RS-tracker/demod/mod/m10mod.c

1384 wiersze
42 KiB
C

/*
* m10
* sync header: correlation/matched filter
* files: m10mod.c demod_mod.h demod_mod.c
* compile:
* gcc -c demod_mod.c
* gcc m10mod.c demod_mod.o -lm -o m10mod
*
* author: zilog80
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#ifdef CYGWIN
#include <fcntl.h> // cygwin: _setmode()
#include <io.h>
#endif
#include "demod_mod.h"
typedef struct {
i8_t vbs; // verbose output
i8_t raw; // raw frames
i8_t crc; // CRC check output
i8_t ecc; // Reed-Solomon ECC
i8_t sat; // GPS sat data
i8_t ptu; // PTU: temperature
i8_t inv;
i8_t aut;
i8_t col; // colors
i8_t jsn; // JSON output (auto_rx)
} option_t;
/*
9600 baud -> 9616 baud ?
*/
#define BAUD_RATE 9615 // 9614..9616
/* -------------------------------------------------------------------------- */
/*
Header = Sync-Header + Sonde-Header:
1100110011001100 1010011001001100 1101010011010011 0100110101010101 0011010011001100
uudduudduudduudd ududduuddudduudd uudududduududduu dudduudududududu dduududduudduudd (oder:)
dduudduudduudduu duduudduuduudduu ddududuudduduudd uduuddududududud uudduduudduudduu (komplement)
0 0 0 0 0 0 0 0 1 1 - - - 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0
*/
#define BITS 8
#define HEADLEN 32 // HEADLEN+HEADOFS=32 <= strlen(header)
#define HEADOFS 0
// Sync-Header (raw) // Sonde-Header (bits)
//char head[] = "11001100110011001010011001001100"; //"0110010010011111"; // M10: 64 9F , M2K2: 64 8F
//"0111011010011111"; // M10: 76 9F , w/ aux-data
//"0110010001001001"; // M10-dop: 64 49 09
//"0110010010101111"; // M10+: 64 AF w/ gtop-GPS
//"0100010100100000"; // M20: 45 20 (baud=9600)
static char rawheader[] = "10011001100110010100110010011001";
#define FRAME_LEN (100+1) // 0x64+1
#define BITFRAME_LEN (FRAME_LEN*BITS)
#define AUX_LEN 20
#define BITAUX_LEN (AUX_LEN*BITS)
#define t_M2K2 0x8F
#define t_M10 0x9F
#define t_M10plus 0xAF
#define t_M20 0x20
typedef struct {
int week; int tow_ms; int gpssec;
int jahr; int monat; int tag;
int wday;
int std; int min; float sek;
double lat; double lon; double alt;
double vH; double vD; double vV;
double vx; double vy; double vD2;
float T; float _RH;
float Ti; float batV;
ui8_t numSV;
ui8_t utc_ofs;
char SN[12];
ui8_t frame_bytes[FRAME_LEN+AUX_LEN+4];
char frame_bits[BITFRAME_LEN+BITAUX_LEN+8];
int auxlen; // 0 .. 0x76-0x64
option_t option;
ui8_t type;
} gpx_t;
/* -------------------------------------------------------------------------- */
#define SECONDS_IN_WEEK (604800.0) // 7*86400
/*
* Convert GPS Week and Seconds to Modified Julian Day.
* - Adapted from sci.astro FAQ.
* - Ignores UTC leap seconds.
*/
static void Gps2Date(long GpsWeek, long GpsSeconds, int *Year, int *Month, int *Day) {
long GpsDays, Mjd;
long J, C, Y, M;
GpsDays = GpsWeek * 7 + (GpsSeconds / 86400);
Mjd = 44244 + GpsDays;
J = Mjd + 2468570;
C = 4 * J / 146097;
J = J - (146097 * C + 3) / 4;
Y = 4000 * (J + 1) / 1461001;
J = J - 1461 * Y / 4 + 31;
M = 80 * J / 2447;
*Day = J - 2447 * M / 80;
J = M / 11;
*Month = M + 2 - (12 * J);
*Year = 100 * (C - 49) + Y + J;
}
/* -------------------------------------------------------------------------- */
static int bits2bytes(char *bitstr, ui8_t *bytes) {
int i, bit, d, byteval;
int bitpos, bytepos;
bitpos = 0;
bytepos = 0;
while (bytepos < FRAME_LEN+AUX_LEN) {
byteval = 0;
d = 1;
for (i = 0; i < BITS; i++) {
//bit=*(bitstr+bitpos+i); /* little endian */
bit=*(bitstr+bitpos+7-i); /* big endian */
// bit == 'x' ?
if (bit == '1') byteval += d;
else /*if ((bit == '0') || (bit == 'x'))*/ byteval += 0;
d <<= 1;
}
bitpos += BITS;
bytes[bytepos++] = byteval & 0xFF;
}
//while (bytepos < FRAME_LEN+AUX_LEN) bytes[bytepos++] = 0;
return 0;
}
/* -------------------------------------------------------------------------- */
/*
M10 w/ trimble GPS
frame[0x0] = framelen
frame[0x1] = 0x9F (type M10)
init/noGPS: frame[0x2]=0x23
GPS: frame[0x2]=0x20 (GPS trimble pck 0x8F-20 sub-id)
frame[0x02..0x21] = GPS trimble pck 0x8F-20 byte 0..31 (sub-id, vel, tow, lat, lon, alt, fix, NumSV, UTC-ofs, week)
frame[0x22..0x2D] = GPS trimble pck 0x8F-20 byte 32..55:2 (PRN 1..12 only)
Trimble Copernicus II
GPS packet 0x8F-20 (p.138)
byte
0 sub-pck id (always 0x20)
2-3 velE (i16) 0.005m/s
4-5 velN (i16) 0.005m/s
6-7 velU (i16) 0.005m/s
8-11 TOW (ms)
12-15 lat (scale 2^32/360) (i32) -90..90
16-19 lon (scale 2^32/360) (ui32) 0..360 <-> (i32) -180..180
20-23 alt (i32) mm above ellipsoid)
24 bit0: vel-scale (0: 0.005m/s)
26 datum (1: WGS-84)
27 fix: bit0(0:valid fix, 1:invalid fix), bit2(0:3D, 1:2D)
28 numSVs
29 UTC offset = (GPS - UTC) sec
30-31 GPS week
32+2*n PRN_(n+1), bit0-5
frame[0x32..0x5C] sensors (rel.hum., temp.)
frame[0x5D..0x61] SN
frame[0x62] counter
frame[0x63..0x64] check (AUX len=0x76: frame[0x63..0x74], frame[0x75..0x76])
6449/10sec-frame:
GPS trimble pck 0x47 (signal levels): numSats sat1 lev1 sat2 lev2 ..
frame[0x0] = framelen
frame[0x1] = 0x49
frame[0x2] = numSats (max 12)
frame[0x3+2*n] = PRN_(n+1)
frame[0x4+2*n] = signal level (float32 -> i8-byte level)
*/
/*
M10 w/ Sierra Wireless Airprime X1110
-> Trimble Copernicus II
*/
#define stdFLEN 0x64 // pos[0]=0x64
// Trimble GPS
#define pos_GPSTOW 0x0A // 4 byte
#define pos_GPSlat 0x0E // 4 byte
#define pos_GPSlon 0x12 // 4 byte
#define pos_GPSalt 0x16 // 4 byte
#define pos_GPSsats 0x1E // 1 byte
#define pos_GPSutc 0x1F // 1 byte
#define pos_GPSweek 0x20 // 2 byte
//Velocity East-North-Up (ENU)
#define pos_GPSvE 0x04 // 2 byte
#define pos_GPSvN 0x06 // 2 byte
#define pos_GPSvU 0x08 // 2 byte
#define pos_SN 0x5D // 2+3 byte
#define pos_CNT 0x62 // 1 byte
#define pos_Check (stdFLEN-1) // 2 byte
// Gtop GPS
#define pos_gtopGPSlat 0x04 // 4 byte
#define pos_gtopGPSlon 0x08 // 4 byte
#define pos_gtopGPSalt 0x0C // 3 byte
#define pos_gtopGPSvE 0x0F // 2 byte
#define pos_gtopGPSvN 0x11 // 2 byte
#define pos_gtopGPSvU 0x13 // 2 byte
#define pos_gtopGPStime 0x15 // 3 byte
#define pos_gtopGPSdate 0x18 // 3 byte
#define ANSI_COLOR_RED "\x1b[31m"
#define ANSI_COLOR_GREEN "\x1b[32m"
#define ANSI_COLOR_YELLOW "\x1b[33m"
#define ANSI_COLOR_BLUE "\x1b[34m"
#define ANSI_COLOR_MAGENTA "\x1b[35m"
#define ANSI_COLOR_CYAN "\x1b[36m"
#define ANSI_COLOR_RESET "\x1b[0m"
#define XTERM_COLOR_BROWN "\x1b[38;5;94m" // 38;5;{0..255}m
#define col_Mtype "\x1b[38;5;250m" // 1 byte
#define col_GPSweek "\x1b[38;5;20m" // 2 byte
#define col_GPSTOW "\x1b[38;5;27m" // 4 byte
#define col_GPSdate "\x1b[38;5;94m" //111
#define col_GPSlat "\x1b[38;5;34m" // 4 byte
#define col_GPSlon "\x1b[38;5;70m" // 4 byte
#define col_GPSalt "\x1b[38;5;82m" // 4 byte
#define col_GPSvel "\x1b[38;5;36m" // 6 byte
#define col_SN "\x1b[38;5;58m" // 3 byte
#define col_CNT "\x1b[38;5;172m" // 1 byte
#define col_Check "\x1b[38;5;11m" // 2 byte
#define col_CSok "\x1b[38;5;2m"
#define col_CSno "\x1b[38;5;1m"
#define col_TXT "\x1b[38;5;244m"
#define col_FRTXT "\x1b[38;5;244m"
/*
$ for code in {0..255}
> do echo -e "\e[38;5;${code}m"'\\e[38;5;'"$code"m"\e[0m"
> done
*/
static int get_GPSweek(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t gpsweek_bytes[2];
int gpsweek;
gpx->numSV = gpx->frame_bytes[pos_GPSsats];
gpx->utc_ofs = gpx->frame_bytes[pos_GPSutc];
for (i = 0; i < 2; i++) {
byte = gpx->frame_bytes[pos_GPSweek + i];
gpsweek_bytes[i] = byte;
}
gpsweek = (gpsweek_bytes[0] << 8) + gpsweek_bytes[1];
if (gpsweek > 4000) return -1;
// Trimble Copernicus II WNRO (AirPrime XM1110 OK)
if (gpsweek < 1304 /*2005-01-02*/ ) gpsweek += 1024;
gpx->week = gpsweek;
return 0;
}
//char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"};
static char weekday[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
static int get_GPStime(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t gpstime_bytes[4];
int gpstime, day;
int ms;
for (i = 0; i < 4; i++) {
byte = gpx->frame_bytes[pos_GPSTOW + i];
gpstime_bytes[i] = byte;
}
gpstime = 0;
for (i = 0; i < 4; i++) {
gpstime |= gpstime_bytes[i] << (8*(3-i));
}
gpx->tow_ms = gpstime;
ms = gpstime % 1000;
gpstime /= 1000;
gpx->gpssec = gpstime;
day = gpstime / (24 * 3600);
if ((day < 0) || (day > 6)) return -1;
gpstime %= (24*3600);
gpx->wday = day;
gpx->std = gpstime/3600;
gpx->min = (gpstime%3600)/60;
gpx->sek = gpstime%60 + ms/1000.0;
return 0;
}
static double B60B60 = (1<<30)/90.0; // 2^32/360 = 2^30/90 = 0xB60B60.711x
static int get_GPSlat(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t gpslat_bytes[4];
int gpslat;
double lat;
for (i = 0; i < 4; i++) {
byte = gpx->frame_bytes[pos_GPSlat + i];
gpslat_bytes[i] = byte;
}
gpslat = 0;
for (i = 0; i < 4; i++) {
gpslat |= gpslat_bytes[i] << (8*(3-i));
}
lat = gpslat / B60B60;
gpx->lat = lat;
return 0;
}
static int get_GPSlon(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t gpslon_bytes[4];
int gpslon;
double lon;
for (i = 0; i < 4; i++) {
byte = gpx->frame_bytes[pos_GPSlon + i];
gpslon_bytes[i] = byte;
}
gpslon = 0;
for (i = 0; i < 4; i++) {
gpslon |= gpslon_bytes[i] << (8*(3-i));
}
lon = gpslon / B60B60;
gpx->lon = lon;
return 0;
}
static int get_GPSalt(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t gpsalt_bytes[4];
int gpsalt;
double alt;
for (i = 0; i < 4; i++) {
byte = gpx->frame_bytes[pos_GPSalt + i];
gpsalt_bytes[i] = byte;
}
gpsalt = 0;
for (i = 0; i < 4; i++) {
gpsalt |= gpsalt_bytes[i] << (8*(3-i));
}
alt = gpsalt / 1000.0;
gpx->alt = alt;
return 0;
}
static int get_GPSvel(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t gpsVel_bytes[2];
short vel16;
double vx, vy, dir, alpha;
const double ms2kn100 = 2e2; // m/s -> knots: 1 m/s = 3.6/1.852 kn = 1.94 kn
for (i = 0; i < 2; i++) {
byte = gpx->frame_bytes[pos_GPSvE + i];
gpsVel_bytes[i] = byte;
}
vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1];
vx = vel16 / ms2kn100; // ost
for (i = 0; i < 2; i++) {
byte = gpx->frame_bytes[pos_GPSvN + i];
gpsVel_bytes[i] = byte;
}
vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1];
vy= vel16 / ms2kn100; // nord
gpx->vx = vx;
gpx->vy = vy;
gpx->vH = sqrt(vx*vx+vy*vy);
///*
alpha = atan2(vy, vx)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts)
dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht
if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t)
gpx->vD2 = dir;
//*/
dir = atan2(vx, vy) * 180 / M_PI;
if (dir < 0) dir += 360;
gpx->vD = dir;
for (i = 0; i < 2; i++) {
byte = gpx->frame_bytes[pos_GPSvU + i];
gpsVel_bytes[i] = byte;
}
vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1];
gpx->vV = vel16 / ms2kn100;
return 0;
}
static int get_SN(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t sn_bytes[5];
for (i = 0; i < 11; i++) gpx->SN[i] = ' '; gpx->SN[11] = '\0';
for (i = 0; i < 5; i++) {
byte = gpx->frame_bytes[pos_SN + i];
sn_bytes[i] = byte;
}
byte = sn_bytes[2];
sprintf(gpx->SN, "%1X%02u", (byte>>4)&0xF, byte&0xF);
byte = sn_bytes[3] | (sn_bytes[4]<<8);
sprintf(gpx->SN+3, " %1X %1u%04u", sn_bytes[0]&0xF, (byte>>13)&0x7, byte&0x1FFF);
return 0;
}
/* -------------------------------------------------------------------------- */
//
// M10+ w/ Gtop
static int get_gtopGPSpos(gpx_t *gpx) {
int i;
ui8_t bytes[4];
int val;
for (i = 0; i < 4; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSlat + i];
val = 0;
for (i = 0; i < 4; i++) val |= bytes[i] << (8*(3-i));
gpx->lat = val/1e6;
for (i = 0; i < 4; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSlon + i];
val = 0;
for (i = 0; i < 4; i++) val |= bytes[i] << (8*(3-i));
gpx->lon = val/1e6;
for (i = 0; i < 3; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSalt + i];
val = 0;
for (i = 0; i < 3; i++) val |= bytes[i] << (8*(2-i));
if (val & 0x800000) val -= 0x1000000; // alt: signed 24bit?
gpx->alt = val/1e2;
return 0;
}
static int get_gtopGPSvel(gpx_t *gpx) {
int i;
ui8_t bytes[2];
short vel16;
double vx, vy, vz, dir;
for (i = 0; i < 2; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSvE + i];
vel16 = bytes[0] << 8 | bytes[1];
vx = vel16 / 1e2; // east
for (i = 0; i < 2; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSvN + i];
vel16 = bytes[0] << 8 | bytes[1];
vy= vel16 / 1e2; // north
for (i = 0; i < 2; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSvU + i];
vel16 = bytes[0] << 8 | bytes[1];
vz = vel16 / 1e2; // up
gpx->vx = vx;
gpx->vy = vy;
gpx->vH = sqrt(vx*vx+vy*vy);
dir = atan2(vx, vy) * 180 / M_PI;
if (dir < 0) dir += 360;
gpx->vD = dir;
gpx->vV = vz;
return 0;
}
static int get_gtopGPStime(gpx_t *gpx) {
int i;
ui8_t bytes[4];
int time;
for (i = 0; i < 3; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPStime + i];
time = 0;
for (i = 0; i < 3; i++) time |= bytes[i] << (8*(2-i));
gpx->std = time/10000;
gpx->min = (time%10000)/100;
gpx->sek = (time%100)/1.0;
return 0;
}
static int get_gtopGPSdate(gpx_t *gpx) {
int i;
ui8_t bytes[4];
int date;
for (i = 0; i < 3; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSdate + i];
date = 0;
for (i = 0; i < 3; i++) date |= bytes[i] << (8*(2-i));
gpx->jahr = 2000 + date%100;
gpx->monat = (date%10000)/100;
gpx->tag = date/10000;
return 0;
}
/* -------------------------------------------------------------------------- */
/*
g : F^n -> F^16 // checksum, linear
g(m||b) = f(g(m),b)
// update checksum
f : F^16 x F^8 -> F^16 linear
010100001000000101000000
001010000100000010100000
000101000010000001010000
000010100001000000101000
000001010000100000010100
100000100000010000001010
000000011010100000000100
100000000101010000000010
000000001000000000000000
000000000100000000000000
000000000010000000000000
000000000001000000000000
000000000000100000000000
000000000000010000000000
000000000000001000000000
000000000000000100000000
*/
static int update_checkM10(int c, ui8_t b) {
int c0, c1, t, t6, t7, s;
c1 = c & 0xFF;
// B
b = (b >> 1) | ((b & 1) << 7);
b ^= (b >> 2) & 0xFF;
// A1
t6 = ( c & 1) ^ ((c>>2) & 1) ^ ((c>>4) & 1);
t7 = ((c>>1) & 1) ^ ((c>>3) & 1) ^ ((c>>5) & 1);
t = (c & 0x3F) | (t6 << 6) | (t7 << 7);
// A2
s = (c >> 7) & 0xFF;
s ^= (s >> 2) & 0xFF;
c0 = b ^ t ^ s;
return ((c1<<8) | c0) & 0xFFFF;
}
static int checkM10(ui8_t *msg, int len) {
int i, cs;
cs = 0;
for (i = 0; i < len; i++) {
cs = update_checkM10(cs, msg[i]);
}
return cs & 0xFFFF;
}
/* -------------------------------------------------------------------------- */
// Temperatur Sensor
// NTC-Thermistor Shibaura PB5-41E
//
static float get_Temp(gpx_t *gpx) {
// NTC-Thermistor Shibaura PB5-41E
// T00 = 273.15 + 0.0 , R00 = 15e3
// T25 = 273.15 + 25.0 , R25 = 5.369e3
// B00 = 3450.0 Kelvin // 0C..100C, poor fit low temps
// [ T/C , R/1e3 ] ( [P__-43]/2.0 ):
// [ -50.0 , 204.0 ]
// [ -45.0 , 150.7 ]
// [ -40.0 , 112.6 ]
// [ -35.0 , 84.90 ]
// [ -30.0 , 64.65 ]
// [ -25.0 , 49.66 ]
// [ -20.0 , 38.48 ]
// [ -15.0 , 30.06 ]
// [ -10.0 , 23.67 ]
// [ -5.0 , 18.78 ]
// [ 0.0 , 15.00 ]
// [ 5.0 , 12.06 ]
// [ 10.0 , 9.765 ]
// [ 15.0 , 7.955 ]
// [ 20.0 , 6.515 ]
// [ 25.0 , 5.370 ]
// [ 30.0 , 4.448 ]
// [ 35.0 , 3.704 ]
// [ 40.0 , 3.100 ]
// -> Steinhart–Hart coefficients (polyfit):
float p0 = 1.07303516e-03,
p1 = 2.41296733e-04,
p2 = 2.26744154e-06,
p3 = 6.52855181e-08;
// T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 )
// range/scale 0, 1, 2: // M10-pcb
float Rs[3] = { 12.1e3 , 36.5e3 , 475.0e3 }; // bias/series
float Rp[3] = { 1e20 , 330.0e3 , 2000.0e3 }; // parallel, Rp[0]=inf
ui8_t scT; // {0,1,2}, range/scale voltage divider
ui16_t ADC_RT; // ADC12 P6.7(A7) , adr_0377h,adr_0376h
ui16_t Tcal[2]; // adr_1000h[scT*4]
float adc_max = 4095.0; // ADC12
float x, R;
float T = 0; // T/Kelvin
scT = gpx->frame_bytes[0x3E]; // adr_0455h
ADC_RT = (gpx->frame_bytes[0x40] << 8) | gpx->frame_bytes[0x3F];
ADC_RT -= 0xA000;
Tcal[0] = (gpx->frame_bytes[0x42] << 8) | gpx->frame_bytes[0x41];
Tcal[1] = (gpx->frame_bytes[0x44] << 8) | gpx->frame_bytes[0x43];
x = (adc_max-ADC_RT)/ADC_RT; // (Vcc-Vout)/Vout
if (scT < 3) R = Rs[scT] /( x - Rs[scT]/Rp[scT] );
else R = -1;
if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) );
return T - 273.15; // Celsius
}
static float get_intTemp(gpx_t *gpx) {
// on-chip temperature
ui16_t ADC_Ti_raw = (gpx->frame_bytes[0x49] << 8) | gpx->frame_bytes[0x48]; // int.temp.diode, ref: 4095->1.5V
float vti, ti;
// INCH1A (temp.diode), slau144
vti = ADC_Ti_raw/4095.0 * 1.5; // V_REF+ = 1.5V, no calibration
ti = (vti-0.986)/0.00355; // 0.986/0.00355=277.75, 1.5/4095/0.00355=0.1032
gpx->Ti = ti;
// SegmentA-Calibration:
//ui16_t T30 = adr_10e2h; // CAL_ADC_15T30
//ui16_t T85 = adr_10e4h; // CAL_ADC_15T85
//float tic = (ADC_Ti_raw-T30)*(85.0-30.0)/(T85-T30) + 30.0;
}
/*
frame[0x32]: adr_1074h
frame[0x33]: adr_1075h
frame[0x34]: adr_1076h
frame[0x35..0x37]: TBCCR1 ; relHumCap-freq
frame[0x38]: adr_1078h
frame[0x39]: adr_1079h
frame[0x3A]: adr_1077h
frame[0x3B]: adr_100Ch
frame[0x3C..3D]: 0
frame[0x3E]: scale_index ; scale/range-index
frame[0x3F..40] = ADC12_A7 | 0xA000, V_R+=AVcc ; Thermistor
frame[0x41]: adr_1000h[scale_index*4]
frame[0x42]: adr_1000h[scale_index*4+1]
frame[0x43]: adr_1000h[scale_index*4+2]
frame[0x44]: adr_1000h[scale_index*4+3]
frame[0x45..46]: ADC12_A5/4, V_R+=2.5V
frame[0x47]: ADC12_A2/16 , V_R+=2.5V
frame[0x48..49]: ADC12_iT, V_R+=1.5V (int.Temp.diode)
frame[0x4C..4D]: ADC12_A6, V_R+=2.5V
frame[0x4E..4F]: ADC12_A3, V_R+=AVcc
frame[0x50..54]: 0;
frame[0x55..56]: ADC12_A1, V_R+=AVcc
frame[0x57..58]: ADC12_A0, V_R+=AVcc
frame[0x59..5A]: ADC12_A4, V_R+=AVcc // ntc2: R(25C)=2.2k, Rs=22.1e3 (relHumCap-Temp)
frame[0x5B]:
frame[0x5C]: adr_108Eh
frame[0x5D]: adr_1082h (SN)
frame[0x5E]: adr_1083h (SN)
frame[0x5F]: adr_1084h (SN)
frame[0x60]: adr_1080h (SN)
frame[0x61]: adr_1081h (SN)
*/
static float get_Tntc2(gpx_t *gpx) {
// SMD ntc
float Rs = 22.1e3; // P5.6=Vcc
// float R25 = 2.2e3;
// float b = 3650.0; // B/Kelvin
// float T25 = 25.0 + 273.15; // T0=25C, R0=R25=5k
// -> Steinhart–Hart coefficients (polyfit):
float p0 = 4.42606809e-03,
p1 = -6.58184309e-04,
p2 = 8.95735557e-05,
p3 = -2.84347503e-06;
float T = 0.0; // T/Kelvin
ui16_t ADC_ntc2; // ADC12 P6.4(A4)
float x, R;
ADC_ntc2 = (gpx->frame_bytes[0x5A] << 8) | gpx->frame_bytes[0x59];
x = (4095.0 - ADC_ntc2)/ADC_ntc2; // (Vcc-Vout)/Vout
R = Rs / x;
//if (R > 0) T = 1/(1/T25 + 1/b * log(R/R25));
if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) );
return T - 273.15;
}
// Humidity Sensor
// U.P.S.I.
//
#define FREQ_CAPCLK (8e6/2) // 8 MHz XT2 crystal, InputDivider IDx=01 (/2)
#define LN2 0.693147181
#define ADR_108A 1000.0 // 0x3E8=1000
static float get_count_55(gpx_t *gpx) { // CalRef 55%RH , T=20C ?
ui32_t TBCREF_1000 = gpx->frame_bytes[0x32] | (gpx->frame_bytes[0x33]<<8) | (gpx->frame_bytes[0x34]<<16);
return TBCREF_1000 / ADR_108A;
}
static float get_count_RH(gpx_t *gpx) { // capture 1000 rising edges
ui32_t TBCCR1_1000 = gpx->frame_bytes[0x35] | (gpx->frame_bytes[0x36]<<8) | (gpx->frame_bytes[0x37]<<16);
return TBCCR1_1000 / ADR_108A;
}
static float get_TLC555freq(gpx_t *gpx) {
return FREQ_CAPCLK / get_count_RH(gpx);
}
static float cRHc55_RH(gpx_t *gpx, float cRHc55) { // C_RH / C_55
// U.P.S.I.
// C_RH/C_55 = 0.8955 + 0.002*RH , T=20C
// C_RH = C_RH(RH,T) , RH = RH(C_RH,T)
// C_RH/C_55 approx.eq. count_RH/count_ref
float TH = get_Tntc2(gpx);
float Tc = get_Temp(gpx);
float rh = (cRHc55-0.8955)/0.002; // UPSI linear transfer function
// temperature compensation
float T0 = 0.0, T1 = -30.0; // T/C
float T = Tc; // TH, TH-Tc (sensorT - T)
if (T < T0) rh += T0 - T/5.5; // approx/empirical
if (T < T1) rh *= 1.0 + (T1-T)/75.0; // approx/empirical
if (rh < 0.0) rh = 0.0;
if (rh > 100.0) rh = 100.0;
return rh;
}
static float get_RH(gpx_t *gpx) {
//ui32_t TBCREF_1000 = frame_bytes[0x32] | (frame_bytes[0x33]<<8) | (frame_bytes[0x34]<<16); // CalRef 55%RH , T=20C ?
//ui32_t TBCCR1_1000 = frame_bytes[0x35] | (frame_bytes[0x36]<<8) | (frame_bytes[0x37]<<16); // FrqCnt TLC555
//float cRHc55 = TBCCR1_1000 / (float)TBCREF_1000; // CalRef 55%RH , T=20C ?
float cRHc55 = get_count_RH(gpx) / get_count_55(gpx); // CalRef 55%RH , T=20C ?
return cRHc55_RH(gpx, cRHc55);
}
/*
static float get_C_RH() { // TLC555 astable: R_A=3.65k, R_B=338k
double R_B = 338e3;
double R_A = 3.65e3;
double C_RH = 1/get_TLC555freq() / (LN2 * (R_A + 2*R_B));
return C_RH;
}
*/
// Battery Voltage
// M10 batteries: 4xAA
static double get_BatV(gpx_t *gpx) {
float batV = 0.0;
ui32_t batADC = 0;
// ADC12_A5/4, V_R+=2.5V : 4096/4
// 0..1023 <-> 0V .. 2.5V
batADC = (gpx->frame_bytes[0x46] << 8) | gpx->frame_bytes[0x45];
// R1=[06D]=113kOhm
// R2=[30D]=200kOhm
// f=(R1+R2)/R2=2.77
//batV = 6.62*batADC/1000.0;
batV = 2.709 * batADC*2.5/1023.0;
//fprintf(stdout, " (bat0:%d/1023=%.2f)", batADC, batADC/1023.0);
return batV;
}
/* -------------------------------------------------------------------------- */
static int print_pos(gpx_t *gpx, int csOK) {
int err, err2;
err = 0;
if (gpx->type == t_M10) {
err |= get_GPSweek(gpx);
err |= get_GPStime(gpx);
err |= get_GPSlat(gpx);
err |= get_GPSlon(gpx);
err |= get_GPSalt(gpx);
err2 = get_GPSvel(gpx);
}
else if (gpx->type == t_M10plus) {
err |= get_gtopGPStime(gpx);
err |= get_gtopGPSdate(gpx);
err |= get_gtopGPSpos(gpx);
err2 = get_gtopGPSvel(gpx);
}
else err = 0xFF;
if (!err) {
if (gpx->type == t_M10) {
Gps2Date(gpx->week, gpx->gpssec, &gpx->jahr, &gpx->monat, &gpx->tag);
}
gpx->T = get_Temp(gpx);
gpx->_RH = get_RH(gpx);
gpx->Ti = get_intTemp(gpx);
gpx->batV = get_BatV(gpx);
if (gpx->option.col) {
fprintf(stdout, col_TXT);
if (gpx->type == t_M10)
{
if (gpx->option.vbs >= 3) fprintf(stdout, " (W "col_GPSweek"%d"col_TXT") ", gpx->week);
fprintf(stdout, col_GPSTOW"%s"col_TXT" ", weekday[gpx->wday]);
}
fprintf(stdout, col_GPSdate"%04d-%02d-%02d"col_TXT" "col_GPSTOW"%02d:%02d:%06.3f"col_TXT" ",
gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, gpx->sek);
fprintf(stdout, " lat: "col_GPSlat"%.5f"col_TXT" ", gpx->lat);
fprintf(stdout, " lon: "col_GPSlon"%.5f"col_TXT" ", gpx->lon);
fprintf(stdout, " alt: "col_GPSalt"%.2f"col_TXT" ", gpx->alt);
if (!err2) {
//if (gpx->option.vbs == 2) fprintf(stdout, " "col_GPSvel"(%.1f , %.1f : %.1f)"col_TXT" ", gpx->vx, gpx->vy, gpx->vD2);
fprintf(stdout, " vH: "col_GPSvel"%.1f"col_TXT" D: "col_GPSvel"%.1f"col_TXT" vV: "col_GPSvel"%.1f"col_TXT" ", gpx->vH, gpx->vD, gpx->vV);
}
if (gpx->option.vbs >= 2) {
get_SN(gpx);
fprintf(stdout, " SN: "col_SN"%s"col_TXT, gpx->SN);
}
if (gpx->option.vbs >= 2) {
fprintf(stdout, " # ");
if (csOK) fprintf(stdout, " "col_CSok"[OK]"col_TXT);
else fprintf(stdout, " "col_CSno"[NO]"col_TXT);
}
if (gpx->option.ptu && csOK) {
if (gpx->T > -270.0) fprintf(stdout, " T=%.1fC", gpx->T);
if (gpx->option.vbs >= 2) { if (gpx->_RH > -0.5) fprintf(stdout, " _RH=%.0f%%", gpx->_RH); }
if (gpx->option.vbs >= 3) {
float t2 = get_Tntc2(gpx);
float fq555 = get_TLC555freq(gpx);
fprintf(stdout, " (Ti:%.1fC)", gpx->Ti);
if (t2 > -270.0) fprintf(stdout, " (T2:%.1fC) (%.3fkHz)", t2, fq555/1e3);
}
}
if (gpx->option.vbs >= 3 && csOK) {
fprintf(stdout, " (bat:%.2fV)", gpx->batV);
}
fprintf(stdout, ANSI_COLOR_RESET"");
}
else {
if (gpx->type == t_M10)
{
if (gpx->option.vbs >= 3) fprintf(stdout, " (W %d) ", gpx->week);
fprintf(stdout, "%s ", weekday[gpx->wday]);
}
fprintf(stdout, "%04d-%02d-%02d %02d:%02d:%06.3f ",
gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, gpx->sek);
fprintf(stdout, " lat: %.5f ", gpx->lat);
fprintf(stdout, " lon: %.5f ", gpx->lon);
fprintf(stdout, " alt: %.2f ", gpx->alt);
if (!err2) {
//if (gpx->option.vbs == 2) fprintf(stdout, " (%.1f , %.1f : %.1f) ", gpx->vx, gpx->vy, gpx->vD2);
fprintf(stdout, " vH: %.1f D: %.1f vV: %.1f ", gpx->vH, gpx->vD, gpx->vV);
}
if (gpx->option.vbs >= 2) {
get_SN(gpx);
fprintf(stdout, " SN: %s", gpx->SN);
}
if (gpx->option.vbs >= 2) {
fprintf(stdout, " # ");
if (csOK) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]");
}
if (gpx->option.ptu && csOK) {
if (gpx->T > -270.0) fprintf(stdout, " T=%.1fC", gpx->T);
if (gpx->option.vbs >= 2) { if (gpx->_RH > -0.5) fprintf(stdout, " _RH=%.0f%%", gpx->_RH); }
if (gpx->option.vbs >= 3) {
float t2 = get_Tntc2(gpx);
float fq555 = get_TLC555freq(gpx);
fprintf(stdout, " (Ti:%.1fC)", gpx->Ti);
if (t2 > -270.0) fprintf(stdout, " (T2:%.1fC) (%.3fkHz)", t2, fq555/1e3);
}
}
if (gpx->option.vbs >= 3 && csOK) {
fprintf(stdout, " (bat:%.2fV)", gpx->batV);
}
}
fprintf(stdout, "\n");
if (gpx->option.jsn) {
// Print out telemetry data as JSON
if (csOK) {
int j;
char sn_id[4+12] = "M10-";
ui8_t aprs_id[4];
double sec_gps0 = (double)gpx->week*SECONDS_IN_WEEK + gpx->tow_ms/1e3;
// UTC = GPS - UTC_OFS (ab 1.1.2017: UTC_OFS=18sec)
int utc_s = gpx->gpssec - gpx->utc_ofs;
int utc_week = gpx->week;
int utc_jahr; int utc_monat; int utc_tag;
int utc_std; int utc_min; float utc_sek;
if (utc_s < 0) {
utc_week -= 1;
utc_s += 604800; // 604800sec = 1week
}
if (gpx->type == t_M10) {
Gps2Date(utc_week, utc_s, &utc_jahr, &utc_monat, &utc_tag);
utc_s %= (24*3600); // 86400sec = 1day
utc_std = utc_s/3600;
utc_min = (utc_s%3600)/60;
utc_sek = utc_s%60 + (gpx->tow_ms % 1000)/1000.0;
}
else {
utc_jahr = gpx->jahr;
utc_monat = gpx->monat;
utc_tag = gpx->tag;
utc_std = gpx->std;
utc_min = gpx->min;
utc_sek = gpx->sek;
}
strncpy(sn_id+4, gpx->SN, 12);
sn_id[15] = '\0';
for (j = 0; sn_id[j]; j++) { if (sn_id[j] == ' ') sn_id[j] = '-'; }
fprintf(stdout, "{ \"type\": \"%s\"", "M10");
fprintf(stdout, ", \"frame\": %lu ,", (unsigned long)(sec_gps0+0.5));
fprintf(stdout, "\"id\": \"%s\", \"datetime\": \"%04d-%02d-%02dT%02d:%02d:%06.3fZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %.5f, \"vel_h\": %.5f, \"heading\": %.5f, \"vel_v\": %.5f, \"sats\": %d",
sn_id, utc_jahr, utc_monat, utc_tag, utc_std, utc_min, utc_sek, gpx->lat, gpx->lon, gpx->alt, gpx->vH, gpx->vD, gpx->vV, gpx->numSV);
// APRS id, 9 characters
aprs_id[0] = gpx->frame_bytes[pos_SN+2];
aprs_id[1] = gpx->frame_bytes[pos_SN] & 0xF;
aprs_id[2] = gpx->frame_bytes[pos_SN+4];
aprs_id[3] = gpx->frame_bytes[pos_SN+3];
fprintf(stdout, ", \"aprsid\": \"ME%02X%1X%02X%02X\"", aprs_id[0], aprs_id[1], aprs_id[2], aprs_id[3]);
fprintf(stdout, ", \"batt\": %.2f", gpx->batV);
// temperature (and humidity)
if (gpx->option.ptu) {
if (gpx->T > -273.0) fprintf(stdout, ", \"temp\": %.1f", gpx->T);
if (gpx->option.vbs >= 2) {
if (gpx->_RH > -0.5) fprintf(stdout, ", \"humidity\": %.1f", gpx->_RH);
}
}
fprintf(stdout, ", \"subtype\": \"0x%02X\"", gpx->type);
fprintf(stdout, " }\n");
fprintf(stdout, "\n");
}
}
}
return err;
}
static int print_frame(gpx_t *gpx, int pos) {
int i;
ui8_t byte;
int cs1, cs2;
int flen = stdFLEN; // stdFLEN=0x64, auxFLEN=0x76
bits2bytes(gpx->frame_bits, gpx->frame_bytes);
flen = gpx->frame_bytes[0];
if (flen == stdFLEN) gpx->auxlen = 0;
else {
gpx->auxlen = flen - stdFLEN;
if (gpx->auxlen < 0 || gpx->auxlen > AUX_LEN) gpx->auxlen = 0;
}
cs1 = (gpx->frame_bytes[pos_Check+gpx->auxlen] << 8) | gpx->frame_bytes[pos_Check+gpx->auxlen+1];
cs2 = checkM10(gpx->frame_bytes, pos_Check+gpx->auxlen);
switch (gpx->frame_bytes[1]) {
case 0x8F: gpx->type = t_M2K2; break;
case 0x9F: gpx->type = t_M10; break;
case 0xAF: gpx->type = t_M10plus; break;
case 0x20: gpx->type = t_M20; break;
default : gpx->type = t_M10;
}
if (gpx->option.raw) {
if (gpx->option.col && gpx->frame_bytes[1] != 0x49 && (gpx->type == t_M10 || gpx->type == t_M10plus)) {
fprintf(stdout, col_FRTXT);
for (i = 0; i < FRAME_LEN+gpx->auxlen; i++) {
byte = gpx->frame_bytes[i];
if (i == 1) fprintf(stdout, col_Mtype);
if (gpx->type == t_M10) {
if ((i >= pos_GPSTOW) && (i < pos_GPSTOW+4)) fprintf(stdout, col_GPSTOW);
if ((i >= pos_GPSlat) && (i < pos_GPSlat+4)) fprintf(stdout, col_GPSlat);
if ((i >= pos_GPSlon) && (i < pos_GPSlon+4)) fprintf(stdout, col_GPSlon);
if ((i >= pos_GPSalt) && (i < pos_GPSalt+4)) fprintf(stdout, col_GPSalt);
if ((i >= pos_GPSweek) && (i < pos_GPSweek+2)) fprintf(stdout, col_GPSweek);
if ((i >= pos_GPSvE) && (i < pos_GPSvE+6)) fprintf(stdout, col_GPSvel);
}
else {
if ((i >= pos_gtopGPSlat) && (i < pos_gtopGPSlat+4)) fprintf(stdout, col_GPSlat);
if ((i >= pos_gtopGPSlon) && (i < pos_gtopGPSlon+4)) fprintf(stdout, col_GPSlon);
if ((i >= pos_gtopGPSalt) && (i < pos_gtopGPSalt+3)) fprintf(stdout, col_GPSalt);
if ((i >= pos_gtopGPSvE) && (i < pos_gtopGPSvE+6)) fprintf(stdout, col_GPSvel);
if ((i >= pos_gtopGPStime) && (i < pos_gtopGPStime+3)) fprintf(stdout, col_GPSTOW);
if ((i >= pos_gtopGPSdate) && (i < pos_gtopGPSdate+3)) fprintf(stdout, col_GPSweek);
}
if ((i >= pos_SN) && (i < pos_SN+5)) fprintf(stdout, col_SN);
if (i == pos_CNT) fprintf(stdout, col_CNT);
if ((i >= pos_Check+gpx->auxlen) && (i < pos_Check+gpx->auxlen+2)) fprintf(stdout, col_Check);
fprintf(stdout, "%02x", byte);
fprintf(stdout, col_FRTXT);
}
if (gpx->option.vbs) {
fprintf(stdout, " # "col_Check"%04x"col_FRTXT, cs2);
if (cs1 == cs2) fprintf(stdout, " "col_CSok"[OK]"col_TXT);
else fprintf(stdout, " "col_CSno"[NO]"col_TXT);
}
fprintf(stdout, ANSI_COLOR_RESET"\n");
}
else {
for (i = 0; i < FRAME_LEN+gpx->auxlen; i++) {
byte = gpx->frame_bytes[i];
fprintf(stdout, "%02x", byte);
}
if (gpx->option.vbs) {
fprintf(stdout, " # %04x", cs2);
if (cs1 == cs2) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]");
}
fprintf(stdout, "\n");
}
}
else if (gpx->frame_bytes[1] == 0x49) {
if (gpx->option.vbs == 3) {
for (i = 0; i < FRAME_LEN+gpx->auxlen; i++) {
byte = gpx->frame_bytes[i];
fprintf(stdout, "%02x", byte);
}
fprintf(stdout, "\n");
}
}
else print_pos(gpx, cs1 == cs2);
return (gpx->frame_bytes[0]<<8)|gpx->frame_bytes[1];
}
int main(int argc, char **argv) {
int option_verbose = 0; // ausfuehrliche Anzeige
int option_raw = 0; // rohe Frames
int option_inv = 0; // invertiert Signal
//int option_res = 0; // genauere Bitmessung
int option_color = 0;
int option_ptu = 0;
int option_min = 0;
int option_iq = 0;
int option_lp = 0;
int option_dc = 0;
int option_pcmraw = 0;
int wavloaded = 0;
int sel_wavch = 0; // audio channel: left
int spike = 0;
FILE *fp = NULL;
char *fpname = NULL;
int k;
int bit, bit0;
int bitpos = 0;
int bitQ;
int pos;
//int headerlen = 0;
int header_found = 0;
float thres = 0.76;
float _mv = 0.0;
int symlen = 2;
int bitofs = 0; // 0 .. +2
int shift = 0;
pcm_t pcm = {0};
dsp_t dsp = {0}; //memset(&dsp, 0, sizeof(dsp));
gpx_t gpx = {0};
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY);
#endif
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
//fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " -r, --raw\n");
fprintf(stderr, " -c, --color\n");
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
option_verbose = 1;
}
else if ( (strcmp(*argv, "-vv" ) == 0) ) option_verbose = 2;
else if ( (strcmp(*argv, "-vvv") == 0) ) option_verbose = 3;
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
option_raw = 1;
}
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
option_inv = 1; // nicht noetig
}
else if ( (strcmp(*argv, "-c") == 0) || (strcmp(*argv, "--color") == 0) ) {
option_color = 1;
}
//else if (strcmp(*argv, "--res") == 0) { option_res = 1; }
else if ( (strcmp(*argv, "--ptu") == 0) ) {
option_ptu = 1;
}
else if ( (strcmp(*argv, "--spike") == 0) ) {
spike = 1;
}
else if ( (strcmp(*argv, "--ch2") == 0) ) { sel_wavch = 1; } // right channel (default: 0=left)
else if ( (strcmp(*argv, "--ths") == 0) ) {
++argv;
if (*argv) {
thres = atof(*argv);
}
else return -1;
}
else if ( (strcmp(*argv, "-d") == 0) ) {
++argv;
if (*argv) {
shift = atoi(*argv);
if (shift > 4) shift = 4;
if (shift < -4) shift = -4;
}
else return -1;
}
else if (strcmp(*argv, "--iq0") == 0) { option_iq = 1; } // differential/FM-demod
else if (strcmp(*argv, "--iq2") == 0) { option_iq = 2; }
else if (strcmp(*argv, "--iq3") == 0) { option_iq = 3; } // iq2==iq3
else if (strcmp(*argv, "--IQ") == 0) { // fq baseband -> IF (rotate from and decimate)
double fq = 0.0; // --IQ <fq> , -0.5 < fq < 0.5
++argv;
if (*argv) fq = atof(*argv);
else return -1;
if (fq < -0.5) fq = -0.5;
if (fq > 0.5) fq = 0.5;
dsp.xlt_fq = -fq; // S(t) -> S(t)*exp(-f*2pi*I*t)
option_iq = 5;
}
else if (strcmp(*argv, "--lp") == 0) { option_lp = 1; } // IQ lowpass
else if (strcmp(*argv, "--dc") == 0) { option_dc = 1; }
else if (strcmp(*argv, "--min") == 0) {
option_min = 1;
}
else if (strcmp(*argv, "--json") == 0) { gpx.option.jsn = 1; }
else if (strcmp(*argv, "-") == 0) {
int sample_rate = 0, bits_sample = 0, channels = 0;
++argv;
if (*argv) sample_rate = atoi(*argv); else return -1;
++argv;
if (*argv) bits_sample = atoi(*argv); else return -1;
channels = 2;
if (sample_rate < 1 || (bits_sample != 8 && bits_sample != 16 && bits_sample != 32)) {
fprintf(stderr, "- <sr> <bs>\n");
return -1;
}
pcm.sr = sample_rate;
pcm.bps = bits_sample;
pcm.nch = channels;
option_pcmraw = 1;
}
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "error: open %s\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
gpx.option.inv = option_inv; // irrelevant
gpx.option.vbs = option_verbose;
gpx.option.raw = option_raw;
gpx.option.ptu = option_ptu;
gpx.option.col = option_color;
// init gpx
if (option_iq == 0 && option_pcmraw) {
fclose(fp);
fprintf(stderr, "error: raw data not IQ\n");
return -1;
}
if (option_iq) sel_wavch = 0;
pcm.sel_ch = sel_wavch;
if (option_pcmraw == 0) {
k = read_wav_header(&pcm, fp);
if ( k < 0 ) {
fclose(fp);
fprintf(stderr, "error: wav header\n");
return -1;
}
}
// m10: BT>1?, h=1.2 ?
symlen = 2;
// init dsp
//
dsp.fp = fp;
dsp.sr = pcm.sr;
dsp.bps = pcm.bps;
dsp.nch = pcm.nch;
dsp.ch = pcm.sel_ch;
dsp.br = (float)BAUD_RATE;
dsp.sps = (float)dsp.sr/dsp.br;
dsp.symlen = symlen;
dsp.symhd = 1; // M10!header
dsp._spb = dsp.sps*symlen;
dsp.hdr = rawheader;
dsp.hdrlen = strlen(rawheader);
dsp.BT = 1.8; // bw/time (ISI) // 1.0..2.0
dsp.h = 0.9; // 1.2 modulation index
dsp.opt_iq = option_iq;
dsp.opt_lp = option_lp;
dsp.lpIQ_bw = 24e3; // IF lowpass bandwidth
dsp.lpFM_bw = 10e3; // FM audio lowpass
dsp.opt_dc = option_dc;
dsp.opt_IFmin = option_min;
if ( dsp.sps < 8 ) {
fprintf(stderr, "note: sample rate low (%.1f sps)\n", dsp.sps);
}
//headerlen = dsp.hdrlen;
k = init_buffers(&dsp);
if ( k < 0 ) {
fprintf(stderr, "error: init buffers\n");
return -1;
};
bitofs += shift;
while ( 1 )
{
// FM-audio:
header_found = find_header(&dsp, thres, 2, bitofs, dsp.opt_dc); // optional 2nd pass: dc=0
_mv = dsp.mv;
if (header_found == EOF) break;
// mv == correlation score
if (_mv*(0.5-gpx.option.inv) < 0) {
gpx.option.inv ^= 0x1; // M10: irrelevant
}
if (header_found) {
bitpos = 0;
pos = 0;
pos /= 2;
bit0 = '0'; // oder: _mv[j] > 0
while ( pos < BITFRAME_LEN+BITAUX_LEN ) {
if (option_iq >= 2) {
float bl = -1;
if (option_iq > 2) bl = 4.0;
bitQ = read_slbit(&dsp, &bit, 0/*gpx.option.inv*/, bitofs, bitpos, bl, 0);
}
else {
bitQ = read_slbit(&dsp, &bit, 0/*gpx.option.inv*/, bitofs, bitpos, -1, spike); // symlen=2
}
if ( bitQ == EOF ) { break; }
gpx.frame_bits[pos] = 0x31 ^ (bit0 ^ bit);
pos++;
bit0 = bit;
bitpos += 1;
}
gpx.frame_bits[pos] = '\0';
print_frame(&gpx, pos);
if (pos < BITFRAME_LEN) break;
header_found = 0;
// bis Ende der Sekunde vorspulen; allerdings Doppel-Frame alle 10 sek
if (gpx.option.vbs < 3) { // && (regulare frame) // print_frame-return?
while ( bitpos < 5*BITFRAME_LEN ) {
bitQ = read_slbit(&dsp, &bit, 0/*gpx.option.inv*/, bitofs, bitpos, -1, spike); // symlen=2
if ( bitQ == EOF) break;
bitpos++;
}
}
pos = 0;
}
}
free_buffers(&dsp);
fclose(fp);
return 0;
}