Porównaj commity

...

4 Commity

Autor SHA1 Wiadomość Data
miguel 7e46d20202 Update magloop.html 2023-05-16 18:04:03 +10:00
miguel 67c46e80d7 Add reference to F W Grover's book 2023-05-16 17:59:53 +10:00
miguel 73d1f104bd Fix units for Grovers equations 2023-05-16 17:59:21 +10:00
miguel cdbb878630 Fix octagon inductance calc. 2023-05-16 17:46:02 +10:00
2 zmienionych plików z 19 dodań i 18 usunięć

Wyświetl plik

@ -69,7 +69,7 @@
<div class="notes">
<p style="text-align:center"><b><u><a href="./magloop_equations.html"> EQUATIONS USED </a></u></b></p>
<b><u>Notes:</u></b><br>
The Magloop Antenna Calculator was developed to predict the characteristics of a small-loop (aka "magnetic loop" or "magloop")
The Magloop Antenna Calculator was developed to predict the characteristics of a small-transmitting-loop (aka "STL", "magnetic loop" or "magloop")
antenna, given physical dimensions entered via slider widgets. <br>
It supports:
<ul>
@ -100,7 +100,7 @@
</ul>
<u><b>Calculated parameters:</b></u>
<ul>
<li>L : Inductance in microhenries.</li>
<li>L : Inductance in microhenries. Equations from [3].</li>
<li>A : Loop area in square meters or square feet.</li>
<li>C : Effective capacitance of the loop in picofarads.</li>
<li>peri : Perimeter of the main loop in meters or feet.</li>
@ -133,6 +133,7 @@
<b><u>References:</u></b><br>
[1]: B. Austin, A. Boswell and M. Perks, <b>"Loss Mechanisms in the Electrically Small Loop Antenna"</b> <i>, IEEE Antennas and Propagation Magazine, 56, 4, August 2014, pp. 143.</i> <br>
[2]: A. Boswell, A. J. Tyler and A. White, <b>"Performance of a Small Loop Antenna in the 3 - 10 MHz Band"</b> <i>, IEEE Antennas and Propagation Magazine, 47, 2, April 2005, pp. 5 1 -56.</i> <br>
[3]: F W Grover, <b>"Formulas and Tables for the Calculation of the Inductance of Coils of Polygonal Form"</b> <i>Scientific Papers of the Bureau of Standards, Vol 18, p753</i> <br>
<br>
<b><u>Change history:</u></b><br>
<b>[13-May-23] - V10.2</b> <br>
@ -323,6 +324,9 @@
const a_coil_radius = loop_diameter_meters * 0.5;
const coil_length = cond_diameter_meters * spacing_ratio * loop_turns;
const N = loop_turns;
const l = (N>1) ? (coil_length * 100.0) : (cond_diameter_meters * 100.0); // coil length in cm
var retval = 0.0;
if(shape == "circle") {
@ -334,33 +338,30 @@
}
} else
if(shape == "octagon") {
const N = loop_turns;
const s = (100.0 * loop_diameter_meters) * 0.414213; // side length in cm
const l = (N>1) ? (coil_length * 100.0) : (cond_diameter_meters * 100.0); // coil length in cm
const bOn2r = l / (1.09868411*s);
//retval = 1e-6 * 0.016 * (N**2) * s * ( Math.log((2.613*s*N)/((N+1)*l)) + 0.75143 + ((0.07153*(N+1)*l) / (s*N)));
retval = 1e-6 * 0.016 * (N**2) * s * ( Math.log(1.0/bOn2r) + 0.75143 + 0.18693*bOn2r + 0.11969*bOn2r**2 - 0.08234*bOn2r**4);
const bOn2r = l / (1.306563*s);
//retval = 1e-6 * 0.016 * (N**2) * s * ( Math.log((2.613*s*N)/((N+1)*l)) + 0.75143 + ((0.07153*(N+1)*l) / (s*N))); // ARRL Antennas Book 17th Ed
retval = 1e-6 * 0.016 * (N**2) * s * ( Math.log(1.0/bOn2r) + 0.75143 + 0.18693*bOn2r + 0.11969*bOn2r**2 - 0.08234*bOn2r**4); // F W Grover p753
//retval = 1e-6 * 0.016 * (N**2) * s * ( Math.log(s/l) + 1.711976 + 0.075143*(l/s) + 0.017528*(l/s)**2 - 0.001766*(l/s)**4);
} else
if(shape == "hexagon") {
const N = loop_turns;
const s = (100.0 * loop_diameter_meters) * 0.57735; // side length in cm
const l = (N>1) ? (coil_length * 100.0) : (cond_diameter_meters * 100.0); // coil length in cm
const bOn2r = l / (loop_diameter_meters * 115.470);
//retval = 1e-6 * 0.012 * (N**2) * s * ( Math.log((2.0*s*N)/((N+1)*l)) + 0.65533 + ((0.1348*(N+1)*l) / (s*N)));
retval = 1e-6 * 0.012 * (N**2) * s * ( Math.log(1.0/bOn2r) + 0.65533 + 0.26960*bOn2r + 0.07736*bOn2r**2 - 0.05504*bOn2r**4);
//retval = 1e-6 * 0.012 * (N**2) * s * ( Math.log((2.0*s*N)/((N+1)*l)) + 0.65533 + ((0.1348*(N+1)*l) / (s*N))); // ARRL Antennas Book 17th Ed
retval = 1e-6 * 0.012 * (N**2) * s * ( Math.log(1.0/bOn2r) + 0.65533 + 0.26960*bOn2r + 0.07736*bOn2r**2 - 0.05504*bOn2r**4); // F W Grover p753
} else
if(shape == "square") {
const N = loop_turns;
const s = (100.0 * loop_diameter_meters); // side length in cm
const l = (N>1) ? (coil_length * 100.0) : (cond_diameter_meters * 100.0); // coil length in cm
const bOn2r = l / (loop_diameter_meters * 141.4214);
//retval = 1e-6 * 0.008 * (N**2) * s * ( Math.log((1.4142*s*N)/((N+1)*l)) + 0.37942 + ((0.3333*(N+1)*l)/(s*N)));
retval = 1e-6 * 0.008 * (N**2) * s * ( Math.log(1.0/bOn2r) + 0.37942 + 0.47140*bOn2r - 0.014298*bOn2r**2 - 0.02904*bOn2r**4);
//retval = 1e-6 * 0.008 * (N**2) * s * ( Math.log((1.4142*s*N)/((N+1)*l)) + 0.37942 + ((0.3333*(N+1)*l)/(s*N))); // ARRL Antennas Book 17th Ed
retval = 1e-6 * 0.008 * (N**2) * s * ( Math.log(1.0/bOn2r) + 0.37942 + 0.47140*bOn2r - 0.014298*bOn2r**2 - 0.02904*bOn2r**4); // F W Grover p753
}
if(loop_mode == "parallel") {
// then N==2, so divide by 4 to go from serial to parallel inductance:
retval *= 0.25;
}
return retval; // In Henries
}

Wyświetl plik

@ -17,13 +17,13 @@
<i>[k_nagaoka - Nagaoka coefficient; l_coil - length of the coil in meters; r_loop - radius of the loop in meters]</i><br><br>
<b>For octagonal loop antenna inductance:[F W Grover]</b><br>
<img src="L_oct.png" alt="octagonal magloop antenna inductance"><br>
<i>[N - turns; s - section side length m; r - loop radius in m; b - coil length in m]</i><br><br>
<i>[L - microhenries; N - turns; s - section side length cm; r - loop circumradius in cm; b - coil length in cm]</i><br><br>
<b>For hexagonal loop antenna inductance:[F W Grover]</b><br>
<img src="L_hex.png" alt="hexagonal magloop antenna inductance"><br>
<i>[N - turns; s - section side length m; r - loop radius in m; b - coil length in m]</i><br><br>
<i>[L - microhenries; N - turns; s - section side length cm; r - loop circumradius in cm; b - coil length in cm]</i><br><br>
<b>For square loop antenna inductance:[F W Grover]</b><br>
<img src="L_sqr.png" alt="square magloop antenna inductance"><br>
<i>[N - turns; s - section side length m; r - loop radius in m; b - coil length in m]</i><br><br>
<i>[L - microhenries; N - turns; s - section side length cm; r - loop circumradius in cm; b - coil length in cm]</i><br><br>
<b>Loss resistance:</b><br>
<img src="MagloopLossResistance.png" alt="magloop multi-turn loss resistance"><br><br>
<b>Surface resistance:</b><br>