Hamlib/rigs/kit/elektor507.c

1501 wiersze
35 KiB
C
Czysty Zwykły widok Historia

/*
* Hamlib KIT backend - Elektor SDR USB (5/07) receiver description
* Copyright (c) 2007-2010 by Stephane Fillod
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <hamlib/config.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "hamlib/rig.h"
#include "token.h"
#include "kit.h"
#ifdef _WIN32
#define USE_FTDI_DLL
#elif defined(HAVE_LIBUSB) && (defined(HAVE_LIBUSB_H) || defined(HAVE_LIBUSB_1_0_LIBUSB_H))
#define USE_LIBUSB
#endif
/*
* Compile this model only if libusb is available
* or if .DLL is available under Windows
*/
#if defined(USE_FTDI_DLL) || defined(USE_LIBUSB)
static int elektor507_init(RIG *rig);
static int elektor507_cleanup(RIG *rig);
static int elektor507_open(RIG *rig);
static int elektor507_set_freq(RIG *rig, vfo_t vfo, freq_t freq);
static int elektor507_get_freq(RIG *rig, vfo_t vfo, freq_t *freq);
2019-11-30 16:19:08 +00:00
static int elektor507_set_level(RIG *rig, vfo_t vfo, setting_t level,
value_t val);
static int elektor507_get_level(RIG *rig, vfo_t vfo, setting_t level,
value_t *val);
static int elektor507_set_ant(RIG *rig, vfo_t vfo, ant_t ant, value_t option);
2020-02-23 17:26:09 +00:00
static int elektor507_get_ant(RIG *rig, vfo_t vfo, ant_t dummy, value_t *option,
ant_t *ant_curr, ant_t *ant_tx, ant_t *ant_rx);
static int elektor507_set_conf(RIG *rig, token_t token, const char *val);
static int elektor507_get_conf(RIG *rig, token_t token, char *val);
static const char *elektor507_get_info(RIG *rig);
/*
* I2C addresses
*/
#define CY_I2C_RAM_ADR 210
#define CY_I2C_EEPROM_ADR 208
/*
* I2C registers
*/
#define CLKOE_REG 0x09
#define DIV1_REG 0x0c
#define DIV2_REG 0x47
#define XTALCTL_REG 0x12
#define CAPLOAD_REG 0x13
#define PUMPCOUNTERS_REG 0x40
#define CLKSRC_REG 0x44
static int cy_update_pll(RIG *rig, unsigned char IICadr);
2019-11-30 16:19:08 +00:00
static int i2c_write_regs(RIG *rig, unsigned char IICadr, int reg_count,
unsigned char reg_adr,
unsigned char reg_val1, unsigned char reg_val2, unsigned char reg_val3);
#define i2c_write_reg(rig, IICadr, reg_adr, reg_val) \
2019-11-30 16:19:08 +00:00
i2c_write_regs(rig, IICadr, 1, reg_adr, reg_val, 0, 0)
#ifdef USE_FTDI_DLL
#ifdef HAVE_WINDOWS_H
#include <windows.h>
#endif
#ifdef HAVE_WINBASE_H
#include <winbase.h>
#endif
#include <math.h>
#define ELEKTOR507_DLL "FTD2XX.dll"
/* Some type definitions needed for dll access */
2019-11-30 16:19:08 +00:00
typedef enum
{
FT_OK = 0,
FT_INVALID_HANDLE = 1,
FT_DEVICE_NOT_FOUND = 2,
FT_DEVICE_NOT_OPENED = 3,
FT_IO_ERROR = 4,
FT_INSUFFICIENT_RESOURCES = 5,
FT_INVALID_PARAMETER = 6,
FT_SUCCESS = FT_OK,
FT_INVALID_BAUD_RATE = 7,
FT_DEVICE_NOT_OPENED_FOR_ERASE = 8,
FT_DEVICE_NOT_OPENED_FOR_WRITE = 9,
FT_FAILED_TO_WRITE_DEVICE = 10,
FT_EEPROM_READ_FAILED = 11,
FT_EEPROM_WRITE_FAILED = 12,
FT_EEPROM_ERASE_FAILED = 13,
FT_EEPROM_NOT_PRESENT = 14,
FT_EEPROM_NOT_PROGRAMMED = 15,
FT_INVALID_ARGS = 16,
FT_OTHER_ERROR = 17,
} FT_Result;
2019-11-30 16:19:08 +00:00
typedef FT_Result(__stdcall *FNCFT_Open)(int Index, unsigned long *ftHandle);
typedef FT_Result(__stdcall *FNCFT_Close)(unsigned long ftHandle);
typedef FT_Result(__stdcall *FNCFT_SetBitMode)(unsigned long ftHandle,
unsigned char Mask, unsigned char Enable);
typedef FT_Result(__stdcall *FNCFT_SetBaudRate)(unsigned long ftHandle,
unsigned long BaudRate);
typedef FT_Result(__stdcall *FNCFT_Write)(unsigned long ftHandle,
void *FTOutBuf, unsigned long BufferSize, int *ResultPtr);
2019-11-30 16:19:08 +00:00
struct elektor507_extra_priv_data
{
HMODULE dll;
2019-11-30 16:19:08 +00:00
FNCFT_Open FT_Open;
FNCFT_Close FT_Close;
FNCFT_SetBitMode FT_SetBitMode;
FNCFT_SetBaudRate FT_SetBaudRate;
FNCFT_Write FT_Write;
2019-11-30 16:19:08 +00:00
unsigned long ftHandle;
};
#elif defined(USE_LIBUSB)
#include <errno.h>
#ifdef HAVE_LIBUSB_H
# include <libusb.h>
#elif defined HAVE_LIBUSB_1_0_LIBUSB_H
# include <libusb-1.0/libusb.h>
#endif
2019-11-30 16:19:08 +00:00
#define USB_VID_FTDI 0x0403 /* Future Technology Devices International */
#define USB_PID_FTDI_FT232 0x6001 /* FT232R 8-bit FIFO */
#define FTDI_IN_EP 0x02
#define FTDI_USB_WRITE_TIMEOUT 5000
2019-11-30 16:19:08 +00:00
struct elektor507_extra_priv_data
{
/* empty with libusb */
};
#endif
/* defaults */
#define OSCFREQ 10000 /* kHz unit -> MHz(10) */
#define XTAL_CAL 128
2019-11-30 16:19:08 +00:00
#define TOK_OSCFREQ TOKEN_BACKEND(1)
#define TOK_XTALCAL TOKEN_BACKEND(2)
static const struct confparams elektor507_cfg_params[] =
{
{
TOK_OSCFREQ, "osc_freq", "Oscillator freq", "Oscillator frequency in Hz",
"10000000", RIG_CONF_NUMERIC, { .n = { 0, MHz(30), 1 } }
},
{
TOK_XTALCAL, "xtal_cal", "Xtal Cal", "Crystal calibration",
2019-11-30 16:19:08 +00:00
"132", RIG_CONF_NUMERIC, { .n = { 0, 255, 1 } }
},
{ RIG_CONF_END, NULL, }
};
/*
* Common data struct
*/
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data
{
struct elektor507_extra_priv_data extra_priv;
2019-11-30 16:19:08 +00:00
unsigned xtal_cal; /* 0..255 (-150ppm..150ppm) */
unsigned osc_freq; /* kHz */
2019-11-30 16:19:08 +00:00
#define ANT_AUTO RIG_ANT_1
#define ANT_EXT RIG_ANT_2
#define ANT_TEST_CLK RIG_ANT_3
ant_t ant; /* current antenna */
2019-11-30 16:19:08 +00:00
/* CY PLL stuff.
* This is Qtotal & Ptotal values here.
*/
int P, Q, Div1N;
2019-11-30 16:19:08 +00:00
/* FTDI comm stuff */
unsigned char FT_port;
int Buf_adr;
#define FT_OUT_BUFFER_MAX 1024
2019-11-30 16:19:08 +00:00
unsigned char FT_Out_Buffer[FT_OUT_BUFFER_MAX];
};
#ifdef USE_FTDI_DLL
int elektor507_init(RIG *rig)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv;
struct elektor507_extra_priv_data *extra_priv;
priv = (struct elektor507_priv_data *)calloc(sizeof(struct
elektor507_priv_data), 1);
if (!priv)
{
/* whoops! memory shortage! */
return -RIG_ENOMEM;
}
priv->xtal_cal = XTAL_CAL;
priv->osc_freq = OSCFREQ;
priv->ant = ANT_AUTO;
/* DIV1N set to safe default */
priv->Div1N = 8;
priv->P = 8;
priv->Q = 2;
extra_priv = &priv->extra_priv;
/* Try to load required dll */
extra_priv->dll = LoadLibrary(ELEKTOR507_DLL);
if (!extra_priv->dll)
{
rig_debug(RIG_DEBUG_ERR, "%s: Unable to LoadLibrary %s\n",
__func__, ELEKTOR507_DLL);
free(priv);
return -RIG_EIO; /* huh! */
}
/*
* Get process addresses from dll for function access
*/
/* Open_USB_Device */
extra_priv->FT_Open =
(FNCFT_Open) GetProcAddress(extra_priv->dll, "FT_Open");
/* Close_USB_Device */
extra_priv->FT_Close =
(FNCFT_Close) GetProcAddress(extra_priv->dll, "FT_Close");
/* Set_USB_Device_BitMode */
extra_priv->FT_SetBitMode =
(FNCFT_SetBitMode) GetProcAddress(extra_priv->dll, "FT_SetBitMode");
/* Set_USB_Device_BaudRate */
extra_priv->FT_SetBaudRate =
(FNCFT_SetBaudRate) GetProcAddress(extra_priv->dll, "FT_SetBaudRate");
/* Write_USB_Device_Buffer */
extra_priv->FT_Write =
(FNCFT_Write) GetProcAddress(extra_priv->dll, "FT_Write");
rig->state.priv = (void *)priv;
return RIG_OK;
}
2019-11-30 16:19:08 +00:00
int elektor507_ftdi_write_data(RIG *rig, void *FTOutBuf,
unsigned long BufferSize)
{
2019-11-30 16:19:08 +00:00
struct elektor507_extra_priv_data *extra_priv =
&((struct elektor507_priv_data *)rig->state.priv)->extra_priv;
FT_Result ret;
int Result;
rig_debug(RIG_DEBUG_TRACE, "%s called, %d bytes\n", __func__, (int)BufferSize);
2019-11-30 16:19:08 +00:00
/* Open FTDI */
ret = extra_priv->FT_Open(0, &extra_priv->ftHandle);
2019-11-30 16:19:08 +00:00
if (ret != FT_OK)
{
return -RIG_EIO;
}
2019-11-30 16:19:08 +00:00
ret = extra_priv->FT_SetBitMode(extra_priv->ftHandle, 0xff, 1);
2019-11-30 16:19:08 +00:00
if (ret != FT_OK)
{
return -RIG_EIO;
}
2019-11-30 16:19:08 +00:00
ret = extra_priv->FT_SetBaudRate(extra_priv->ftHandle, 38400);
2019-11-30 16:19:08 +00:00
if (ret != FT_OK)
{
return -RIG_EIO;
}
2019-11-30 16:19:08 +00:00
ret = extra_priv->FT_Write(extra_priv->ftHandle, FTOutBuf, BufferSize, &Result);
2019-11-30 16:19:08 +00:00
if (ret != FT_OK)
{
rig_debug(RIG_DEBUG_ERR, "FT_Write failed: %d, Result: %d\n", ret, Result);
return -RIG_EIO;
}
2019-11-30 16:19:08 +00:00
ret = extra_priv->FT_Close(extra_priv->ftHandle);
2019-11-30 16:19:08 +00:00
if (ret != FT_OK)
{
return -RIG_EIO;
}
2019-11-30 16:19:08 +00:00
return RIG_OK;
}
int elektor507_cleanup(RIG *rig)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
2019-11-30 16:19:08 +00:00
/* Clean up the dll access */
2021-01-15 22:48:32 +00:00
if (priv) { FreeLibrary(priv->extra_priv.dll); }
2019-11-30 16:19:08 +00:00
if (rig->state.priv)
{
free(rig->state.priv);
}
2019-11-30 16:19:08 +00:00
rig->state.priv = NULL;
2019-11-30 16:19:08 +00:00
return RIG_OK;
}
const char *elektor507_get_info(RIG *rig)
{
2019-11-30 16:19:08 +00:00
static char buf[64];
SNPRINTF(buf, sizeof(buf), "Elektor SDR USB w/ FTDI DLL");
2019-11-30 16:19:08 +00:00
return buf;
}
#elif defined(USE_LIBUSB)
/*
* The libusb code is inspired by libftdi:
2019-11-30 16:19:08 +00:00
* http://www.intra2net.com/de/produkte/opensource/ftdi/
*/
int elektor507_init(RIG *rig)
{
hamlib_port_t *rp = &rig->state.rigport;
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv;
2020-01-13 05:08:44 +00:00
rig->state.priv = (struct elektor507_priv_data *)calloc(sizeof(struct
2020-02-23 17:26:09 +00:00
elektor507_priv_data), 1);
2020-01-13 05:08:44 +00:00
if (!rig->state.priv)
2019-11-30 16:19:08 +00:00
{
/* whoops! memory shortage! */
return -RIG_ENOMEM;
}
2020-01-13 05:08:44 +00:00
priv = rig->state.priv;
2019-11-30 16:19:08 +00:00
priv->xtal_cal = XTAL_CAL;
priv->osc_freq = OSCFREQ;
priv->ant = ANT_AUTO;
2019-11-30 16:19:08 +00:00
/* DIV1N set to safe default */
priv->Div1N = 8;
priv->P = 8;
priv->Q = 2;
2019-11-30 16:19:08 +00:00
rp->parm.usb.vid = USB_VID_FTDI;
rp->parm.usb.pid = USB_PID_FTDI_FT232;
rp->parm.usb.conf = 1;
rp->parm.usb.iface = 0;
rp->parm.usb.alt = 0; /* necessary ? */
2019-11-30 16:19:08 +00:00
return RIG_OK;
}
int elektor507_cleanup(RIG *rig)
{
2019-11-30 16:19:08 +00:00
if (!rig)
{
return -RIG_EINVAL;
}
2019-11-30 16:19:08 +00:00
if (rig->state.priv)
{
free(rig->state.priv);
}
2019-11-30 16:19:08 +00:00
rig->state.priv = NULL;
2019-11-30 16:19:08 +00:00
return RIG_OK;
}
/* Rem: not reentrant */
const char *elektor507_get_info(RIG *rig)
{
2019-11-30 16:19:08 +00:00
static char buf[64];
libusb_device_handle *udh = rig->state.rigport.handle;
2019-11-30 16:19:08 +00:00
struct libusb_device_descriptor desc;
2019-11-30 16:19:08 +00:00
/* always succeeds since libusb-1.0.16 */
libusb_get_device_descriptor(libusb_get_device(udh), &desc);
SNPRINTF(buf, sizeof(buf), "USB dev %04d", desc.bcdDevice);
2019-11-30 16:19:08 +00:00
return buf;
}
int elektor507_libusb_setup(RIG *rig)
{
libusb_device_handle *udh = rig->state.rigport.handle;
2019-11-30 16:19:08 +00:00
int ret;
unsigned short index = 0, usb_val;
2019-11-30 16:19:08 +00:00
rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__);
2019-11-30 16:19:08 +00:00
/* Reset the ftdi device */
#if 1
2019-11-30 16:19:08 +00:00
ret = libusb_control_transfer(udh, 0x40, 0, 0, index, NULL, 0,
FTDI_USB_WRITE_TIMEOUT);
2019-11-30 16:19:08 +00:00
if (ret != 0)
{
rig_debug(RIG_DEBUG_ERR, "%s: libusb_control_transfer reset failed: %s\n",
__func__,
libusb_error_name(ret));
return -RIG_EIO;
}
#endif
2019-11-30 16:19:08 +00:00
/*
* Enable bitbang mode
*/
usb_val = 0xff; /* low byte: bitmask */
usb_val |= (0x01 << 8); /* Basic bitbang_mode: 0x01 */
ret = libusb_control_transfer(udh, 0x40, 0x0B, usb_val, index, NULL, 0,
FTDI_USB_WRITE_TIMEOUT);
if (ret != 0)
{
rig_debug(RIG_DEBUG_ERR, "%s: libusb_control_transfer bitbangmode failed: %s\n",
__func__,
libusb_error_name(ret));
return -RIG_EIO;
}
/*
* Set baudrate
* 9600 x4 because of bitbang mode
*/
usb_val = 49230; /* magic value for 38400 bauds */
index = 0;
ret = libusb_control_transfer(udh, 0x40, 3, usb_val, index, NULL, 0,
FTDI_USB_WRITE_TIMEOUT);
if (ret != 0)
{
rig_debug(RIG_DEBUG_ERR, "%s: libusb_control_transfer baudrate failed: %s\n",
__func__,
libusb_error_name(ret));
return -RIG_EIO;
}
return RIG_OK;
}
2019-11-30 16:19:08 +00:00
int elektor507_ftdi_write_data(RIG *rig, void *FTOutBuf,
unsigned long BufferSize)
{
libusb_device_handle *udh = rig->state.rigport.handle;
2019-11-30 16:19:08 +00:00
int ret, actual_length;
2019-11-30 16:19:08 +00:00
rig_debug(RIG_DEBUG_TRACE, "%s called, %lu bytes\n", __func__, BufferSize);
2019-11-30 16:19:08 +00:00
ret = libusb_bulk_transfer(udh, FTDI_IN_EP, FTOutBuf, BufferSize,
&actual_length, FTDI_USB_WRITE_TIMEOUT);
2019-11-30 16:19:08 +00:00
if (ret < 0)
{
rig_debug(RIG_DEBUG_ERR,
"usb_bulk_write failed: %s\n",
libusb_error_name(ret));
return -RIG_EIO;
}
2019-11-30 16:19:08 +00:00
return RIG_OK;
}
2019-11-30 16:19:08 +00:00
#endif /* USE_LIBUSB */
2019-11-30 16:19:08 +00:00
#define ELEKTOR507_MODES (RIG_MODE_USB) /* USB is for SDR */
#define ELEKTOR507_FUNC (RIG_FUNC_NONE)
#define ELEKTOR507_LEVEL_ALL (RIG_LEVEL_ATT)
#define ELEKTOR507_PARM_ALL (RIG_PARM_NONE)
#define ELEKTOR507_VFO (RIG_VFO_A)
/*
* - Auto-filter antenna (K3)
* - External antenna (PC1)
* - Internal TEST_CLK (5 MHz)
*/
#define ELEKTOR507_ANT (RIG_ANT_1|RIG_ANT_2|RIG_ANT_3)
/*
* Elektor SDR USB (5/07) receiver description
*
* This kit is a QSD based on a CY27EE16ZE PLL.
* The receiver is controlled via USB (through FTDI FT232R).
*
* Original article:
* http://www.elektor.com/magazines/2007/may/software-defined-radio.91527.lynkx
*
* Author (Burkhard Kainka) page, in german:
* http://www.b-kainka.de/sdrusb.html
*/
2019-11-30 16:19:08 +00:00
const struct rig_caps elektor507_caps =
{
RIG_MODEL(RIG_MODEL_ELEKTOR507),
2019-11-30 16:19:08 +00:00
.model_name = "Elektor SDR-USB",
.mfg_name = "Elektor",
.version = "20200112.0",
2019-11-30 16:19:08 +00:00
.copyright = "LGPL",
.status = RIG_STATUS_STABLE,
.rig_type = RIG_TYPE_TUNER,
.ptt_type = RIG_PTT_NONE,
.dcd_type = RIG_DCD_NONE,
#ifdef USE_LIBUSB
2019-11-30 16:19:08 +00:00
.port_type = RIG_PORT_USB,
#else
2019-11-30 16:19:08 +00:00
.port_type = RIG_PORT_NONE,
#endif
2019-11-30 16:19:08 +00:00
.serial_rate_min = 9600,
.serial_rate_max = 9600,
.serial_data_bits = 8,
.serial_stop_bits = 1,
.serial_parity = RIG_PARITY_NONE,
.serial_handshake = RIG_HANDSHAKE_NONE,
.write_delay = 0,
.post_write_delay = 0,
.timeout = 200,
.retry = 0,
.has_get_func = ELEKTOR507_FUNC,
.has_set_func = ELEKTOR507_FUNC,
.has_get_level = ELEKTOR507_LEVEL_ALL,
.has_set_level = RIG_LEVEL_SET(ELEKTOR507_LEVEL_ALL),
.has_get_parm = ELEKTOR507_PARM_ALL,
.has_set_parm = RIG_PARM_SET(ELEKTOR507_PARM_ALL),
.level_gran = {},
.parm_gran = {},
.ctcss_list = NULL,
.dcs_list = NULL,
.preamp = { RIG_DBLST_END },
.attenuator = { 10, 20, RIG_DBLST_END },
.max_rit = Hz(0),
.max_xit = Hz(0),
.max_ifshift = Hz(0),
.targetable_vfo = 0,
.transceive = RIG_TRN_OFF,
.bank_qty = 0,
.chan_desc_sz = 0,
.chan_list = { RIG_CHAN_END, },
.rx_range_list1 = {
{kHz(30), MHz(30) - kHz(1), ELEKTOR507_MODES, -1, -1, ELEKTOR507_VFO, ELEKTOR507_ANT},
RIG_FRNG_END,
},
.tx_range_list1 = { RIG_FRNG_END, },
.rx_range_list2 = {
{kHz(30), MHz(30) - kHz(1), ELEKTOR507_MODES, -1, -1, ELEKTOR507_VFO, ELEKTOR507_ANT},
RIG_FRNG_END,
},
.tx_range_list2 = { RIG_FRNG_END, },
.tuning_steps = {
{ELEKTOR507_MODES, kHz(1)},
RIG_TS_END,
},
/* mode/filter list, remember: order matters! */
.filters = {
{RIG_MODE_USB, kHz(24)}, /* bandpass may be more */
RIG_FLT_END,
},
.cfgparams = elektor507_cfg_params,
.rig_init = elektor507_init,
.rig_cleanup = elektor507_cleanup,
.rig_open = elektor507_open,
.set_conf = elektor507_set_conf,
.get_conf = elektor507_get_conf,
.set_freq = elektor507_set_freq,
.get_freq = elektor507_get_freq,
.set_level = elektor507_set_level,
.get_level = elektor507_get_level,
.set_ant = elektor507_set_ant,
.get_ant = elektor507_get_ant,
.get_info = elektor507_get_info,
2022-02-11 20:58:03 +00:00
.hamlib_check_rig_caps = HAMLIB_CHECK_RIG_CAPS
};
int elektor507_set_conf(RIG *rig, token_t token, const char *val)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv;
freq_t freq;
2019-11-30 16:19:08 +00:00
priv = (struct elektor507_priv_data *)rig->state.priv;
2019-11-30 16:19:08 +00:00
switch (token)
{
case TOK_OSCFREQ:
sscanf(val, "%"SCNfreq, &freq);
priv->osc_freq = freq / kHz(1);
break;
2019-11-30 16:19:08 +00:00
case TOK_XTALCAL:
sscanf(val, "%u", &priv->xtal_cal);
break;
2019-11-30 16:19:08 +00:00
default:
return -RIG_EINVAL;
}
2019-11-30 16:19:08 +00:00
return RIG_OK;
}
2022-01-16 13:15:21 +00:00
int elektor507_get_conf2(RIG *rig, token_t token, char *val, int val_len)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv;
2019-11-30 16:19:08 +00:00
priv = (struct elektor507_priv_data *)rig->state.priv;
2019-11-30 16:19:08 +00:00
switch (token)
{
case TOK_OSCFREQ:
SNPRINTF(val, val_len, "%"PRIfreq, priv->osc_freq * kHz(1));
2019-11-30 16:19:08 +00:00
break;
2019-11-30 16:19:08 +00:00
case TOK_XTALCAL:
SNPRINTF(val, val_len, "%u", priv->xtal_cal);
2019-11-30 16:19:08 +00:00
break;
2019-11-30 16:19:08 +00:00
default:
return -RIG_EINVAL;
}
2019-11-30 16:19:08 +00:00
return RIG_OK;
}
int elektor507_get_conf(RIG *rig, token_t token, char *val)
{
return elektor507_get_conf2(rig, token, val, 128);
}
int elektor507_open(RIG *rig)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
int ret;
2019-11-30 16:19:08 +00:00
rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__);
2019-11-30 16:19:08 +00:00
/*
* Setup the FT232R.
*/
#ifdef USE_LIBUSB
2019-11-30 16:19:08 +00:00
ret = elektor507_libusb_setup(rig);
2019-11-30 16:19:08 +00:00
if (ret != RIG_OK)
{
return ret;
}
#endif
2019-11-30 16:19:08 +00:00
/* Init the FT232R port to SCL/SDA high, Mux A0, Att 0 */
priv->FT_port = 0x03;
2019-11-30 16:19:08 +00:00
/*
* Setup the CY27EE16ZE PLL.
*/
2019-11-30 16:19:08 +00:00
/* Enable only CLOCK5. CLOCK3 will be on demand in set_ant() */
ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, CLKOE_REG, 0x20);
2019-11-30 16:19:08 +00:00
if (ret != 0)
{
return ret;
}
2019-11-30 16:19:08 +00:00
/* DIV1N set to safe default */
priv->Div1N = 8;
ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, DIV1_REG, priv->Div1N);
2019-11-30 16:19:08 +00:00
if (ret != 0)
{
return ret;
}
#if 0
2019-11-30 16:19:08 +00:00
/* Xtal gain setting */
ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, XTALCTL_REG, 0x32);
2019-11-30 16:19:08 +00:00
if (ret != 0)
{
return ret;
}
2019-11-30 16:19:08 +00:00
/* CapLoad set to middle */
ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, CAPLOAD_REG, priv->xtal_cal);
2019-11-30 16:19:08 +00:00
if (ret != 0)
{
return ret;
}
#endif
2019-11-30 16:19:08 +00:00
/* CLKSRC: CLOCK3=DIV2CLK/2, CLOCK5=DIV1CLK/DIV1N */
ret = i2c_write_regs(rig, CY_I2C_RAM_ADR, 3, CLKSRC_REG, 0x02, 0x8e, 0x47);
2019-11-30 16:19:08 +00:00
if (ret != 0)
{
return ret;
}
2019-11-30 16:19:08 +00:00
/* DIV2SRC from REF */
ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, DIV2_REG, 0x88);
2019-11-30 16:19:08 +00:00
if (ret != 0)
{
return ret;
}
2019-11-30 16:19:08 +00:00
return RIG_OK;
}
2019-11-30 16:19:08 +00:00
#define FREQ_ALGORITHM 3 /* use AC6SL version 3-Aug-2010 */
2019-11-30 16:19:08 +00:00
#if FREQ_ALGORITHM == 1 /* this used to be ORIG_ALGORITHM */
static void find_P_Q_DIV1N(struct elektor507_priv_data *priv, freq_t freq)
{
2019-11-30 16:19:08 +00:00
int Freq;
double Min, VCO;
int p, q, q_max;
Freq = freq / kHz(1);
if (Freq > 19 && Freq < 60)
{
priv->Div1N = (2500 + Freq / 2) / Freq + 128;
priv->P = 1000;
priv->Q = 40;
return;
}
else if (Freq > 59 && Freq < 801)
{
priv->Div1N = 125;
priv->P = Freq * 2;
priv->Q = 40;
return;
}
else if (Freq > 800 && Freq < 2001)
{
priv->Div1N = 50;
priv->P = Freq;
priv->Q = 50;
return;
}
else if (Freq > 2000 && Freq < 4001)
{
priv->Div1N = 25;
}
else if (Freq > 4000 && Freq < 10001)
{
priv->Div1N = 10;
}
else if (Freq > 10000 && Freq < 20001)
{
priv->Div1N = 5;
}
else if (Freq > 20000 && Freq < 30001)
{
priv->Div1N = 4;
}
Min = priv->osc_freq;
freq /= kHz(1);
/*
* Q:2..129
* P:8..2055, best 16..1023 (because of Pump)
For stable operation:
+ REF/Qtotal must not fall below 250kHz (
+ P*(REF/Qtotal) must not be above 400 MHz or below 100 MHz
*/
#if 1
2019-11-30 16:19:08 +00:00
q_max = priv->osc_freq / 250;
#else
2019-11-30 16:19:08 +00:00
q_max = 100;
#endif
2019-11-30 16:19:08 +00:00
for (q = q_max; q >= 10; q--)
{
for (p = 500; p <= 2000; p++)
{
VCO = ((double)priv->osc_freq / q) * p;
if (fabs(4 * freq - VCO / priv->Div1N) < Min)
{
Min = fabs(4 * freq - VCO / priv->Div1N);
priv->Q = q;
priv->P = p;
}
}
}
VCO = ((double)priv->osc_freq / priv->Q) * priv->P;
if (VCO < 100e3 || VCO > 400e3)
rig_debug(RIG_DEBUG_VERBOSE, "%s: Unstable parameters for VCO=%.1f\n",
__func__, VCO);
}
2019-11-30 16:19:08 +00:00
#endif /* ORIG_ALGORITHM */
2019-11-30 16:19:08 +00:00
#if FREQ_ALGORITHM == 2 /* this used to be default alternative to ORIG_ALGORITHM */
static void find_P_Q_DIV1N(struct elektor507_priv_data *priv, freq_t freq)
{
2019-11-30 16:19:08 +00:00
double Min, VCO, freq4;
int div1n_min, div1n_max;
int p, q, div1n, q_max;
2019-11-30 16:19:08 +00:00
Min = priv->osc_freq;
freq4 = freq * 4 / kHz(1);
#define vco_min 100e3
#define vco_max 500e3
2019-11-30 16:19:08 +00:00
/*
* Q:2..129
* P:8..2055, best 16..1023 (because of Pump)
For stable operation:
+ REF/Qtotal must not fall below 250kHz (
+ P*(REF/Qtotal) must not be above 400 MHz or below 100 MHz
*/
#if 1
2019-11-30 16:19:08 +00:00
q_max = priv->osc_freq / 250;
#else
2019-11-30 16:19:08 +00:00
q_max = 100;
#endif
2019-11-30 16:19:08 +00:00
div1n_min = vco_min / freq4;
if (div1n_min < 2)
{
div1n_min = 2;
}
else if (div1n_min > 127)
{
div1n_min = 127;
}
div1n_max = vco_max / freq4;
if (div1n_max > 127)
{
div1n_max = 127;
}
else if (div1n_max < 2)
{
div1n_max = 2;
}
for (div1n = div1n_min; div1n <= div1n_max; div1n++)
{
// P/Qtotal = FREQ4*DIV1N/REF
// (Q*int(r) + frac(r)*Q)/Q
for (q = q_max; q >= 2; q--)
{
p = q * freq4 * div1n / priv->osc_freq;
#if 1
2019-11-30 16:19:08 +00:00
if (p < 16 || p > 1023)
{
continue;
}
#endif
2019-11-30 16:19:08 +00:00
VCO = ((double)priv->osc_freq / q) * p;
#if 1
2019-11-30 16:19:08 +00:00
if (VCO < vco_min || VCO > vco_max)
{
continue;
}
#endif
2019-11-30 16:19:08 +00:00
if (fabs(freq4 - VCO / div1n) < Min)
{
Min = fabs(freq4 - VCO / div1n);
priv->Div1N = div1n;
priv->Q = q;
priv->P = p;
}
}
}
VCO = ((double)priv->osc_freq / priv->Q) * priv->P;
if (VCO < vco_min || VCO > 400e3)
rig_debug(RIG_DEBUG_VERBOSE, "%s: Unstable parameters for VCO=%.1f\n",
__func__, VCO);
}
2019-11-30 16:19:08 +00:00
#endif /* default alternative to ORIG_ALGORITHM */
2019-11-30 16:19:08 +00:00
#if FREQ_ALGORITHM == 3 /* AC6SL version 5-Aug-2010 */
/* search valid (P,Q,N) for closest match to requested frequency */
static void find_P_Q_DIV1N(
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv,
freq_t freq)
{
#define VCO_MIN 100000000
#define VCO_MAX 400000000
2019-12-08 05:40:28 +00:00
int Ptotal;
2019-11-30 16:19:08 +00:00
int Qtotal, Qmax = 40;
int Div1N;
2019-12-08 05:40:28 +00:00
double PmulREFdivQ;
2019-11-30 16:19:08 +00:00
double Ref = priv->osc_freq * 1000.0;
double freq4 = freq * 4;
double newdelta, delta = fabs((priv->P * (Ref / priv->Q) / priv->Div1N) -
freq4);
/* For stable operation: Ref/Qtotal must not fall below 250kHz */
/* Qmax = (int) ( Ref / 250000); */
for (Qtotal = 2; Qtotal <= Qmax; Qtotal++)
{
2019-12-08 05:40:28 +00:00
double REFdivQ = (Ref / Qtotal);
2019-11-30 16:19:08 +00:00
/* For stable operation: Ptotal*(Ref/Qtotal) must be ... */
2019-12-08 05:40:28 +00:00
int Pmin = (int)(VCO_MIN / REFdivQ); /* ... >= 100mHz */
int Pmax = (int)(VCO_MAX / REFdivQ); /* ... <= 400mHz */
2019-11-30 16:19:08 +00:00
for (Ptotal = Pmin; Ptotal <= Pmax; Ptotal++)
{
PmulREFdivQ = Ptotal * REFdivQ;
Div1N = (int)((PmulREFdivQ + freq4 / 2) / freq4);
if (Div1N < 2)
{
Div1N = 2;
}
if (Div1N > 127)
{
Div1N = 127;
}
newdelta = fabs((PmulREFdivQ / Div1N) - freq4);
if (newdelta < delta)
{
/* save best (P,Q,N) */
delta = newdelta;
priv->P = Ptotal;
priv->Q = Qtotal;
priv->Div1N = Div1N;
}
}
}
}
#endif /* AC6SL version 5-Aug-2010 */
int elektor507_set_freq(RIG *rig, vfo_t vfo, freq_t freq)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
freq_t final_freq;
int ret = 0;
if (priv->ant == ANT_AUTO)
{
2019-12-08 05:40:28 +00:00
int Mux;
2019-11-30 16:19:08 +00:00
/* Automatically select appropriate filter */
if (freq <= kHz(1600))
{
/* Select A1, low pass, fc=1.6MHz */
Mux = 1;
}
else
{
/* Select A2, high pass */
Mux = 2;
}
priv->FT_port &= 0x63; //0,1 = I2C, 2,3,4=MUX, 5,6=Attenuator
priv->FT_port |= Mux << 2;
}
find_P_Q_DIV1N(priv, freq); /* Compute PLL parameters */
elektor507_get_freq(rig, vfo, &final_freq);
rig_debug(RIG_DEBUG_VERBOSE,
"%s: Freq=%.0f kHz, delta=%d Hz, Div1N=%d, P=%d, Q=%d, FREQ_ALGORITHM=%d\n",
__func__, freq / kHz(1), (int)(final_freq - freq), priv->Div1N, priv->P,
priv->Q, FREQ_ALGORITHM);
if ((double)priv->osc_freq / priv->Q < 250)
rig_debug(RIG_DEBUG_WARN,
"%s: Unstable parameters for REF/Qtotal=%.1f\n",
__func__, (double)priv->osc_freq / priv->Q);
ret = cy_update_pll(rig, CY_I2C_RAM_ADR);
return (ret != 0) ? -RIG_EIO : RIG_OK;
}
int elektor507_get_freq(RIG *rig, vfo_t vfo, freq_t *freq)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
double VCO;
2019-11-30 16:19:08 +00:00
VCO = ((double)priv->osc_freq * kHz(1)) / priv->Q * priv->P;
2019-11-30 16:19:08 +00:00
/* Div by 4 because of QSD */
*freq = (VCO / priv->Div1N) / 4;
2019-11-30 16:19:08 +00:00
return RIG_OK;
}
int elektor507_set_level(RIG *rig, vfo_t vfo, setting_t level, value_t val)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
int ret = 0;
int att = 0;
2019-11-30 16:19:08 +00:00
switch (level)
{
case RIG_LEVEL_ATT:
2019-11-30 16:19:08 +00:00
/* val.i */
/* FTDI: DSR, DCD */
2019-11-30 16:19:08 +00:00
switch (val.i)
{
case 0: att = 0; break;
2019-11-30 16:19:08 +00:00
case 10: att = 1; break;
2019-11-30 16:19:08 +00:00
case 20: att = 2; break;
2019-11-30 16:19:08 +00:00
default: return -RIG_EINVAL;
}
2019-11-30 16:19:08 +00:00
priv->FT_port &= 0x1f;
priv->FT_port |= (att & 0x3) << 5;
2019-11-30 16:19:08 +00:00
ret = elektor507_ftdi_write_data(rig, &priv->FT_port, 1);
2019-11-30 16:19:08 +00:00
break;
2019-11-30 16:19:08 +00:00
default:
return -RIG_EINVAL;
}
2019-11-30 16:19:08 +00:00
return (ret != 0) ? -RIG_EIO : RIG_OK;
}
int elektor507_get_level(RIG *rig, vfo_t vfo, setting_t level, value_t *val)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
int ret = 0;
2019-11-30 16:19:08 +00:00
switch (level)
{
case RIG_LEVEL_ATT:
2019-11-30 16:19:08 +00:00
switch ((priv->FT_port >> 5) & 3)
{
case 0: val->i = 0; break;
2019-11-30 16:19:08 +00:00
case 1: val->i = 10; break;
2019-11-30 16:19:08 +00:00
case 2: val->i = 20; break;
2019-11-30 16:19:08 +00:00
default:
ret = -RIG_EINVAL;
}
2019-11-30 16:19:08 +00:00
break;
2019-11-30 16:19:08 +00:00
default:
return -RIG_EINVAL;
}
2019-11-30 16:19:08 +00:00
return (ret != 0) ? -RIG_EIO : RIG_OK;
}
int elektor507_set_ant(RIG *rig, vfo_t vfo, ant_t ant, value_t option)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
int ret, Mux;
2019-11-30 16:19:08 +00:00
rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__);
2019-11-30 16:19:08 +00:00
/*
* FTDI: RTS, CTS, DTR
*
* A4,A5,A6 are not connected
*
* ANT1->A1/A2, ANT2->A3, ANT3->A7
*/
2019-11-30 16:19:08 +00:00
switch (ant)
{
case RIG_ANT_1: Mux = 0; break; /* Mux will be updated upon next set_freq */
2019-11-30 16:19:08 +00:00
case RIG_ANT_2: Mux = 3; break; /* ANT_EXT */
2019-11-30 16:19:08 +00:00
case RIG_ANT_3: Mux = 7; break; /* ANT_TEST_CLK */
2019-11-30 16:19:08 +00:00
default:
return -RIG_EINVAL;
}
2019-11-30 16:19:08 +00:00
priv->ant = ant;
2019-11-30 16:19:08 +00:00
priv->FT_port &= 0x63; //0,1 = I2C, 2,3,4=MUX, 5,6=Attenuator
priv->FT_port |= Mux << 2;
#if 0
2019-11-30 16:19:08 +00:00
ret = elektor507_ftdi_write_data(rig, &priv->FT_port, 1);
#else
2019-11-30 16:19:08 +00:00
/* Enable CLOCK3 on demand */
ret = i2c_write_reg(rig, CY_I2C_RAM_ADR, CLKOE_REG,
0x20 | (ant == RIG_ANT_3 ? 0x04 : 0));
#endif
2019-11-30 16:19:08 +00:00
return (ret != 0) ? -RIG_EIO : RIG_OK;
}
2020-02-23 17:26:09 +00:00
int elektor507_get_ant(RIG *rig, vfo_t vfo, ant_t dummy, value_t *option,
ant_t *ant_curr, ant_t *ant_tx, ant_t *ant_rx)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
*ant_curr = priv->ant;
2019-11-30 16:19:08 +00:00
return RIG_OK;
}
/*
* Update the PLL counters
*/
static int cy_update_pll(RIG *rig, unsigned char IICadr)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
int P0, R40, R41, R42;
unsigned char Div1N;
unsigned char Clk3_src;
int Pump;
int ret;
/*
* PLL Pump setting according to table 9
*/
if (priv->P < 45)
{
Pump = 0;
}
else if (priv->P < 480)
{
Pump = 1;
}
else if (priv->P < 640)
{
Pump = 2;
}
else if (priv->P < 800)
{
Pump = 3;
}
else
{
Pump = 4;
}
P0 = priv->P & 0x01;
R40 = (((priv->P >> 1) - 4) >> 8) | (Pump << 2) | 0xc0;
R41 = ((priv->P >> 1) - 4) & 0xff;
R42 = (priv->Q - 2) | (P0 << 7);
ret = i2c_write_regs(rig, IICadr, 3, PUMPCOUNTERS_REG, R40, R41, R42);
if (ret != 0)
{
return ret;
}
switch (priv->Div1N)
{
case 2:
/* Fixed /2 divider option */
Clk3_src = 0x80;
Div1N = 8;
break;
case 3:
/* Fixed /3 divider option */
Clk3_src = 0xc0;
Div1N = 6;
break;
default:
Div1N = priv->Div1N;
Clk3_src = 0x40;
}
ret = i2c_write_reg(rig, IICadr, DIV1_REG, Div1N);
if (ret != 0)
{
return ret;
}
/* Set 2 low bits of CLKSRC for CLOCK5. DIV1CLK is set already */
ret = i2c_write_reg(rig, IICadr, CLKSRC_REG + 2, Clk3_src | 0x07);
if (ret != 0)
{
return ret;
}
return RIG_OK;
}
static void ftdi_SCL(RIG *rig, int d)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
if (priv->Buf_adr >= FT_OUT_BUFFER_MAX)
{
return;
}
/*
* FTDI RXD->SCL
*/
if (d == 0)
{
priv->FT_port &= ~0x02;
}
else
{
priv->FT_port |= 0x02;
}
priv->FT_Out_Buffer[priv->Buf_adr++] = priv->FT_port;
}
static void ftdi_SDA(RIG *rig, int d)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
if (priv->Buf_adr >= FT_OUT_BUFFER_MAX)
{
return;
}
/*
* FTDI TXD->SDA
*/
if (d == 0)
{
priv->FT_port &= ~0x01;
}
else
{
priv->FT_port |= 0x01;
}
priv->FT_Out_Buffer[priv->Buf_adr++] = priv->FT_port;
}
static void ftdi_I2C_Init(RIG *rig)
{
2019-11-30 16:19:08 +00:00
ftdi_SCL(rig, 1); ftdi_SDA(rig, 1); /* SCL=1, SDA=1 */
}
static void ftdi_I2C_Start(RIG *rig)
{
2019-11-30 16:19:08 +00:00
ftdi_SDA(rig, 0); /* SDA=0 */
ftdi_SCL(rig, 0); /* SCL=0 */
}
static void ftdi_I2C_Stop(RIG *rig)
{
2019-11-30 16:19:08 +00:00
ftdi_SCL(rig, 0); ftdi_SDA(rig, 0); /* SCL=0, SDA=0 */
ftdi_SCL(rig, 1); /* SCL=1 */
ftdi_SDA(rig, 1); /* SDA=1 */
}
/*
2019-11-30 16:19:08 +00:00
Acknowledge:
SCL=0, SDA=0
SCL=1
SCL=0
No Acknowledge:
SCL=0, SDA=1
SCL=1
SCL=0
*/
static void ftdi_I2C_Write_Byte(RIG *rig, unsigned char c)
{
2019-11-30 16:19:08 +00:00
int i;
2019-11-30 16:19:08 +00:00
for (i = 7; i >= 0; i--)
{
ftdi_SDA(rig, c & (1 << i)); /* SDA value */
2019-11-30 16:19:08 +00:00
ftdi_SCL(rig, 1);
ftdi_SCL(rig, 0);
}
2019-11-30 16:19:08 +00:00
ftdi_SDA(rig, 1);
ftdi_SCL(rig, 1);
ftdi_SCL(rig, 0);
}
2019-11-30 16:19:08 +00:00
int i2c_write_regs(RIG *rig, unsigned char IICadr, int reg_count,
unsigned char reg_adr,
unsigned char reg_val1, unsigned char reg_val2, unsigned char reg_val3)
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
int ret;
2019-11-30 16:19:08 +00:00
/* Start with a new buffer */
priv->Buf_adr = 0;
2019-11-30 16:19:08 +00:00
ftdi_I2C_Init(rig);
ftdi_I2C_Start(rig);
ftdi_I2C_Write_Byte(rig, IICadr);
ftdi_I2C_Write_Byte(rig, reg_adr);
2019-11-30 16:19:08 +00:00
if (reg_count >= 1)
{
ftdi_I2C_Write_Byte(rig, reg_val1);
}
2019-11-30 16:19:08 +00:00
if (reg_count >= 2)
{
ftdi_I2C_Write_Byte(rig, reg_val2);
}
2019-11-30 16:19:08 +00:00
if (reg_count >= 3)
{
ftdi_I2C_Write_Byte(rig, reg_val3);
}
2019-11-30 16:19:08 +00:00
ftdi_I2C_Stop(rig);
//usleep(10000);
2019-11-30 16:19:08 +00:00
ret = elektor507_ftdi_write_data(rig, priv->FT_Out_Buffer, priv->Buf_adr);
2019-11-30 16:19:08 +00:00
if (ret != 0)
{
return -RIG_EIO;
}
2019-11-30 16:19:08 +00:00
return 0;
}
#if 0
2019-11-30 16:19:08 +00:00
static const unsigned char ftdi_code[256] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x34, 0x08, 0x5a, 0x24/*0x6f*/, 0x00, 0x14, 0x0a, 0x00, 0x08, 0x88,
0x50, 0x04, 0x32, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xd1, 0x2b, 0x17, 0x00, 0xfe, 0xfe, 0x7f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32,
0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32, 0x10, 0x32
};
int load_ftdi_code(RIG *rig, unsigned char IICadr, const unsigned char code[])
{
2019-11-30 16:19:08 +00:00
struct elektor507_priv_data *priv = (struct elektor507_priv_data *)
rig->state.priv;
int ret;
int i, j;
rig_debug(RIG_DEBUG_TRACE, "%s called\n", __func__);
for (i = 0; i < 16; i++)
{
/* Start with a new buffer */
priv->Buf_adr = 0;
ftdi_I2C_Init(rig);
ftdi_I2C_Start(rig);
ftdi_I2C_Write_Byte(rig, IICadr);
ftdi_I2C_Write_Byte(rig, i * 16);
for (j = 0; j < 16; j++)
{
ftdi_I2C_Write_Byte(rig, code[i * 16 + j]);
}
ftdi_I2C_Stop(rig);
ret = elektor507_ftdi_write_data(rig, priv->FT_Out_Buffer, priv->Buf_adr);
if (ret != 0)
{
return -RIG_EIO;
}
}
return RIG_OK;
}
#endif
2019-11-30 16:19:08 +00:00
#endif /* defined(USE_FTDI_DLL) || defined(USE_LIBUSB) */