vp-digi/Src/drivers/modem.c

998 wiersze
27 KiB
C

/*
This file is part of VP-Digi.
VP-Digi is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
VP-Digi is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with VP-Digi. If not, see <http://www.gnu.org/licenses/>.
*/
#include "drivers/systick.h"
#include "drivers/modem.h"
#include "ax25.h"
#include <math.h>
#include <stdlib.h>
#include "common.h"
#include <string.h>
#include "stm32f1xx.h"
/*
* Configuration for PLL-based data carrier detection
* DCD_MAXPULSE is the maximum value of the DCD pulse counter
* DCD_THRES is the threshold value of the DCD pulse counter. When reached the input signal is assumed to be valid
* DCD_MAXPULSE and DCD_THRES difference sets the DCD "inertia" so that the DCD state won't change rapidly when a valid signal is present
* DCD_DEC is the DCD pulse counter decrementation value when symbol changes too far from PLL counter zero
* DCD_INC is the DCD pulse counter incrementation value when symbol changes near the PLL counter zero
* DCD_PLLTUNE is the DCD timing coefficient when symbol changes, pll_counter = pll_counter * DCD_PLLTUNE
* The DCD mechanism is described in afsk_demod().
* All values were selected by trial and error
*/
#define DCD1200_MAXPULSE 100
#define DCD1200_THRES 30
#define DCD1200_DEC 1
#define DCD1200_INC 7
#define DCD1200_PLLTUNE 0
#define DCD9600_MAXPULSE 200
#define DCD9600_THRES 80
#define DCD9600_DEC 3
#define DCD9600_INC 6
#define DCD9600_PLLTUNE 0
#define DCD300_MAXPULSE 50
#define DCD300_THRES 6
#define DCD300_DEC 1
#define DCD300_INC 5
#define DCD300_PLLTUNE 0
#define N1200 8 //samples per symbol @ fs=9600, oversampling = 38400 Hz
#define N9600 4 //fs=38400, oversampling = 153600 Hz
#define N300 32 //fs=9600, oversampling = 38400 Hz
#define NMAX 32 //keep this value equal to the biggest Nx
#define PLL1200_STEP (((uint64_t)1 << 32) / N1200) //PLL tick increment value
#define PLL9600_STEP (((uint64_t)1 << 32) / N9600)
#define PLL300_STEP (((uint64_t)1 << 32) / N300)
#define PLL1200_LOCKED_TUNE 0.74f
#define PLL1200_NOT_LOCKED_TUNE 0.50f
#define PLL9600_LOCKED_TUNE 0.89f
#define PLL9600_NOT_LOCKED_TUNE 0.50f //I have 0.67 noted somewhere as possibly better value
#define PLL300_LOCKED_TUNE 0.74f
#define PLL300_NOT_LOCKED_TUNE 0.50f
//for 9600 modem AGC, but not used
// #define AGC9600_ATTACK 0.08f //0.08
// #define AGC9600_DECAY 0.0008f
#define DAC_SINE_SIZE 32 //DAC sine table size
struct ModemDemodConfig ModemConfig;
static uint8_t N; //samples per symbol
static enum ModemTxTestMode txTestState; //current TX test mode
static uint8_t demodCount; //actual number of parallel demodulators
static uint16_t dacSine[DAC_SINE_SIZE]; //sine samples for DAC
static uint8_t dacSineIdx; //current sine sample index
static uint16_t samples[4]; //very raw received samples, filled directly by DMA
static uint8_t currentSymbol; //current symbol for NRZI encoding
static uint8_t scrambledSymbol; //current symbol after scrambling
static float markFreq; //mark frequency
static float spaceFreq; //space frequency
static float baudRate; //baudrate
static uint8_t markStep; //mark timer step
static uint8_t spaceStep; //space timer step
static uint16_t baudRateStep; //baudrate timer step
static int16_t coeffHiI[NMAX], coeffLoI[NMAX], coeffHiQ[NMAX], coeffLoQ[NMAX]; //correlator IQ coefficients
static uint8_t dcd = 0; //multiplexed DCD state from both demodulators
static uint32_t lfsr = 0xFFFFF; //LFSR for 9600 Bd
/**
* @brief BPF filter with 2200 Hz tone 6 dB preemphasis (it actually attenuates 1200 Hz tone by 6 dB)
*/
static const int16_t bpf1200[8] =
{
728,
-13418,
-554,
19493,
-554,
-13418,
728,
2104
};
/**
* @brief BPF filter with 2200 Hz tone 6 dB deemphasis
*/
static const int16_t bpf1200Inv[8] =
{
-10513,
-10854,
9589,
23884,
9589,
-10854,
-10513,
-879
};
//fs=9600, rectangular, fc1=1500, fc2=1900, 0 dB @ 1600 Hz and 1800 Hz, N = 15, gain 65536
static const int16_t bpf300[15] =
{
186, 8887, 8184, -1662, -10171, -8509, 386, 5394, 386, -8509, -10171, -1662, 8184, 8887, 186,
};
#define BPF_MAX_TAPS 15
//fs=9600 Hz, raised cosine, fc=300 Hz (BR=600 Bd), beta=0.8, N=14, gain=65536
static const int16_t lpf300[14] =
{
4385, 4515, 4627, 4720, 4793, 4846, 4878, 4878, 4846, 4793, 4720, 4627, 4515, 4385,
};
//I don't remember what are this filter parameters,
//but it seems to be the best among all I have tested
static const int16_t lpf1200[15] =
{
-6128,
-5974,
-2503,
4125,
12679,
21152,
27364,
29643,
27364,
21152,
12679,
4125,
-2503,
-5974,
-6128
};
//fs=38400 Hz, Gaussian, fc=4800 Hz (9600 Bd), N=9, gain=65536
//seems like there is almost no difference between N=9 and any higher order
static int16_t lpf9600[9] = {497, 2360, 7178, 13992, 17478, 13992, 7178, 2360, 497};
#define LPF_MAX_TAPS 15
#define FILTER_MAX_TAPS ((LPF_MAX_TAPS > BPF_MAX_TAPS) ? LPF_MAX_TAPS : BPF_MAX_TAPS)
struct Filter
{
int16_t *coeffs;
uint8_t taps;
int32_t samples[FILTER_MAX_TAPS];
uint8_t gainShift;
};
struct DemodState
{
uint8_t rawSymbols; //raw, unsynchronized symbols
uint8_t syncSymbols; //synchronized symbols
enum ModemPrefilter prefilter;
struct Filter bpf;
int16_t correlatorSamples[NMAX];
uint8_t correlatorSamplesIdx;
struct Filter lpf;
uint8_t dcd : 1; //DCD state
uint64_t RMSenergy; //frame energy counter (sum of samples squared)
uint32_t RMSsampleCount; //number of samples for RMS
int32_t pll; //bit recovery PLL counter
int32_t pllStep;
float pllLockedAdjust;
float pllNotLockedAdjust;
int32_t dcdPll; //DCD PLL main counter
uint8_t dcdLastSymbol; //last symbol for DCD
uint8_t dcdCounter; //DCD "pulse" counter (incremented when RX signal is correct)
int32_t dcdMax;
int32_t dcdThres;
int32_t dcdInc;
int32_t dcdDec;
float dcdAdjust;
int16_t peak;
int16_t valley;
};
static struct DemodState demodState[MODEM_MAX_DEMODULATOR_COUNT];
static void decode(uint8_t symbol, uint8_t demod);
static int32_t demodulate(int16_t sample, struct DemodState *dem);
static void setPtt(uint8_t state);
static int32_t filter(struct Filter *filter, int32_t input)
{
int32_t out = 0;
for(uint8_t i = filter->taps - 1; i > 0; i--)
filter->samples[i] = filter->samples[i - 1]; //shift old samples
filter->samples[0] = input; //store new sample
for(uint8_t i = 0; i < filter->taps; i++)
{
out += filter->coeffs[i] * filter->samples[i];
}
return out >> filter->gainShift;
}
float ModemGetBaudrate(void)
{
return baudRate;
}
uint8_t ModemGetDemodulatorCount(void)
{
return demodCount;
}
uint8_t ModemDcdState(void)
{
return dcd;
}
uint8_t ModemIsTxTestOngoing(void)
{
if(txTestState != TEST_DISABLED)
return 1;
return 0;
}
void ModemClearRMS(uint8_t modem)
{
demodState[modem].RMSenergy = 0;
demodState[modem].RMSsampleCount = 0;
}
uint16_t ModemGetRMS(uint8_t modem)
{
return sqrtf((float)demodState[modem].RMSenergy / (float)demodState[modem].RMSsampleCount);
}
enum ModemPrefilter ModemGetFilterType(uint8_t modem)
{
return demodState[modem].prefilter;
}
/**
* @brief Set DCD LED
* @param[in] state 0 - OFF, 1 - ON
*/
static void setDcd(uint8_t state)
{
if(state)
{
GPIOC->BSRR = GPIO_BSRR_BR13;
GPIOB->BSRR = GPIO_BSRR_BS5;
}
else
{
GPIOC->BSRR = GPIO_BSRR_BS13;
GPIOB->BSRR = GPIO_BSRR_BR5;
}
}
static inline uint8_t descramble(uint8_t in)
{
//G3RUH descrambling (x^17+x^12+1)
uint8_t bit = ((lfsr & 0x10000) > 0) ^ ((lfsr & 0x800) > 0) ^ (in > 0);
lfsr <<= 1;
lfsr |= in;
return bit;
}
static inline uint8_t scramble(uint8_t in)
{
//G3RUH scrambling (x^17+x^12+1)
uint8_t bit = ((lfsr & 0x10000) > 0) ^ ((lfsr & 0x800) > 0) ^ (in > 0);
lfsr <<= 1;
lfsr |= bit;
return bit;
}
/**
* @brief ISR for demodulator
*/
void DMA1_Channel2_IRQHandler(void) __attribute__ ((interrupt));
void DMA1_Channel2_IRQHandler(void)
{
if(DMA1->ISR & DMA_ISR_TCIF2)
{
DMA1->IFCR |= DMA_IFCR_CTCIF2;
int32_t sample = ((samples[0] + samples[1] + samples[2] + samples[3]) >> 1) - 4095; //calculate input sample (decimation)
bool partialDcd = false;
for(uint8_t i = 0; i < demodCount; i++)
{
uint8_t symbol = (demodulate(sample, (struct DemodState*)&demodState[i]) > 0); //demodulate sample
decode(symbol, i); //recover bits, decode NRZI and call higher level function
if(demodState[i].dcd)
partialDcd = true;
}
if(partialDcd) //DCD on any of the demodulators
{
dcd = 1;
setDcd(1);
}
else //no DCD on both demodulators
{
dcd = 0;
setDcd(0);
}
}
}
/**
* @brief ISR for pushing DAC samples
*/
void TIM1_UP_IRQHandler(void) __attribute__ ((interrupt));
void TIM1_UP_IRQHandler(void)
{
TIM1->SR &= ~TIM_SR_UIF;
int32_t sample = 0;
if(ModemConfig.modem == MODEM_9600)
{
if(ModemConfig.usePWM)
sample = scrambledSymbol ? 89 : 0;
else
sample = scrambledSymbol ? 15 : 0;
sample = filter(&demodState[0].lpf, sample);
if(sample < 0)
sample = 0;
else if(sample > 15)
sample = 15;
}
else
{
sample = dacSine[dacSineIdx];
dacSineIdx++;
dacSineIdx &= (DAC_SINE_SIZE - 1);
}
if(ModemConfig.usePWM)
{
TIM4->CCR1 = sample;
}
else
{
GPIOB->ODR &= ~0xF000; //zero 4 oldest bits
GPIOB->ODR |= (sample << 12); //write sample to 4 oldest bits
}
}
void txBit()
{
if(Ax25GetTxBit() == 0) //get next bit and check if it's 0
{
currentSymbol ^= 1; //change symbol - NRZI encoding
}
//if 1, no symbol change
scrambledSymbol = scramble(currentSymbol);
}
/**
* @brief ISR for baudrate generator timer. NRZI encoding is done here.
*/
void TIM3_IRQHandler(void) __attribute__ ((interrupt));
void TIM3_IRQHandler(void)
{
TIM3->SR &= ~TIM_SR_UIF;
if(txTestState == TEST_DISABLED) //transmitting normal data
{
if(Ax25GetTxBit() == 0) //get next bit and check if it's 0
{
currentSymbol ^= 1; //change symbol - NRZI encoding
}
//if 1, no symbol change
}
else //transmit test mode
{
currentSymbol ^= 1; //change symbol
}
TIM1->CNT = 0;
if(ModemConfig.modem == MODEM_9600)
{
scrambledSymbol = scramble(currentSymbol);
}
else
{
if(currentSymbol) //current symbol is space
TIM1->ARR = spaceStep;
else //mark
TIM1->ARR = markStep;
}
}
/**
* @brief Demodulate received sample (4x oversampling)
* @param[in] sample Received sample
* @param[in] *dem Demodulator state
* @return Current tone (0 or 1)
*/
static int32_t demodulate(int16_t sample, struct DemodState *dem)
{
dem->RMSenergy += ((sample >> 1) * (sample >> 1)); //square the sample and add it to the sum
dem->RMSsampleCount++; //increment number of samples
if(ModemConfig.modem != MODEM_9600)
{
if(dem->prefilter != PREFILTER_NONE) //filter is used
{
dem->correlatorSamples[dem->correlatorSamplesIdx++] = filter(&dem->bpf, sample);
}
else //no pre/deemphasis
{
dem->correlatorSamples[dem->correlatorSamplesIdx++] = sample;
}
dem->correlatorSamplesIdx %= N;
int32_t outLoI = 0, outLoQ = 0, outHiI = 0, outHiQ = 0; //output values after correlating
for(uint8_t i = 0; i < N; i++)
{
int16_t t = dem->correlatorSamples[(dem->correlatorSamplesIdx + i) % N]; //read sample
outLoI += t * coeffLoI[i]; //correlate sample
outLoQ += t * coeffLoQ[i];
outHiI += t * coeffHiI[i];
outHiQ += t * coeffHiQ[i];
}
outHiI >>= 12;
outHiQ >>= 12;
outLoI >>= 12;
outLoQ >>= 12;
sample = ABS(outHiI) + ABS(outHiQ) - ABS(outLoI) - ABS(outLoQ);
}
//DCD using PLL
//PLL is running nominally at 1200 Hz (= baudrate)
//PLL timer is counting up and eventually overflows to a minimal negative value
//so it crosses zero in the middle
//tone change should happen somewhere near this zero-crossing (in ideal case of exactly same TX and RX baudrates)
//nothing is ideal, so we need to have some region around zero where tone change is expected
//if tone changed inside this region, then we add something to the DCD pulse counter (and adjust counter phase for the counter to be closer to 0)
//if tone changes outside this region, then we subtract something from the DCD pulse counter
//if some DCD pulse threshold is reached, then we claim that the incoming signal is correct and set DCD flag
//when configured properly, it's generally immune to noise, as the detected tone changes much faster than 1200 baud
//it's also important to set some maximum value for DCD counter, otherwise the DCD is "sticky"
dem->dcdPll = (signed)((unsigned)(dem->dcdPll) + (unsigned)(dem->pllStep)); //keep PLL ticking at the frequency equal to baudrate
if((sample > 0) != dem->dcdLastSymbol) //tone changed
{
if(abs(dem->dcdPll) < dem->pllStep) //tone change occurred near zero
dem->dcdCounter += dem->dcdInc; //increase DCD counter
else //tone change occurred far from zero
{
if(dem->dcdCounter >= dem->dcdDec) //avoid overflow
dem->dcdCounter -= dem->dcdDec; //decrease DCD counter
}
dem->dcdPll = (int)(dem->dcdPll * dem->dcdAdjust); //adjust PLL
}
dem->dcdLastSymbol = sample > 0; //store last symbol for symbol change detection
if(dem->dcdCounter > dem->dcdMax) //maximum DCD counter value reached
dem->dcdCounter = dem->dcdMax; //avoid "sticky" DCD and counter overflow
if(dem->dcdCounter > dem->dcdThres) //DCD threshold reached
dem->dcd = 1; //DCD!
else //below DCD threshold
dem->dcd = 0; //no DCD
sample = filter(&dem->lpf, sample);
// if(ModemConfig.modem == MODEM_9600)
// {
// //AGC, seems to be not needed
// if(sample >= dem->peak)
// {
// dem->peak += (((int32_t)(AGC9600_ATTACK * (float)32768) * (int32_t)(sample - dem->peak)) >> 15);
// }
// else
// {
// dem->peak += (((int32_t)(AGC9600_DECAY * (float)32768) * (int32_t)(sample - dem->peak)) >> 15);
// }
// if(sample <= dem->valley)
// {
// dem->valley += (((int32_t)(AGC9600_ATTACK * (float)32768) * (int32_t)(sample - dem->valley)) >> 15);
// }
// else
// {
// dem->valley += (((int32_t)(AGC9600_DECAY * (float)32768) * (int32_t)(sample - dem->valley)) >> 15);
// }
// //remove DC component (subtract average value of peaks)
// //and normalize to 32768 peak-to-peak (-16384:16384)
// //32768 is equal to 1 << 15
// if(dem->peak > dem->valley)
// {
// sample = ((((int32_t)(sample) - ((int32_t)(dem->peak + dem->valley) >> 1)) << 15) / (int32_t)(dem->peak - dem->valley));
// }
// }
return sample > 0;
}
/**
* @brief Decode received symbol: bit recovery, NRZI decoding and pass the decoded bit to higher level protocol
* @param[in] symbol Received symbol
* @param demod Demodulator index
*/
static void decode(uint8_t symbol, uint8_t demod)
{
struct DemodState *dem = (struct DemodState*)&demodState[demod];
//This function provides bit/clock recovery and NRZI decoding
//Bit recovery is based on PLL which is described in the function above (DCD PLL)
//Current symbol is sampled at PLL counter overflow, so symbol transition should occur at PLL counter zero
int32_t previous = dem->pll; //store last clock state
dem->pll = (signed)((unsigned)(dem->pll) + (unsigned)(dem->pllStep)); //keep PLL running
dem->rawSymbols <<= 1; //store received unsynchronized symbol
dem->rawSymbols |= (symbol & 1);
if ((dem->pll < 0) && (previous > 0)) //PLL counter overflow, sample symbol, decode NRZI and process in higher layer
{
dem->syncSymbols <<= 1; //shift recovered (received, synchronized) bit register
uint8_t sym = dem->rawSymbols & 0x07; //take last three symbols for sampling. Seems that 1 symbol is not enough, but 3 symbols work well
if(sym == 0b111 || sym == 0b110 || sym == 0b101 || sym == 0b011) //if there are 2 or 3 ones, then the received symbol is 1
sym = 1;
else
sym = 0;
if(ModemConfig.modem == MODEM_9600)
sym = descramble(sym); //descramble
dem->syncSymbols |= sym;
//NRZI decoding
if (((dem->syncSymbols & 0x03) == 0b11) || ((dem->syncSymbols & 0x03) == 0b00)) //two last symbols are the same - no symbol transition - decoded bit 1
{
Ax25BitParse(1, demod);
}
else //symbol transition - decoded bit 0
{
Ax25BitParse(0, demod);
}
}
if(((dem->rawSymbols & 0x03) == 0b10) || ((dem->rawSymbols & 0x03) == 0b01)) //if there was a symbol transition, adjust PLL
{
if(!dem->dcd) //PLL not locked
{
dem->pll = (int)(dem->pll * dem->pllNotLockedAdjust); //adjust PLL faster
}
else //PLL locked
{
dem->pll = (int)(dem->pll * dem->pllLockedAdjust); //adjust PLL slower
}
}
}
void ModemTxTestStart(enum ModemTxTestMode type)
{
if(txTestState != TEST_DISABLED) //TX test is already running
ModemTxTestStop(); //stop this test
setPtt(1); //PTT on
txTestState = type;
TIM2->CR1 &= ~TIM_CR1_CEN; //disable RX timer
TIM1->CR1 |= TIM_CR1_CEN; //enable DAC timer
NVIC_DisableIRQ(DMA1_Channel2_IRQn); //disable RX DMA interrupt
NVIC_EnableIRQ(TIM1_UP_IRQn); //enable DAC interrupt
if(type == TEST_MARK)
{
TIM1->ARR = markStep;
}
else if(type == TEST_SPACE)
{
TIM1->ARR = spaceStep;
}
else //alternating tones
{
//enable baudrate generator
TIM3->CR1 = TIM_CR1_CEN; //enable timer
NVIC_EnableIRQ(TIM3_IRQn); //enable interrupt in NVIC
}
}
void ModemTxTestStop(void)
{
txTestState = TEST_DISABLED;
TIM3->CR1 &= ~TIM_CR1_CEN; //disable baudrate timer
TIM1->CR1 &= ~TIM_CR1_CEN; //disable DAC timer
TIM2->CR1 |= TIM_CR1_CEN; //enable RX timer
NVIC_DisableIRQ(TIM3_IRQn);
NVIC_DisableIRQ(TIM1_UP_IRQn);
NVIC_EnableIRQ(DMA1_Channel2_IRQn);
setPtt(0); //PTT off
}
void ModemTransmitStart(void)
{
setPtt(1); //PTT on
TIM3->CR1 = TIM_CR1_CEN;
TIM1->CR1 = TIM_CR1_CEN;
TIM2->CR1 &= ~TIM_CR1_CEN;
NVIC_DisableIRQ(DMA1_Channel2_IRQn);
NVIC_EnableIRQ(TIM1_UP_IRQn);
NVIC_EnableIRQ(TIM3_IRQn);
}
/**
* @brief Stop TX and go back to RX
*/
void ModemTransmitStop(void)
{
TIM2->CR1 |= TIM_CR1_CEN;
TIM3->CR1 &= ~TIM_CR1_CEN;
TIM1->CR1 &= ~TIM_CR1_CEN;
NVIC_DisableIRQ(TIM1_UP_IRQn);
NVIC_DisableIRQ(TIM3_IRQn);
NVIC_EnableIRQ(DMA1_Channel2_IRQn);
setPtt(0);
TIM4->CCR1 = 44; //set around 50% duty cycle
}
/**
* @brief Controls PTT output
* @param state 0 - PTT off, 1 - PTT on
*/
static void setPtt(uint8_t state)
{
if(state)
GPIOB->BSRR = GPIO_BSRR_BS7;
else
GPIOB->BSRR = GPIO_BSRR_BR7;
}
/**
* @brief Initialize AFSK module
*/
void ModemInit(void)
{
memset(demodState, 0, sizeof(demodState));
/**
* TIM1 is used for pushing samples to DAC (R2R or PWM) (clocked at 4 MHz)
* TIM3 is the baudrate generator for TX (clocked at 1 MHz)
* TIM4 is the PWM generator with no software interrupt
* TIM2 is the RX sampling timer with no software interrupt, but it directly calls DMA
*/
RCC->APB2ENR |= RCC_APB2ENR_IOPBEN;
RCC->APB2ENR |= RCC_APB2ENR_IOPCEN;
RCC->APB2ENR |= RCC_APB2ENR_IOPAEN;
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN;
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN;
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
GPIOC->CRH |= GPIO_CRH_MODE13_1; //DCD LED on PC13
GPIOC->CRH &= ~GPIO_CRH_MODE13_0;
GPIOC->CRH &= ~GPIO_CRH_CNF13;
GPIOB->CRH &= ~0xFFFF0000; //R2R output on PB12-PB15
GPIOB->CRH |= 0x22220000;
GPIOA->CRL &= ~GPIO_CRL_CNF0; //ADC input on PA0
GPIOA->CRL &= ~GPIO_CRL_MODE0;
GPIOB->CRL |= GPIO_CRL_MODE7_1; //PTT output on PB7
GPIOB->CRL &= ~GPIO_CRL_MODE7_0;
GPIOB->CRL &= ~GPIO_CRL_CNF7;
GPIOB->CRL |= GPIO_CRL_MODE5_1; //2nd DCD LED on PB5
GPIOB->CRL &= ~GPIO_CRL_MODE5_0;
GPIOB->CRL &= ~GPIO_CRL_CNF5;
RCC->CFGR |= RCC_CFGR_ADCPRE_1; //ADC prescaler /6
RCC->CFGR &= ~RCC_CFGR_ADCPRE_0;
ADC1->CR2 |= ADC_CR2_CONT; //continuous conversion
ADC1->CR2 |= ADC_CR2_EXTSEL;
ADC1->SQR1 &= ~ADC_SQR1_L; //1 conversion
ADC1->SMPR2 |= ADC_SMPR2_SMP0_2; //41.5 cycle sampling
ADC1->SQR3 &= ~ADC_SQR3_SQ1; //channel 0 is first in the sequence
ADC1->CR2 |= ADC_CR2_ADON; //ADC on
ADC1->CR2 |= ADC_CR2_RSTCAL; //calibrate ADC
while(ADC1->CR2 & ADC_CR2_RSTCAL)
;
ADC1->CR2 |= ADC_CR2_CAL;
while(ADC1->CR2 & ADC_CR2_CAL)
;
ADC1->CR2 |= ADC_CR2_EXTTRIG;
ADC1->CR2 |= ADC_CR2_SWSTART; //start ADC conversion
//prepare DMA
DMA1_Channel2->CCR |= DMA_CCR_MSIZE_0; //16 bit memory region
DMA1_Channel2->CCR &= ~DMA_CCR_MSIZE_1;
DMA1_Channel2->CCR |= DMA_CCR_PSIZE_0;
DMA1_Channel2->CCR &= ~DMA_CCR_PSIZE_1;
DMA1_Channel2->CCR |= DMA_CCR_MINC | DMA_CCR_CIRC| DMA_CCR_TCIE; //circular mode, memory increment and interrupt
DMA1_Channel2->CNDTR = 4; //4 samples
DMA1_Channel2->CPAR = (uint32_t)&(ADC1->DR); //ADC data register address
DMA1_Channel2->CMAR = (uint32_t)samples; //sample buffer address
DMA1_Channel2->CCR |= DMA_CCR_EN; //enable DMA
NVIC_EnableIRQ(DMA1_Channel2_IRQn);
//RX sampling timer
TIM2->PSC = 8; //72/9=8 MHz
TIM2->DIER |= TIM_DIER_UDE; //enable calling DMA on timer tick
//TX DAC timer
TIM1->PSC = 17; //72/18=4 MHz
TIM1->DIER |= TIM_DIER_UIE;
//baudrate timer
TIM3->PSC = 71; //72/72=1 MHz
TIM3->DIER |= TIM_DIER_UIE;
if((ModemConfig.modem == MODEM_1200) || (ModemConfig.modem == MODEM_1200_V23)
#ifdef ENABLE_PSK
|| (ModemConfig.modem == MODEM_BPSK_1200) || (ModemConfig.modem == MODEM_QPSK_1200)
#endif
)
{
//use one modem in FX.25 mode
//FX.25 (RS) functions are not reentrant
//also they are BIG
if(
#ifdef ENABLE_FX25
Ax25Config.fx25
#else
0
#endif
#ifdef ENABLE_PSK
|| (ModemConfig.modem == MODEM_BPSK_1200) || (ModemConfig.modem == MODEM_QPSK_1200)
#endif
)
demodCount = 1;
else
demodCount = 2;
N = N1200;
baudRate = 1200.f;
demodState[0].pllStep = PLL1200_STEP;
demodState[0].pllLockedAdjust = PLL1200_LOCKED_TUNE;
demodState[0].pllNotLockedAdjust = PLL1200_NOT_LOCKED_TUNE;
demodState[0].dcdMax = DCD1200_MAXPULSE;
demodState[0].dcdThres = DCD1200_THRES;
demodState[0].dcdInc = DCD1200_INC;
demodState[0].dcdDec = DCD1200_DEC;
demodState[0].dcdAdjust = DCD1200_PLLTUNE;
demodState[1].pllStep = PLL1200_STEP;
demodState[1].pllLockedAdjust = PLL1200_LOCKED_TUNE;
demodState[1].pllNotLockedAdjust = PLL1200_NOT_LOCKED_TUNE;
demodState[1].dcdMax = DCD1200_MAXPULSE;
demodState[1].dcdThres = DCD1200_THRES;
demodState[1].dcdInc = DCD1200_INC;
demodState[1].dcdDec = DCD1200_DEC;
demodState[1].dcdAdjust = DCD1200_PLLTUNE;
demodState[1].prefilter = PREFILTER_NONE;
demodState[1].lpf.coeffs = (int16_t*)lpf1200;
demodState[1].lpf.taps = sizeof(lpf1200) / sizeof(*lpf1200);
demodState[1].lpf.gainShift = 15;
demodState[0].lpf.coeffs = (int16_t*)lpf1200;
demodState[0].lpf.taps = sizeof(lpf1200) / sizeof(*lpf1200);
demodState[0].lpf.gainShift = 15;
demodState[0].prefilter = PREFILTER_NONE;
#ifdef ENABLE_PSK
if((ModemConfig.modem != MODEM_BPSK_1200) && (ModemConfig.modem != MODEM_QPSK_1200))
{
#endif
if(ModemConfig.flatAudioIn) //when used with flat audio input, use deemphasis and flat modems
{
#ifdef ENABLE_FX25
if(Ax25Config.fx25)
demodState[0].prefilter = PREFILTER_NONE;
else
#endif
demodState[0].prefilter = PREFILTER_DEEMPHASIS;
demodState[0].bpf.coeffs = (int16_t*)bpf1200Inv;
demodState[0].bpf.taps = sizeof(bpf1200Inv) / sizeof(*bpf1200Inv);
demodState[0].bpf.gainShift = 15;
}
else //when used with normal (filtered) audio input, use flat and preemphasis modems
{
demodState[0].prefilter = PREFILTER_PREEMPHASIS;
demodState[0].bpf.coeffs = (int16_t*)bpf1200;
demodState[0].bpf.taps = sizeof(bpf1200) / sizeof(*bpf1200);
demodState[0].bpf.gainShift = 15;
}
if(ModemConfig.modem == MODEM_1200) //Bell 202
{
markFreq = 1200.f;
spaceFreq = 2200.f;
}
else //V.23
{
markFreq = 1300.f;
spaceFreq = 2100.f;
}
#ifdef ENABLE_PSK
}
else
{
markFreq = 1700.f; //use as center frequency in PSK
}
#endif
TIM2->ARR = 207; //8MHz / 208 =~38400 Hz (4*9600 Hz for 4x oversampling)
}
else if(ModemConfig.modem == MODEM_300)
{
demodCount = 1;
N = N300;
baudRate = 300.f;
markFreq = 1600.f;
spaceFreq = 1800.f;
demodState[0].pllStep = PLL300_STEP;
demodState[0].pllLockedAdjust = PLL300_LOCKED_TUNE;
demodState[0].pllNotLockedAdjust = PLL300_NOT_LOCKED_TUNE;
demodState[0].dcdMax = DCD300_MAXPULSE;
demodState[0].dcdThres = DCD300_THRES;
demodState[0].dcdInc = DCD300_INC;
demodState[0].dcdDec = DCD300_DEC;
demodState[0].dcdAdjust = DCD300_PLLTUNE;
demodState[0].prefilter = PREFILTER_FLAT;
demodState[0].bpf.coeffs = (int16_t*)bpf300;
demodState[0].bpf.taps = sizeof(bpf300) / sizeof(*bpf300);
demodState[0].bpf.gainShift = 16;
demodState[0].lpf.coeffs = (int16_t*)lpf300;
demodState[0].lpf.taps = sizeof(lpf300) / sizeof(*lpf300);
demodState[0].lpf.gainShift = 15;
TIM2->ARR = 207; //8MHz / 208 =~38400 Hz (4*9600 Hz for 4x oversampling)
}
else if(ModemConfig.modem == MODEM_9600)
{
demodCount = 1;
N = N9600;
baudRate = 9600.f;
demodState[0].pllStep = PLL9600_STEP;
demodState[0].pllLockedAdjust = PLL9600_LOCKED_TUNE;
demodState[0].pllNotLockedAdjust = PLL9600_NOT_LOCKED_TUNE;
demodState[0].dcdMax = DCD9600_MAXPULSE;
demodState[0].dcdThres = DCD9600_THRES;
demodState[0].dcdInc = DCD9600_INC;
demodState[0].dcdDec = DCD9600_DEC;
demodState[0].dcdAdjust = DCD9600_PLLTUNE;
demodState[0].prefilter = PREFILTER_NONE;
//this filter will be used for RX and TX
demodState[0].lpf.coeffs = (int16_t*)lpf9600;
demodState[0].lpf.taps = sizeof(lpf9600) / sizeof(*lpf9600);
demodState[0].lpf.gainShift = 16;
TIM2->ARR = 51; //8MHz / 52 =~153600 Hz (4*38400 Hz for 4x oversampling)
}
TIM2->CR1 |= TIM_CR1_CEN; //enable DMA timer
markStep = 4000000 / (DAC_SINE_SIZE * markFreq) - 1;
spaceStep = 4000000 / (DAC_SINE_SIZE * spaceFreq) - 1;
baudRateStep = 1000000 / baudRate - 1;
TIM3->ARR = baudRateStep;
for(uint8_t i = 0; i < N; i++) //calculate correlator coefficients
{
coeffLoI[i] = 4095.f * cosf(2.f * 3.1416f * (float)i / (float)N * markFreq / baudRate);
coeffLoQ[i] = 4095.f * sinf(2.f * 3.1416f * (float)i / (float)N * markFreq / baudRate);
coeffHiI[i] = 4095.f * cosf(2.f * 3.1416f * (float)i / (float)N * spaceFreq / baudRate);
coeffHiQ[i] = 4095.f * sinf(2.f * 3.1416f * (float)i / (float)N * spaceFreq / baudRate);
}
for(uint8_t i = 0; i < DAC_SINE_SIZE; i++) //calculate DAC sine samples
{
if(ModemConfig.usePWM)
dacSine[i] = ((sinf(2.f * 3.1416f * (float)i / (float)DAC_SINE_SIZE) + 1.f) * 45.f);
else
dacSine[i] = ((7.f * sinf(2.f * 3.1416f * (float)i / (float)DAC_SINE_SIZE)) + 8.f);
}
if(ModemConfig.usePWM)
{
RCC->APB1ENR |= RCC_APB1ENR_TIM4EN; //configure timer
GPIOB->CRL |= GPIO_CRL_CNF6_1; //configure pin for PWM
GPIOB->CRL |= GPIO_CRL_MODE6;
GPIOB->CRL &= ~GPIO_CRL_CNF6_0;
//set up PWM generation
TIM4->PSC = 7; //72MHz/8=9MHz
TIM4->ARR = 90; //9MHz/90=100kHz
TIM4->CCMR1 |= TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2;
TIM4->CCER |= TIM_CCER_CC1E;
TIM4->CCR1 = 44; //initial duty cycle
TIM4->CR1 |= TIM_CR1_CEN;
}
}