/* * m10 * sync header: correlation/matched filter * files: m10mod.c demod_mod.h demod_mod.c * compile: * gcc -c demod_mod.c * gcc m10mod.c demod_mod.o -lm -o m10mod * * author: zilog80 */ #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif #include "demod_mod.h" typedef struct { i8_t vbs; // verbose output i8_t raw; // raw frames i8_t crc; // CRC check output i8_t ecc; // Reed-Solomon ECC i8_t sat; // GPS sat data i8_t ptu; // PTU: temperature i8_t inv; i8_t aut; i8_t col; // colors i8_t jsn; // JSON output (auto_rx) } option_t; /* 9600 baud -> 9616 baud ? */ #define BAUD_RATE 9615 // 9614..9616 /* -------------------------------------------------------------------------- */ /* Header = Sync-Header + Sonde-Header: 1100110011001100 1010011001001100 1101010011010011 0100110101010101 0011010011001100 uudduudduudduudd ududduuddudduudd uudududduududduu dudduudududududu dduududduudduudd (oder:) dduudduudduudduu duduudduuduudduu ddududuudduduudd uduuddududududud uudduduudduudduu (komplement) 0 0 0 0 0 0 0 0 1 1 - - - 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 */ #define BITS 8 #define HEADLEN 32 // HEADLEN+HEADOFS=32 <= strlen(header) #define HEADOFS 0 // Sync-Header (raw) // Sonde-Header (bits) //char head[] = "11001100110011001010011001001100"; //"0110010010011111"; // M10: 64 9F , M2K2: 64 8F //"0111011010011111"; // M10: 76 9F , w/ aux-data //"0110010001001001"; // M10-dop: 64 49 09 //"0110010010101111"; // M10+: 64 AF w/ gtop-GPS //"0100010100100000"; // M20: 45 20 (baud=9600) static char rawheader[] = "10011001100110010100110010011001"; #define FRAME_LEN (100+1) // 0x64+1 #define BITFRAME_LEN (FRAME_LEN*BITS) #define AUX_LEN 20 #define BITAUX_LEN (AUX_LEN*BITS) #define t_M2K2 0x8F #define t_M10 0x9F #define t_M10plus 0xAF #define t_M20 0x20 typedef struct { int week; int tow_ms; int gpssec; int jahr; int monat; int tag; int wday; int std; int min; float sek; double lat; double lon; double alt; double vH; double vD; double vV; double vx; double vy; double vD2; float T; float _RH; float Ti; float batV; ui8_t numSV; ui8_t utc_ofs; char SN[12]; ui8_t frame_bytes[FRAME_LEN+AUX_LEN+4]; char frame_bits[BITFRAME_LEN+BITAUX_LEN+8]; int auxlen; // 0 .. 0x76-0x64 option_t option; ui8_t type; } gpx_t; /* -------------------------------------------------------------------------- */ #define SECONDS_IN_WEEK (604800.0) // 7*86400 /* * Convert GPS Week and Seconds to Modified Julian Day. * - Adapted from sci.astro FAQ. * - Ignores UTC leap seconds. */ static void Gps2Date(long GpsWeek, long GpsSeconds, int *Year, int *Month, int *Day) { long GpsDays, Mjd; long J, C, Y, M; GpsDays = GpsWeek * 7 + (GpsSeconds / 86400); Mjd = 44244 + GpsDays; J = Mjd + 2468570; C = 4 * J / 146097; J = J - (146097 * C + 3) / 4; Y = 4000 * (J + 1) / 1461001; J = J - 1461 * Y / 4 + 31; M = 80 * J / 2447; *Day = J - 2447 * M / 80; J = M / 11; *Month = M + 2 - (12 * J); *Year = 100 * (C - 49) + Y + J; } /* -------------------------------------------------------------------------- */ static int bits2bytes(char *bitstr, ui8_t *bytes) { int i, bit, d, byteval; int bitpos, bytepos; bitpos = 0; bytepos = 0; while (bytepos < FRAME_LEN+AUX_LEN) { byteval = 0; d = 1; for (i = 0; i < BITS; i++) { //bit=*(bitstr+bitpos+i); /* little endian */ bit=*(bitstr+bitpos+7-i); /* big endian */ // bit == 'x' ? if (bit == '1') byteval += d; else /*if ((bit == '0') || (bit == 'x'))*/ byteval += 0; d <<= 1; } bitpos += BITS; bytes[bytepos++] = byteval & 0xFF; } //while (bytepos < FRAME_LEN+AUX_LEN) bytes[bytepos++] = 0; return 0; } /* -------------------------------------------------------------------------- */ /* M10 w/ trimble GPS frame[0x0] = framelen frame[0x1] = 0x9F (type M10) init/noGPS: frame[0x2]=0x23 GPS: frame[0x2]=0x20 (GPS trimble pck 0x8F-20 sub-id) frame[0x02..0x21] = GPS trimble pck 0x8F-20 byte 0..31 (sub-id, vel, tow, lat, lon, alt, fix, NumSV, UTC-ofs, week) frame[0x22..0x2D] = GPS trimble pck 0x8F-20 byte 32..55:2 (PRN 1..12 only) Trimble Copernicus II GPS packet 0x8F-20 (p.138) byte 0 sub-pck id (always 0x20) 2-3 velE (i16) 0.005m/s 4-5 velN (i16) 0.005m/s 6-7 velU (i16) 0.005m/s 8-11 TOW (ms) 12-15 lat (scale 2^32/360) (i32) -90..90 16-19 lon (scale 2^32/360) (ui32) 0..360 <-> (i32) -180..180 20-23 alt (i32) mm above ellipsoid) 24 bit0: vel-scale (0: 0.005m/s) 26 datum (1: WGS-84) 27 fix: bit0(0:valid fix, 1:invalid fix), bit2(0:3D, 1:2D) 28 numSVs 29 UTC offset = (GPS - UTC) sec 30-31 GPS week 32+2*n PRN_(n+1), bit0-5 frame[0x32..0x5C] sensors (rel.hum., temp.) frame[0x5D..0x61] SN frame[0x62] counter frame[0x63..0x64] check (AUX len=0x76: frame[0x63..0x74], frame[0x75..0x76]) 6449/10sec-frame: GPS trimble pck 0x47 (signal levels): numSats sat1 lev1 sat2 lev2 .. frame[0x0] = framelen frame[0x1] = 0x49 frame[0x2] = numSats (max 12) frame[0x3+2*n] = PRN_(n+1) frame[0x4+2*n] = signal level (float32 -> i8-byte level) */ /* M10 w/ Sierra Wireless Airprime X1110 -> Trimble Copernicus II */ #define stdFLEN 0x64 // pos[0]=0x64 // Trimble GPS #define pos_GPSTOW 0x0A // 4 byte #define pos_GPSlat 0x0E // 4 byte #define pos_GPSlon 0x12 // 4 byte #define pos_GPSalt 0x16 // 4 byte #define pos_GPSsats 0x1E // 1 byte #define pos_GPSutc 0x1F // 1 byte #define pos_GPSweek 0x20 // 2 byte //Velocity East-North-Up (ENU) #define pos_GPSvE 0x04 // 2 byte #define pos_GPSvN 0x06 // 2 byte #define pos_GPSvU 0x08 // 2 byte #define pos_SN 0x5D // 2+3 byte #define pos_CNT 0x62 // 1 byte #define pos_Check (stdFLEN-1) // 2 byte // Gtop GPS #define pos_gtopGPSlat 0x04 // 4 byte #define pos_gtopGPSlon 0x08 // 4 byte #define pos_gtopGPSalt 0x0C // 3 byte #define pos_gtopGPSvE 0x0F // 2 byte #define pos_gtopGPSvN 0x11 // 2 byte #define pos_gtopGPSvU 0x13 // 2 byte #define pos_gtopGPStime 0x15 // 3 byte #define pos_gtopGPSdate 0x18 // 3 byte #define ANSI_COLOR_RED "\x1b[31m" #define ANSI_COLOR_GREEN "\x1b[32m" #define ANSI_COLOR_YELLOW "\x1b[33m" #define ANSI_COLOR_BLUE "\x1b[34m" #define ANSI_COLOR_MAGENTA "\x1b[35m" #define ANSI_COLOR_CYAN "\x1b[36m" #define ANSI_COLOR_RESET "\x1b[0m" #define XTERM_COLOR_BROWN "\x1b[38;5;94m" // 38;5;{0..255}m #define col_Mtype "\x1b[38;5;250m" // 1 byte #define col_GPSweek "\x1b[38;5;20m" // 2 byte #define col_GPSTOW "\x1b[38;5;27m" // 4 byte #define col_GPSdate "\x1b[38;5;94m" //111 #define col_GPSlat "\x1b[38;5;34m" // 4 byte #define col_GPSlon "\x1b[38;5;70m" // 4 byte #define col_GPSalt "\x1b[38;5;82m" // 4 byte #define col_GPSvel "\x1b[38;5;36m" // 6 byte #define col_SN "\x1b[38;5;58m" // 3 byte #define col_CNT "\x1b[38;5;172m" // 1 byte #define col_Check "\x1b[38;5;11m" // 2 byte #define col_CSok "\x1b[38;5;2m" #define col_CSno "\x1b[38;5;1m" #define col_TXT "\x1b[38;5;244m" #define col_FRTXT "\x1b[38;5;244m" /* $ for code in {0..255} > do echo -e "\e[38;5;${code}m"'\\e[38;5;'"$code"m"\e[0m" > done */ static int get_GPSweek(gpx_t *gpx) { int i; unsigned byte; ui8_t gpsweek_bytes[2]; int gpsweek; gpx->numSV = gpx->frame_bytes[pos_GPSsats]; gpx->utc_ofs = gpx->frame_bytes[pos_GPSutc]; for (i = 0; i < 2; i++) { byte = gpx->frame_bytes[pos_GPSweek + i]; gpsweek_bytes[i] = byte; } gpsweek = (gpsweek_bytes[0] << 8) + gpsweek_bytes[1]; if (gpsweek > 4000) return -1; // Trimble Copernicus II WNRO (AirPrime XM1110 OK) if (gpsweek < 1304 /*2005-01-02*/ ) gpsweek += 1024; gpx->week = gpsweek; return 0; } //char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"}; static char weekday[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}; static int get_GPStime(gpx_t *gpx) { int i; unsigned byte; ui8_t gpstime_bytes[4]; int gpstime, day; int ms; for (i = 0; i < 4; i++) { byte = gpx->frame_bytes[pos_GPSTOW + i]; gpstime_bytes[i] = byte; } gpstime = 0; for (i = 0; i < 4; i++) { gpstime |= gpstime_bytes[i] << (8*(3-i)); } gpx->tow_ms = gpstime; ms = gpstime % 1000; gpstime /= 1000; gpx->gpssec = gpstime; day = gpstime / (24 * 3600); if ((day < 0) || (day > 6)) return -1; gpstime %= (24*3600); gpx->wday = day; gpx->std = gpstime/3600; gpx->min = (gpstime%3600)/60; gpx->sek = gpstime%60 + ms/1000.0; return 0; } static double B60B60 = (1<<30)/90.0; // 2^32/360 = 2^30/90 = 0xB60B60.711x static int get_GPSlat(gpx_t *gpx) { int i; unsigned byte; ui8_t gpslat_bytes[4]; int gpslat; double lat; for (i = 0; i < 4; i++) { byte = gpx->frame_bytes[pos_GPSlat + i]; gpslat_bytes[i] = byte; } gpslat = 0; for (i = 0; i < 4; i++) { gpslat |= gpslat_bytes[i] << (8*(3-i)); } lat = gpslat / B60B60; gpx->lat = lat; return 0; } static int get_GPSlon(gpx_t *gpx) { int i; unsigned byte; ui8_t gpslon_bytes[4]; int gpslon; double lon; for (i = 0; i < 4; i++) { byte = gpx->frame_bytes[pos_GPSlon + i]; gpslon_bytes[i] = byte; } gpslon = 0; for (i = 0; i < 4; i++) { gpslon |= gpslon_bytes[i] << (8*(3-i)); } lon = gpslon / B60B60; gpx->lon = lon; return 0; } static int get_GPSalt(gpx_t *gpx) { int i; unsigned byte; ui8_t gpsalt_bytes[4]; int gpsalt; double alt; for (i = 0; i < 4; i++) { byte = gpx->frame_bytes[pos_GPSalt + i]; gpsalt_bytes[i] = byte; } gpsalt = 0; for (i = 0; i < 4; i++) { gpsalt |= gpsalt_bytes[i] << (8*(3-i)); } alt = gpsalt / 1000.0; gpx->alt = alt; return 0; } static int get_GPSvel(gpx_t *gpx) { int i; unsigned byte; ui8_t gpsVel_bytes[2]; short vel16; double vx, vy, dir, alpha; const double ms2kn100 = 2e2; // m/s -> knots: 1 m/s = 3.6/1.852 kn = 1.94 kn for (i = 0; i < 2; i++) { byte = gpx->frame_bytes[pos_GPSvE + i]; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1]; vx = vel16 / ms2kn100; // ost for (i = 0; i < 2; i++) { byte = gpx->frame_bytes[pos_GPSvN + i]; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1]; vy= vel16 / ms2kn100; // nord gpx->vx = vx; gpx->vy = vy; gpx->vH = sqrt(vx*vx+vy*vy); ///* alpha = atan2(vy, vx)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts) dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t) gpx->vD2 = dir; //*/ dir = atan2(vx, vy) * 180 / M_PI; if (dir < 0) dir += 360; gpx->vD = dir; for (i = 0; i < 2; i++) { byte = gpx->frame_bytes[pos_GPSvU + i]; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] << 8 | gpsVel_bytes[1]; gpx->vV = vel16 / ms2kn100; return 0; } static int get_SN(gpx_t *gpx) { int i; unsigned byte; ui8_t sn_bytes[5]; for (i = 0; i < 11; i++) gpx->SN[i] = ' '; gpx->SN[11] = '\0'; for (i = 0; i < 5; i++) { byte = gpx->frame_bytes[pos_SN + i]; sn_bytes[i] = byte; } byte = sn_bytes[2]; sprintf(gpx->SN, "%1X%02u", (byte>>4)&0xF, byte&0xF); byte = sn_bytes[3] | (sn_bytes[4]<<8); sprintf(gpx->SN+3, " %1X %1u%04u", sn_bytes[0]&0xF, (byte>>13)&0x7, byte&0x1FFF); return 0; } /* -------------------------------------------------------------------------- */ // // M10+ w/ Gtop static int get_gtopGPSpos(gpx_t *gpx) { int i; ui8_t bytes[4]; int val; for (i = 0; i < 4; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSlat + i]; val = 0; for (i = 0; i < 4; i++) val |= bytes[i] << (8*(3-i)); gpx->lat = val/1e6; for (i = 0; i < 4; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSlon + i]; val = 0; for (i = 0; i < 4; i++) val |= bytes[i] << (8*(3-i)); gpx->lon = val/1e6; for (i = 0; i < 3; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSalt + i]; val = 0; for (i = 0; i < 3; i++) val |= bytes[i] << (8*(2-i)); if (val & 0x800000) val -= 0x1000000; // alt: signed 24bit? gpx->alt = val/1e2; return 0; } static int get_gtopGPSvel(gpx_t *gpx) { int i; ui8_t bytes[2]; short vel16; double vx, vy, vz, dir; for (i = 0; i < 2; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSvE + i]; vel16 = bytes[0] << 8 | bytes[1]; vx = vel16 / 1e2; // east for (i = 0; i < 2; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSvN + i]; vel16 = bytes[0] << 8 | bytes[1]; vy= vel16 / 1e2; // north for (i = 0; i < 2; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSvU + i]; vel16 = bytes[0] << 8 | bytes[1]; vz = vel16 / 1e2; // up gpx->vx = vx; gpx->vy = vy; gpx->vH = sqrt(vx*vx+vy*vy); dir = atan2(vx, vy) * 180 / M_PI; if (dir < 0) dir += 360; gpx->vD = dir; gpx->vV = vz; return 0; } static int get_gtopGPStime(gpx_t *gpx) { int i; ui8_t bytes[4]; int time; for (i = 0; i < 3; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPStime + i]; time = 0; for (i = 0; i < 3; i++) time |= bytes[i] << (8*(2-i)); gpx->std = time/10000; gpx->min = (time%10000)/100; gpx->sek = (time%100)/1.0; return 0; } static int get_gtopGPSdate(gpx_t *gpx) { int i; ui8_t bytes[4]; int date; for (i = 0; i < 3; i++) bytes[i] = gpx->frame_bytes[pos_gtopGPSdate + i]; date = 0; for (i = 0; i < 3; i++) date |= bytes[i] << (8*(2-i)); gpx->jahr = 2000 + date%100; gpx->monat = (date%10000)/100; gpx->tag = date/10000; return 0; } /* -------------------------------------------------------------------------- */ /* g : F^n -> F^16 // checksum, linear g(m||b) = f(g(m),b) // update checksum f : F^16 x F^8 -> F^16 linear 010100001000000101000000 001010000100000010100000 000101000010000001010000 000010100001000000101000 000001010000100000010100 100000100000010000001010 000000011010100000000100 100000000101010000000010 000000001000000000000000 000000000100000000000000 000000000010000000000000 000000000001000000000000 000000000000100000000000 000000000000010000000000 000000000000001000000000 000000000000000100000000 */ static int update_checkM10(int c, ui8_t b) { int c0, c1, t, t6, t7, s; c1 = c & 0xFF; // B b = (b >> 1) | ((b & 1) << 7); b ^= (b >> 2) & 0xFF; // A1 t6 = ( c & 1) ^ ((c>>2) & 1) ^ ((c>>4) & 1); t7 = ((c>>1) & 1) ^ ((c>>3) & 1) ^ ((c>>5) & 1); t = (c & 0x3F) | (t6 << 6) | (t7 << 7); // A2 s = (c >> 7) & 0xFF; s ^= (s >> 2) & 0xFF; c0 = b ^ t ^ s; return ((c1<<8) | c0) & 0xFFFF; } static int checkM10(ui8_t *msg, int len) { int i, cs; cs = 0; for (i = 0; i < len; i++) { cs = update_checkM10(cs, msg[i]); } return cs & 0xFFFF; } /* -------------------------------------------------------------------------- */ // Temperatur Sensor // NTC-Thermistor Shibaura PB5-41E // static float get_Temp(gpx_t *gpx) { // NTC-Thermistor Shibaura PB5-41E // T00 = 273.15 + 0.0 , R00 = 15e3 // T25 = 273.15 + 25.0 , R25 = 5.369e3 // B00 = 3450.0 Kelvin // 0C..100C, poor fit low temps // [ T/C , R/1e3 ] ( [P__-43]/2.0 ): // [ -50.0 , 204.0 ] // [ -45.0 , 150.7 ] // [ -40.0 , 112.6 ] // [ -35.0 , 84.90 ] // [ -30.0 , 64.65 ] // [ -25.0 , 49.66 ] // [ -20.0 , 38.48 ] // [ -15.0 , 30.06 ] // [ -10.0 , 23.67 ] // [ -5.0 , 18.78 ] // [ 0.0 , 15.00 ] // [ 5.0 , 12.06 ] // [ 10.0 , 9.765 ] // [ 15.0 , 7.955 ] // [ 20.0 , 6.515 ] // [ 25.0 , 5.370 ] // [ 30.0 , 4.448 ] // [ 35.0 , 3.704 ] // [ 40.0 , 3.100 ] // -> Steinhart–Hart coefficients (polyfit): float p0 = 1.07303516e-03, p1 = 2.41296733e-04, p2 = 2.26744154e-06, p3 = 6.52855181e-08; // T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 ) // range/scale 0, 1, 2: // M10-pcb float Rs[3] = { 12.1e3 , 36.5e3 , 475.0e3 }; // bias/series float Rp[3] = { 1e20 , 330.0e3 , 2000.0e3 }; // parallel, Rp[0]=inf ui8_t scT; // {0,1,2}, range/scale voltage divider ui16_t ADC_RT; // ADC12 P6.7(A7) , adr_0377h,adr_0376h ui16_t Tcal[2]; // adr_1000h[scT*4] float adc_max = 4095.0; // ADC12 float x, R; float T = 0; // T/Kelvin scT = gpx->frame_bytes[0x3E]; // adr_0455h ADC_RT = (gpx->frame_bytes[0x40] << 8) | gpx->frame_bytes[0x3F]; ADC_RT -= 0xA000; Tcal[0] = (gpx->frame_bytes[0x42] << 8) | gpx->frame_bytes[0x41]; Tcal[1] = (gpx->frame_bytes[0x44] << 8) | gpx->frame_bytes[0x43]; x = (adc_max-ADC_RT)/ADC_RT; // (Vcc-Vout)/Vout if (scT < 3) R = Rs[scT] /( x - Rs[scT]/Rp[scT] ); else R = -1; if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) ); return T - 273.15; // Celsius } static float get_intTemp(gpx_t *gpx) { // on-chip temperature ui16_t ADC_Ti_raw = (gpx->frame_bytes[0x49] << 8) | gpx->frame_bytes[0x48]; // int.temp.diode, ref: 4095->1.5V float vti, ti; // INCH1A (temp.diode), slau144 vti = ADC_Ti_raw/4095.0 * 1.5; // V_REF+ = 1.5V, no calibration ti = (vti-0.986)/0.00355; // 0.986/0.00355=277.75, 1.5/4095/0.00355=0.1032 gpx->Ti = ti; // SegmentA-Calibration: //ui16_t T30 = adr_10e2h; // CAL_ADC_15T30 //ui16_t T85 = adr_10e4h; // CAL_ADC_15T85 //float tic = (ADC_Ti_raw-T30)*(85.0-30.0)/(T85-T30) + 30.0; } /* frame[0x32]: adr_1074h frame[0x33]: adr_1075h frame[0x34]: adr_1076h frame[0x35..0x37]: TBCCR1 ; relHumCap-freq frame[0x38]: adr_1078h frame[0x39]: adr_1079h frame[0x3A]: adr_1077h frame[0x3B]: adr_100Ch frame[0x3C..3D]: 0 frame[0x3E]: scale_index ; scale/range-index frame[0x3F..40] = ADC12_A7 | 0xA000, V_R+=AVcc ; Thermistor frame[0x41]: adr_1000h[scale_index*4] frame[0x42]: adr_1000h[scale_index*4+1] frame[0x43]: adr_1000h[scale_index*4+2] frame[0x44]: adr_1000h[scale_index*4+3] frame[0x45..46]: ADC12_A5/4, V_R+=2.5V frame[0x47]: ADC12_A2/16 , V_R+=2.5V frame[0x48..49]: ADC12_iT, V_R+=1.5V (int.Temp.diode) frame[0x4C..4D]: ADC12_A6, V_R+=2.5V frame[0x4E..4F]: ADC12_A3, V_R+=AVcc frame[0x50..54]: 0; frame[0x55..56]: ADC12_A1, V_R+=AVcc frame[0x57..58]: ADC12_A0, V_R+=AVcc frame[0x59..5A]: ADC12_A4, V_R+=AVcc // ntc2: R(25C)=2.2k, Rs=22.1e3 (relHumCap-Temp) frame[0x5B]: frame[0x5C]: adr_108Eh frame[0x5D]: adr_1082h (SN) frame[0x5E]: adr_1083h (SN) frame[0x5F]: adr_1084h (SN) frame[0x60]: adr_1080h (SN) frame[0x61]: adr_1081h (SN) */ static float get_Tntc2(gpx_t *gpx) { // SMD ntc float Rs = 22.1e3; // P5.6=Vcc // float R25 = 2.2e3; // float b = 3650.0; // B/Kelvin // float T25 = 25.0 + 273.15; // T0=25C, R0=R25=5k // -> Steinhart–Hart coefficients (polyfit): float p0 = 4.42606809e-03, p1 = -6.58184309e-04, p2 = 8.95735557e-05, p3 = -2.84347503e-06; float T = 0.0; // T/Kelvin ui16_t ADC_ntc2; // ADC12 P6.4(A4) float x, R; ADC_ntc2 = (gpx->frame_bytes[0x5A] << 8) | gpx->frame_bytes[0x59]; x = (4095.0 - ADC_ntc2)/ADC_ntc2; // (Vcc-Vout)/Vout R = Rs / x; //if (R > 0) T = 1/(1/T25 + 1/b * log(R/R25)); if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) ); return T - 273.15; } // Humidity Sensor // U.P.S.I. // #define FREQ_CAPCLK (8e6/2) // 8 MHz XT2 crystal, InputDivider IDx=01 (/2) #define LN2 0.693147181 #define ADR_108A 1000.0 // 0x3E8=1000 static float get_count_55(gpx_t *gpx) { // CalRef 55%RH , T=20C ? ui32_t TBCREF_1000 = gpx->frame_bytes[0x32] | (gpx->frame_bytes[0x33]<<8) | (gpx->frame_bytes[0x34]<<16); return TBCREF_1000 / ADR_108A; } static float get_count_RH(gpx_t *gpx) { // capture 1000 rising edges ui32_t TBCCR1_1000 = gpx->frame_bytes[0x35] | (gpx->frame_bytes[0x36]<<8) | (gpx->frame_bytes[0x37]<<16); return TBCCR1_1000 / ADR_108A; } static float get_TLC555freq(gpx_t *gpx) { return FREQ_CAPCLK / get_count_RH(gpx); } static float cRHc55_RH(gpx_t *gpx, float cRHc55) { // C_RH / C_55 // U.P.S.I. // C_RH/C_55 = 0.8955 + 0.002*RH , T=20C // C_RH = C_RH(RH,T) , RH = RH(C_RH,T) // C_RH/C_55 approx.eq. count_RH/count_ref float TH = get_Tntc2(gpx); float Tc = get_Temp(gpx); float rh = (cRHc55-0.8955)/0.002; // UPSI linear transfer function // temperature compensation float T0 = 0.0, T1 = -30.0; // T/C float T = Tc; // TH, TH-Tc (sensorT - T) if (T < T0) rh += T0 - T/5.5; // approx/empirical if (T < T1) rh *= 1.0 + (T1-T)/75.0; // approx/empirical if (rh < 0.0) rh = 0.0; if (rh > 100.0) rh = 100.0; return rh; } static float get_RH(gpx_t *gpx) { //ui32_t TBCREF_1000 = frame_bytes[0x32] | (frame_bytes[0x33]<<8) | (frame_bytes[0x34]<<16); // CalRef 55%RH , T=20C ? //ui32_t TBCCR1_1000 = frame_bytes[0x35] | (frame_bytes[0x36]<<8) | (frame_bytes[0x37]<<16); // FrqCnt TLC555 //float cRHc55 = TBCCR1_1000 / (float)TBCREF_1000; // CalRef 55%RH , T=20C ? float cRHc55 = get_count_RH(gpx) / get_count_55(gpx); // CalRef 55%RH , T=20C ? return cRHc55_RH(gpx, cRHc55); } /* static float get_C_RH() { // TLC555 astable: R_A=3.65k, R_B=338k double R_B = 338e3; double R_A = 3.65e3; double C_RH = 1/get_TLC555freq() / (LN2 * (R_A + 2*R_B)); return C_RH; } */ // Battery Voltage // M10 batteries: 4xAA static double get_BatV(gpx_t *gpx) { float batV = 0.0; ui32_t batADC = 0; // ADC12_A5/4, V_R+=2.5V : 4096/4 // 0..1023 <-> 0V .. 2.5V batADC = (gpx->frame_bytes[0x46] << 8) | gpx->frame_bytes[0x45]; // R1=[06D]=113kOhm // R2=[30D]=200kOhm // f=(R1+R2)/R2=2.77 //batV = 6.62*batADC/1000.0; batV = 2.709 * batADC*2.5/1023.0; //fprintf(stdout, " (bat0:%d/1023=%.2f)", batADC, batADC/1023.0); return batV; } /* -------------------------------------------------------------------------- */ static int print_pos(gpx_t *gpx, int csOK) { int err, err2; err = 0; if (gpx->type == t_M10) { err |= get_GPSweek(gpx); err |= get_GPStime(gpx); err |= get_GPSlat(gpx); err |= get_GPSlon(gpx); err |= get_GPSalt(gpx); err2 = get_GPSvel(gpx); } else if (gpx->type == t_M10plus) { err |= get_gtopGPStime(gpx); err |= get_gtopGPSdate(gpx); err |= get_gtopGPSpos(gpx); err2 = get_gtopGPSvel(gpx); } else err = 0xFF; if (!err) { if (gpx->type == t_M10) { Gps2Date(gpx->week, gpx->gpssec, &gpx->jahr, &gpx->monat, &gpx->tag); } gpx->T = get_Temp(gpx); gpx->_RH = get_RH(gpx); gpx->Ti = get_intTemp(gpx); gpx->batV = get_BatV(gpx); if (gpx->option.col) { fprintf(stdout, col_TXT); if (gpx->type == t_M10) { if (gpx->option.vbs >= 3) fprintf(stdout, " (W "col_GPSweek"%d"col_TXT") ", gpx->week); fprintf(stdout, col_GPSTOW"%s"col_TXT" ", weekday[gpx->wday]); } fprintf(stdout, col_GPSdate"%04d-%02d-%02d"col_TXT" "col_GPSTOW"%02d:%02d:%06.3f"col_TXT" ", gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, gpx->sek); fprintf(stdout, " lat: "col_GPSlat"%.5f"col_TXT" ", gpx->lat); fprintf(stdout, " lon: "col_GPSlon"%.5f"col_TXT" ", gpx->lon); fprintf(stdout, " alt: "col_GPSalt"%.2f"col_TXT" ", gpx->alt); if (!err2) { //if (gpx->option.vbs == 2) fprintf(stdout, " "col_GPSvel"(%.1f , %.1f : %.1f)"col_TXT" ", gpx->vx, gpx->vy, gpx->vD2); fprintf(stdout, " vH: "col_GPSvel"%.1f"col_TXT" D: "col_GPSvel"%.1f"col_TXT" vV: "col_GPSvel"%.1f"col_TXT" ", gpx->vH, gpx->vD, gpx->vV); } if (gpx->option.vbs >= 2) { get_SN(gpx); fprintf(stdout, " SN: "col_SN"%s"col_TXT, gpx->SN); } if (gpx->option.vbs >= 2) { fprintf(stdout, " # "); if (csOK) fprintf(stdout, " "col_CSok"[OK]"col_TXT); else fprintf(stdout, " "col_CSno"[NO]"col_TXT); } if (gpx->option.ptu && csOK) { if (gpx->T > -270.0) fprintf(stdout, " T=%.1fC", gpx->T); if (gpx->option.vbs >= 2) { if (gpx->_RH > -0.5) fprintf(stdout, " _RH=%.0f%%", gpx->_RH); } if (gpx->option.vbs >= 3) { float t2 = get_Tntc2(gpx); float fq555 = get_TLC555freq(gpx); fprintf(stdout, " (Ti:%.1fC)", gpx->Ti); if (t2 > -270.0) fprintf(stdout, " (T2:%.1fC) (%.3fkHz)", t2, fq555/1e3); } } if (gpx->option.vbs >= 3 && csOK) { fprintf(stdout, " (bat:%.2fV)", gpx->batV); } fprintf(stdout, ANSI_COLOR_RESET""); } else { if (gpx->type == t_M10) { if (gpx->option.vbs >= 3) fprintf(stdout, " (W %d) ", gpx->week); fprintf(stdout, "%s ", weekday[gpx->wday]); } fprintf(stdout, "%04d-%02d-%02d %02d:%02d:%06.3f ", gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, gpx->sek); fprintf(stdout, " lat: %.5f ", gpx->lat); fprintf(stdout, " lon: %.5f ", gpx->lon); fprintf(stdout, " alt: %.2f ", gpx->alt); if (!err2) { //if (gpx->option.vbs == 2) fprintf(stdout, " (%.1f , %.1f : %.1f) ", gpx->vx, gpx->vy, gpx->vD2); fprintf(stdout, " vH: %.1f D: %.1f vV: %.1f ", gpx->vH, gpx->vD, gpx->vV); } if (gpx->option.vbs >= 2) { get_SN(gpx); fprintf(stdout, " SN: %s", gpx->SN); } if (gpx->option.vbs >= 2) { fprintf(stdout, " # "); if (csOK) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]"); } if (gpx->option.ptu && csOK) { if (gpx->T > -270.0) fprintf(stdout, " T=%.1fC", gpx->T); if (gpx->option.vbs >= 2) { if (gpx->_RH > -0.5) fprintf(stdout, " _RH=%.0f%%", gpx->_RH); } if (gpx->option.vbs >= 3) { float t2 = get_Tntc2(gpx); float fq555 = get_TLC555freq(gpx); fprintf(stdout, " (Ti:%.1fC)", gpx->Ti); if (t2 > -270.0) fprintf(stdout, " (T2:%.1fC) (%.3fkHz)", t2, fq555/1e3); } } if (gpx->option.vbs >= 3 && csOK) { fprintf(stdout, " (bat:%.2fV)", gpx->batV); } } fprintf(stdout, "\n"); if (gpx->option.jsn) { // Print out telemetry data as JSON if (csOK) { int j; char sn_id[4+12] = "M10-"; ui8_t aprs_id[4]; double sec_gps0 = (double)gpx->week*SECONDS_IN_WEEK + gpx->tow_ms/1e3; // UTC = GPS - UTC_OFS (ab 1.1.2017: UTC_OFS=18sec) int utc_s = gpx->gpssec - gpx->utc_ofs; int utc_week = gpx->week; int utc_jahr; int utc_monat; int utc_tag; int utc_std; int utc_min; float utc_sek; if (utc_s < 0) { utc_week -= 1; utc_s += 604800; // 604800sec = 1week } if (gpx->type == t_M10) { Gps2Date(utc_week, utc_s, &utc_jahr, &utc_monat, &utc_tag); utc_s %= (24*3600); // 86400sec = 1day utc_std = utc_s/3600; utc_min = (utc_s%3600)/60; utc_sek = utc_s%60 + (gpx->tow_ms % 1000)/1000.0; } else { utc_jahr = gpx->jahr; utc_monat = gpx->monat; utc_tag = gpx->tag; utc_std = gpx->std; utc_min = gpx->min; utc_sek = gpx->sek; } strncpy(sn_id+4, gpx->SN, 12); sn_id[15] = '\0'; for (j = 0; sn_id[j]; j++) { if (sn_id[j] == ' ') sn_id[j] = '-'; } fprintf(stdout, "{ \"type\": \"%s\"", "M10"); fprintf(stdout, ", \"frame\": %lu ,", (unsigned long)(sec_gps0+0.5)); fprintf(stdout, "\"id\": \"%s\", \"datetime\": \"%04d-%02d-%02dT%02d:%02d:%06.3fZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %.5f, \"vel_h\": %.5f, \"heading\": %.5f, \"vel_v\": %.5f, \"sats\": %d", sn_id, utc_jahr, utc_monat, utc_tag, utc_std, utc_min, utc_sek, gpx->lat, gpx->lon, gpx->alt, gpx->vH, gpx->vD, gpx->vV, gpx->numSV); // APRS id, 9 characters aprs_id[0] = gpx->frame_bytes[pos_SN+2]; aprs_id[1] = gpx->frame_bytes[pos_SN] & 0xF; aprs_id[2] = gpx->frame_bytes[pos_SN+4]; aprs_id[3] = gpx->frame_bytes[pos_SN+3]; fprintf(stdout, ", \"aprsid\": \"ME%02X%1X%02X%02X\"", aprs_id[0], aprs_id[1], aprs_id[2], aprs_id[3]); fprintf(stdout, ", \"batt\": %.2f", gpx->batV); // temperature (and humidity) if (gpx->option.ptu) { if (gpx->T > -273.0) fprintf(stdout, ", \"temp\": %.1f", gpx->T); if (gpx->option.vbs >= 2) { if (gpx->_RH > -0.5) fprintf(stdout, ", \"humidity\": %.1f", gpx->_RH); } } fprintf(stdout, ", \"subtype\": \"0x%02X\"", gpx->type); fprintf(stdout, " }\n"); fprintf(stdout, "\n"); } } } return err; } static int print_frame(gpx_t *gpx, int pos) { int i; ui8_t byte; int cs1, cs2; int flen = stdFLEN; // stdFLEN=0x64, auxFLEN=0x76 bits2bytes(gpx->frame_bits, gpx->frame_bytes); flen = gpx->frame_bytes[0]; if (flen == stdFLEN) gpx->auxlen = 0; else { gpx->auxlen = flen - stdFLEN; if (gpx->auxlen < 0 || gpx->auxlen > AUX_LEN) gpx->auxlen = 0; } cs1 = (gpx->frame_bytes[pos_Check+gpx->auxlen] << 8) | gpx->frame_bytes[pos_Check+gpx->auxlen+1]; cs2 = checkM10(gpx->frame_bytes, pos_Check+gpx->auxlen); switch (gpx->frame_bytes[1]) { case 0x8F: gpx->type = t_M2K2; break; case 0x9F: gpx->type = t_M10; break; case 0xAF: gpx->type = t_M10plus; break; case 0x20: gpx->type = t_M20; break; default : gpx->type = t_M10; } if (gpx->option.raw) { if (gpx->option.col && gpx->frame_bytes[1] != 0x49 && (gpx->type == t_M10 || gpx->type == t_M10plus)) { fprintf(stdout, col_FRTXT); for (i = 0; i < FRAME_LEN+gpx->auxlen; i++) { byte = gpx->frame_bytes[i]; if (i == 1) fprintf(stdout, col_Mtype); if (gpx->type == t_M10) { if ((i >= pos_GPSTOW) && (i < pos_GPSTOW+4)) fprintf(stdout, col_GPSTOW); if ((i >= pos_GPSlat) && (i < pos_GPSlat+4)) fprintf(stdout, col_GPSlat); if ((i >= pos_GPSlon) && (i < pos_GPSlon+4)) fprintf(stdout, col_GPSlon); if ((i >= pos_GPSalt) && (i < pos_GPSalt+4)) fprintf(stdout, col_GPSalt); if ((i >= pos_GPSweek) && (i < pos_GPSweek+2)) fprintf(stdout, col_GPSweek); if ((i >= pos_GPSvE) && (i < pos_GPSvE+6)) fprintf(stdout, col_GPSvel); } else { if ((i >= pos_gtopGPSlat) && (i < pos_gtopGPSlat+4)) fprintf(stdout, col_GPSlat); if ((i >= pos_gtopGPSlon) && (i < pos_gtopGPSlon+4)) fprintf(stdout, col_GPSlon); if ((i >= pos_gtopGPSalt) && (i < pos_gtopGPSalt+3)) fprintf(stdout, col_GPSalt); if ((i >= pos_gtopGPSvE) && (i < pos_gtopGPSvE+6)) fprintf(stdout, col_GPSvel); if ((i >= pos_gtopGPStime) && (i < pos_gtopGPStime+3)) fprintf(stdout, col_GPSTOW); if ((i >= pos_gtopGPSdate) && (i < pos_gtopGPSdate+3)) fprintf(stdout, col_GPSweek); } if ((i >= pos_SN) && (i < pos_SN+5)) fprintf(stdout, col_SN); if (i == pos_CNT) fprintf(stdout, col_CNT); if ((i >= pos_Check+gpx->auxlen) && (i < pos_Check+gpx->auxlen+2)) fprintf(stdout, col_Check); fprintf(stdout, "%02x", byte); fprintf(stdout, col_FRTXT); } if (gpx->option.vbs) { fprintf(stdout, " # "col_Check"%04x"col_FRTXT, cs2); if (cs1 == cs2) fprintf(stdout, " "col_CSok"[OK]"col_TXT); else fprintf(stdout, " "col_CSno"[NO]"col_TXT); } fprintf(stdout, ANSI_COLOR_RESET"\n"); } else { for (i = 0; i < FRAME_LEN+gpx->auxlen; i++) { byte = gpx->frame_bytes[i]; fprintf(stdout, "%02x", byte); } if (gpx->option.vbs) { fprintf(stdout, " # %04x", cs2); if (cs1 == cs2) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]"); } fprintf(stdout, "\n"); } } else if (gpx->frame_bytes[1] == 0x49) { if (gpx->option.vbs == 3) { for (i = 0; i < FRAME_LEN+gpx->auxlen; i++) { byte = gpx->frame_bytes[i]; fprintf(stdout, "%02x", byte); } fprintf(stdout, "\n"); } } else print_pos(gpx, cs1 == cs2); return (gpx->frame_bytes[0]<<8)|gpx->frame_bytes[1]; } int main(int argc, char **argv) { int option_verbose = 0; // ausfuehrliche Anzeige int option_raw = 0; // rohe Frames int option_inv = 0; // invertiert Signal //int option_res = 0; // genauere Bitmessung int option_color = 0; int option_ptu = 0; int option_min = 0; int option_iq = 0; int option_lp = 0; int option_dc = 0; int option_pcmraw = 0; int wavloaded = 0; int sel_wavch = 0; // audio channel: left int spike = 0; FILE *fp = NULL; char *fpname = NULL; int k; int bit, bit0; int bitpos = 0; int bitQ; int pos; //int headerlen = 0; int header_found = 0; float thres = 0.76; float _mv = 0.0; int symlen = 2; int bitofs = 0; // 0 .. +2 int shift = 0; pcm_t pcm = {0}; dsp_t dsp = {0}; //memset(&dsp, 0, sizeof(dsp)); gpx_t gpx = {0}; #ifdef CYGWIN _setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY); #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!wavloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] audio.wav\n", fpname); fprintf(stderr, " options:\n"); //fprintf(stderr, " -v, --verbose\n"); fprintf(stderr, " -r, --raw\n"); fprintf(stderr, " -c, --color\n"); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { option_verbose = 1; } else if ( (strcmp(*argv, "-vv" ) == 0) ) option_verbose = 2; else if ( (strcmp(*argv, "-vvv") == 0) ) option_verbose = 3; else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { option_raw = 1; } else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) { option_inv = 1; // nicht noetig } else if ( (strcmp(*argv, "-c") == 0) || (strcmp(*argv, "--color") == 0) ) { option_color = 1; } //else if (strcmp(*argv, "--res") == 0) { option_res = 1; } else if ( (strcmp(*argv, "--ptu") == 0) ) { option_ptu = 1; } else if ( (strcmp(*argv, "--spike") == 0) ) { spike = 1; } else if ( (strcmp(*argv, "--ch2") == 0) ) { sel_wavch = 1; } // right channel (default: 0=left) else if ( (strcmp(*argv, "--ths") == 0) ) { ++argv; if (*argv) { thres = atof(*argv); } else return -1; } else if ( (strcmp(*argv, "-d") == 0) ) { ++argv; if (*argv) { shift = atoi(*argv); if (shift > 4) shift = 4; if (shift < -4) shift = -4; } else return -1; } else if (strcmp(*argv, "--iq0") == 0) { option_iq = 1; } // differential/FM-demod else if (strcmp(*argv, "--iq2") == 0) { option_iq = 2; } else if (strcmp(*argv, "--iq3") == 0) { option_iq = 3; } // iq2==iq3 else if (strcmp(*argv, "--IQ") == 0) { // fq baseband -> IF (rotate from and decimate) double fq = 0.0; // --IQ , -0.5 < fq < 0.5 ++argv; if (*argv) fq = atof(*argv); else return -1; if (fq < -0.5) fq = -0.5; if (fq > 0.5) fq = 0.5; dsp.xlt_fq = -fq; // S(t) -> S(t)*exp(-f*2pi*I*t) option_iq = 5; } else if (strcmp(*argv, "--lp") == 0) { option_lp = 1; } // IQ lowpass else if (strcmp(*argv, "--dc") == 0) { option_dc = 1; } else if (strcmp(*argv, "--min") == 0) { option_min = 1; } else if (strcmp(*argv, "--json") == 0) { gpx.option.jsn = 1; } else if (strcmp(*argv, "-") == 0) { int sample_rate = 0, bits_sample = 0, channels = 0; ++argv; if (*argv) sample_rate = atoi(*argv); else return -1; ++argv; if (*argv) bits_sample = atoi(*argv); else return -1; channels = 2; if (sample_rate < 1 || (bits_sample != 8 && bits_sample != 16 && bits_sample != 32)) { fprintf(stderr, "- \n"); return -1; } pcm.sr = sample_rate; pcm.bps = bits_sample; pcm.nch = channels; option_pcmraw = 1; } else { fp = fopen(*argv, "rb"); if (fp == NULL) { fprintf(stderr, "error: open %s\n", *argv); return -1; } wavloaded = 1; } ++argv; } if (!wavloaded) fp = stdin; gpx.option.inv = option_inv; // irrelevant gpx.option.vbs = option_verbose; gpx.option.raw = option_raw; gpx.option.ptu = option_ptu; gpx.option.col = option_color; // init gpx if (option_iq == 0 && option_pcmraw) { fclose(fp); fprintf(stderr, "error: raw data not IQ\n"); return -1; } if (option_iq) sel_wavch = 0; pcm.sel_ch = sel_wavch; if (option_pcmraw == 0) { k = read_wav_header(&pcm, fp); if ( k < 0 ) { fclose(fp); fprintf(stderr, "error: wav header\n"); return -1; } } // m10: BT>1?, h=1.2 ? symlen = 2; // init dsp // dsp.fp = fp; dsp.sr = pcm.sr; dsp.bps = pcm.bps; dsp.nch = pcm.nch; dsp.ch = pcm.sel_ch; dsp.br = (float)BAUD_RATE; dsp.sps = (float)dsp.sr/dsp.br; dsp.symlen = symlen; dsp.symhd = 1; // M10!header dsp._spb = dsp.sps*symlen; dsp.hdr = rawheader; dsp.hdrlen = strlen(rawheader); dsp.BT = 1.8; // bw/time (ISI) // 1.0..2.0 dsp.h = 0.9; // 1.2 modulation index dsp.opt_iq = option_iq; dsp.opt_lp = option_lp; dsp.lpIQ_bw = 24e3; // IF lowpass bandwidth dsp.lpFM_bw = 10e3; // FM audio lowpass dsp.opt_dc = option_dc; dsp.opt_IFmin = option_min; if ( dsp.sps < 8 ) { fprintf(stderr, "note: sample rate low (%.1f sps)\n", dsp.sps); } //headerlen = dsp.hdrlen; k = init_buffers(&dsp); if ( k < 0 ) { fprintf(stderr, "error: init buffers\n"); return -1; }; bitofs += shift; while ( 1 ) { // FM-audio: header_found = find_header(&dsp, thres, 2, bitofs, dsp.opt_dc); // optional 2nd pass: dc=0 _mv = dsp.mv; if (header_found == EOF) break; // mv == correlation score if (_mv*(0.5-gpx.option.inv) < 0) { gpx.option.inv ^= 0x1; // M10: irrelevant } if (header_found) { bitpos = 0; pos = 0; pos /= 2; bit0 = '0'; // oder: _mv[j] > 0 while ( pos < BITFRAME_LEN+BITAUX_LEN ) { if (option_iq >= 2) { float bl = -1; if (option_iq > 2) bl = 4.0; bitQ = read_slbit(&dsp, &bit, 0/*gpx.option.inv*/, bitofs, bitpos, bl, 0); } else { bitQ = read_slbit(&dsp, &bit, 0/*gpx.option.inv*/, bitofs, bitpos, -1, spike); // symlen=2 } if ( bitQ == EOF ) { break; } gpx.frame_bits[pos] = 0x31 ^ (bit0 ^ bit); pos++; bit0 = bit; bitpos += 1; } gpx.frame_bits[pos] = '\0'; print_frame(&gpx, pos); if (pos < BITFRAME_LEN) break; header_found = 0; // bis Ende der Sekunde vorspulen; allerdings Doppel-Frame alle 10 sek if (gpx.option.vbs < 3) { // && (regulare frame) // print_frame-return? while ( bitpos < 5*BITFRAME_LEN ) { bitQ = read_slbit(&dsp, &bit, 0/*gpx.option.inv*/, bitofs, bitpos, -1, spike); // symlen=2 if ( bitQ == EOF) break; bitpos++; } } pos = 0; } } free_buffers(&dsp); fclose(fp); return 0; }