tntc2(csOK); float fq555 = get_TLC555freq(get_count_RH()); if (t2 > -270.0) fprintf(stdout, " (T2:%.1fC) (%.3fkHz) ", t2, fq555/1e3); fprintf(stdout, "(cRH=%.1f%%) ", get_RHc(csOK)); } } } fprintf(stdout, "\n"); if (csOK && option_sat) { int i; fprintf(stdout, " %2d", frame_bytes[pos_GPSweek-2]); // GPS-sats fprintf(stdout, " : "); for (i = 0; i < frame_bytes[pos_GPSweek-2]; i++) { // PRN fprintf(stdout, " %2d", frame_bytes[pos_GPSweek+2+i]&0x3F); } fprintf(stdout, "\n"); } } return err; } void print_frame(int pos) { int i; ui8_t byte; int cs1, cs2; int flen = stdFLEN; // stdFLEN=0x64, auxFLEN=0x76 if (option_b < 2) { dpsk_bpm(frame_rawbits, frame_bits, RAWBITFRAME_LEN+RAWBITAUX_LEN); } bits2bytes(frame_bits, frame_bytes); flen = frame_bytes[0]; if (flen == stdFLEN) auxlen = 0; else { auxlen = flen - stdFLEN; if (auxlen < 0 || auxlen > AUX_LEN) auxlen = 0; } cs1 = (frame_bytes[pos_Check+auxlen] << 8) | frame_bytes[pos_Check+auxlen+1]; cs2 = checkM10(frame_bytes, pos_Check+auxlen); if (option_raw) { if (option_color && frame_bytes[1] != 0x49) { fprintf(stdout, col_FRTXT); for (i = 0; i < FRAME_LEN+auxlen; i++) { byte = frame_bytes[i]; if ((i >= pos_GPSTOW) && (i < pos_GPSTOW+4)) fprintf(stdout, col_GPSTOW); if ((i >= pos_GPSlat) && (i < pos_GPSlat+4)) fprintf(stdout, col_GPSlat); if ((i >= pos_GPSlon) && (i < pos_GPSlon+4)) fprintf(stdout, col_GPSlon); if ((i >= pos_GPSalt) && (i < pos_GPSalt+4)) fprintf(stdout, col_GPSalt); if ((i >= pos_GPSweek) && (i < pos_GPSweek+2)) fprintf(stdout, col_GPSweek); if ((i >= pos_GPSvE) && (i < pos_GPSvE+6)) fprintf(stdout, col_GPSvel); if ((i >= pos_SN) && (i < pos_SN+5)) fprintf(stdout, col_SN); if ((i >= pos_Check+auxlen) && (i < pos_Check+auxlen+2)) fprintf(stdout, col_Check); fprintf(stdout, "%02x", byte); fprintf(stdout, col_FRTXT); } if (option_verbose) { fprintf(stdout, " # "col_Check"%04x"col_FRTXT, cs2); if (cs1 == cs2) fprintf(stdout, " "col_CSok"[OK]"col_TXT); else fprintf(stdout, " "col_CSno"[NO]"col_TXT); } fprintf(stdout, ANSI_COLOR_RESET"\n"); } else { for (i = 0; i < FRAME_LEN+auxlen; i++) { byte = frame_bytes[i]; fprintf(stdout, "%02x", byte); } if (option_verbose) { fprintf(stdout, " # %04x", cs2); if (cs1 == cs2) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]"); } fprintf(stdout, "\n"); } } else if (frame_bytes[1] == 0x49) { if (option_verbose == 3) { for (i = 0; i < FRAME_LEN+auxlen; i++) { byte = frame_bytes[i]; fprintf(stdout, "%02x", byte); } fprintf(stdout, "\n"); } } else print_pos(cs1 == cs2); } int main(int argc, char **argv) { FILE *fp; char *fpname; int i, len; int bit, bit0; int pos; int header_found = 0; #ifdef CYGWIN _setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY); #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!wavloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] audio.wav\n", fpname); fprintf(stderr, " options:\n"); //fprintf(stderr, " -v, --verbose\n"); fprintf(stderr, " -r, --raw\n"); fprintf(stderr, " -c, --color\n"); //fprintf(stderr, " -o, --offset\n"); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { option_verbose = 1; } else if ( (strcmp(*argv, "-vv" ) == 0) ) option_verbose = 2; else if ( (strcmp(*argv, "-vvv") == 0) ) option_verbose = 3; else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { option_raw = 1; } else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) { option_inv = 1; // nicht noetig } else if ( (strcmp(*argv, "-c") == 0) || (strcmp(*argv, "--color") == 0) ) { option_color = 1; } else if (strcmp(*argv, "--res") == 0) { option_res = 1; } else if ( (strcmp(*argv, "--avg") == 0) ) { option_avg = 1; } else if (strcmp(*argv, "-b" ) == 0) { option_b = 1; } else if (strcmp(*argv, "-b2") == 0) { option_b = 2; } else if ( (strcmp(*argv, "--ptu") == 0) ) { option_ptu = 1; } else if ( (strcmp(*argv, "--sat") == 0) ) { option_sat = 1; } else if (strcmp(*argv, "--ch2") == 0) { wav_channel = 1; } // right channel (default: 0=left) else { fp = fopen(*argv, "rb"); if (fp == NULL) { fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv); return -1; } wavloaded = 1; } ++argv; } if (!wavloaded) fp = stdin; i = read_wav_header(fp); if (i) { fclose(fp); return -1; } pos = FRAMESTART; while (!read_bits_fsk(fp, &bit, &len)) { if (len == 0) { // reset_frame(); if (pos > (pos_GPSweek+2)*2*BITS) { for (i = pos; i < RAWBITFRAME_LEN+RAWBITAUX_LEN; i++) frame_rawbits[i] = 0x30 + 0; print_frame(pos);//byte_count header_found = 0; pos = FRAMESTART; } //inc_bufpos(); //buf[bufpos] = 'x'; continue; // ... } for (i = 0; i < len; i++) { inc_bufpos(); buf[bufpos] = 0x30 + bit; // Ascii if (!header_found) { header_found = compare2(); } else { frame_rawbits[pos] = 0x30 + bit; // Ascii pos++; if (pos == RAWBITFRAME_LEN+RAWBITAUX_LEN) { frame_rawbits[pos] = '\0'; print_frame(pos);//FRAME_LEN header_found = 0; pos = FRAMESTART; } } } if (header_found && option_b==1) { bitstart = 1; while ( pos < RAWBITFRAME_LEN+RAWBITAUX_LEN ) { if (read_rawbit(fp, &bit) == EOF) break; frame_rawbits[pos] = 0x30 + bit; pos++; } frame_rawbits[pos] = '\0'; print_frame(pos); header_found = 0; pos = FRAMESTART; } if (header_found && option_b>=2) { bitstart = 1; bit0 = 0; if (pos%2) { if (read_rawbit(fp, &bit) == EOF) break; frame_rawbits[pos] = 0x30 + bit; pos++; } bit0 = dpsk_bpm(frame_rawbits, frame_bits, pos); pos /= 2; while ( pos < BITFRAME_LEN+BITAUX_LEN ) { if (read_rawbit2(fp, &bit) == EOF) break; frame_bits[pos] = 0x31 ^ (bit0 ^ bit); pos++; bit0 = bit; } frame_bits[pos] = '\0'; print_frame(pos); header_found = 0; pos = FRAMESTART; } } fprintf(stdout, "\n"); fclose(fp); return 0; }