uSDR-pico/si5351.c

501 wiersze
18 KiB
C

/*
* si5351.c
*
* Created: Jan 2020
* Author: Arjan
*
* Driver for the SI5351A VCO
*
Si5351 principle of operation:
==============================
Crystal frequency <Fxtal> (usually 25MHz) is multiplied in a PLL by <MSN> to obtain <Fvco>.
PLL A and B have independent MSN values, the <Fout> on channel <i> can be derived from either.
<Fvco> must be between 600MHz and 900MHz, but the spec is more relaxed in reality.
<Fvco> is divided by <MSi> and <Ri> to obtain the output frequency <Fout>.
<MSi> and <Ri> are selected to be in the ballpark of desired frequency range.
<MSN> is then used for tuning <Fout>.
Only certain values of <MSi> and <Ri> are allowed when quadrature output is required.
+-------+ +-------+ +------+
- Fxtal --> | * MSN | -- Fvco --> | / MSi | --> | / Ri | -- Fout -->
+-------+ +-------+ +------+
Details:
========
---Derivation of Fout---
MSN determines: Fvco = Fxtal * (MSN) , where MSN = a + b/c
MSi and Ri determine: Fout = Fvco / (Ri*MSi) , where MSi = a + b/c (different a, b and c)
---Derivation of the register values, that determine MSN and MSi---
P1 = 128*a + Floor(128*b/c) - 512
P2 = 128*b - c*Floor(128*b/c) (P2 = 0 for MSi integer mode, or calculated for MSN tuning)
P3 = c (P3 = 1 for MSi integer mode, or P3 = 1000000 for MSN tuning)
This VFO implementation assumes PLLA is used for VFO0 (clk0 and clk1), and PLLB is used for VFO1 (clk2)
The algorithm to get from required Fout to synthesizer settings:
| calculate new <MSN> from the desired <Fout>, based on the current <Ri> and <MSi>
| if MSN is still inside [600/Fxtal, 900/Fxtal]
| then
| just update the MSN related registers
| else
| re-calculate <MSi>, <Ri> and <MSN> from desired <Fout>
| write the <MSi> and <Ri> parameter registers, including phase offset (MSi equals phase offset for 90 deg, use INV to shift 180deg more)
| write the <MSN> parameter registers
| reset PLL
(this all assumes that the current settings are consistent, i.e. must be initialized at startup)
Some boundary values:
Ri MSi Lo MHz Hi MHz
1 4 150.000000 225.000000
1 126 4.761905 7.142857
32 4 4.687500 7.031250
32 126 0.148810 0.223214
128 4 1.171875 1.757813
128 126 0.037202 0.055804
MSi: target for mid-band, i.e. Fvco=750MHz
MSi = 750MHz/(Fout*Ri)
MSi &= 0xfe // Make it even
MSN = MSi*Ri*Fout/Fxtal (should be between 24 and 36)
Only use MSi even-integers, i.e. d=[4, 6, 8..126], e=0 and f=100000, and set INT bits in reg 22, 23.
Quadrature Phase offsets (i.e. delay):
- Offset for MS0 (reg 165) must be 0 (cosine),
- Offset for MS1 (reg 166) must be equal to divider MS1 for 90 deg (sine),
- Set INV bit (reg 17) to add 180 deg.
NOTE: Phase offsets only work when Ri = 1,
This implies that minimum Fout is 4.762MHz at Fvco = 600MHz.
Additional flip/flop dividers are needed to get down to 80m band frequencies, or Fvco must be tuned below spec.
Control Si5351 (see AN619):
===========================
----+---------+---------+---------+---------+---------+---------+---------+---------+
@ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
----+---------+---------+---------+---------+---------+---------+---------+---------+
0 |SYS_INIT | LOL_B | LOL_A | LOS | Reserved | REVID[1:0] |
1 |SYS_INIT | LOS_B | LOL_A | LOS | Reserved |
| _STKY| _STKY| _STKY| _STKY| Reserved |
2 |SYS_INIT | LOS_B | LOL_A | LOS | Reserved |
| _MASK| _MASK| _MASK| _MASK| Reserved |
3 | Reserved | CLK2_EN | CLK1_EN | CLK0_EN |
====
9 | Reserved |OEB_MASK2|OEB_MASK1|OEB_MASK0|
====
15 | CLKIN_DIV[2:0] | 0 | 0 | PLLB_SRC| PLLA_SRC| 0 | 0 |
16 | CLK0_PDN| MS0_INT | MS0_SRC | CLK0_INV| CLK0_SRC[1:0] | CLK0_IDRV[1:0] |
17 | CLK1_PDN| MS1_INT | MS1_SRC | CLK1_INV| CLK1_SRC[1:0] | CLK1_IDRV[1:0] |
18 | CLK2_PDN| MS2_INT | MS2_SRC | CLK2_INV| CLK2_SRC[1:0] | CLK2_IDRV[1:0] |
====
22 | Reserved| FBA_INT | Reserved |
23 | Reserved| FBB_INT | Reserved |
24 | Reserved | CLK2_DIS_STATE | CLK1_DIS_STATE | CLK0_DIS_STATE |
====
26 | MSNA_P3[15:8] |
27 | MSNA_P3[7:0] |
28 | Reserved | MSNA_P1[17:16] |
29 | MSNA_P1[15:8] |
30 | MSNA_P1[7:0] |
31 | MSNA_P3[19:16] | MSNA_P2[19:16] |
32 | MSNA_P2[15:8] |
33 | MSNA_P2[7:0] |
34: Same pattern for PLLB
42 | MS0_P3[15:8] |
43 | MS0_P3[7:0] |
44 | Reserved| R0_DIV[2:0] | MS0_DIVBY4[1:0] | MS0_P1[17:16] |
45 | MS0_P1[15:8] |
46 | MS0_P1[7:0] |
47 | MS0_P3[19:16] | MS0_P2[19:16] |
48 | MS0_P2[15:8] |
49 | MS0_P2[7:0] |
50: Same pattern for CLK1
58: Same pattern for CLK2
====
165 | Reserved| CLK0_PHOFF[6:0] |
166 | Reserved| CLK1_PHOFF[6:0] |
167 | Reserved| CLK2_PHOFF[6:0] |
====
177 | PLLB_RST| Reserved| PLLA_RST| Reserved |
====
183 | XTAL_CL | Reserved |
====
*
*/
#include <stdio.h>
#include <math.h>
#include "pico/stdlib.h"
#include "hardware/i2c.h"
#include "hardware/timer.h"
#include "hardware/clocks.h"
#include "si5351.h"
#define I2C_VFO 0x60 // I2C address
// SI5351 register address definitions
#define SI_CLK_OE 3
#define SI_CLK0_CTL 16
#define SI_CLK1_CTL 17
#define SI_CLK2_CTL 18
#define SI_SYNTH_PLLA 26
#define SI_SYNTH_PLLB 34
#define SI_SYNTH_MS0 42
#define SI_SYNTH_MS1 50
#define SI_SYNTH_MS2 58
#define SI_SS_EN 149
#define SI_CLK0_PHOFF 165
#define SI_CLK1_PHOFF 166
#define SI_CLK2_PHOFF 167
#define SI_PLL_RESET 177
#define SI_XTAL_LOAD 183
// CLK_OE register 3 masks
#define SI_CLK0_ENABLE 0b00000001 // Enable clock 0 output
#define SI_CLK1_ENABLE 0b00000010 // Enable clock 1 output
#define SI_CLK2_ENABLE 0b00000100 // Enable clock 2 output
#define SI_VFO0_DISABLE 0b00000011 // Set bits to disable
#define SI_VFO1_DISABLE 0b00000100 // Set bits to disable
// CLKi_CTL register 16, 17, 18 values
// Normally 0x4f for clk 0 and 1, 0x6f for clk 2
#define SI_CLK_INT 0b01000000 // Set integer mode
#define SI_CLK_PLL 0b00100000 // Select PLL B as MS source (default 0 = PLL A)
#define SI_CLK_INV 0b00010000 // Invert output (i.e. phase + 180deg)
#define SI_CLK_SRC 0b00001100 // Select output source: 11=MS, 00=XTAL direct
#define SI_CLK_DRV 0b00000011 // Select output drive, increasingly: 2-4-6-8 mA (best risetime, use max = 11)
// PLL_RESET register 177 values
#define SI_PLLB_RST 0b10000000 // Reset PLL B
#define SI_PLLA_RST 0b00100000 // Reset PLL A
#define SI_XTAL_FREQ 25001414UL // Replace with measured crystal frequency of XTAL for CL = 10pF (default)
#define SI_MSN_LO ((0.6e9)/SI_XTAL_FREQ)
#define SI_MSN_HI ((0.9e9)/SI_XTAL_FREQ)
#define SI_PLL_C 1000000UL // Parameter c for PLL-A and -B setting
typedef struct
{
uint32_t freq; // type can hold up to 4GHz
uint8_t flag; // flag != 0 when update needed
uint8_t phase; // in quarter waves (0, 1, 2, 3)
uint8_t ri; // Ri (1 .. 128)
uint8_t msi; // MSi parameter a (4, 6, 8 .. 126)
double msn; // MSN (24.0 .. 35.9999)
} vfo_t;
vfo_t vfo[2]; // 0: clk0 / clk1 1: clk2
void si_setfreq(int i, uint32_t f)
{
if ((i<0)||(i>1)) return; // Check VFO range
if (f>150000000) return; // Check frequency range
if (vfo[i].freq == f) return; // Anything to set at all?
vfo[i].freq = f; // Entry checks pass, so do the actual setting
vfo[i].flag = 1;
}
void si_setphase(int i, uint8_t p)
{
if (i!=0) return; // Check VFO range
if (p>3) return; // Check phase range
if (vfo[i].phase == p) return; // Anything to set at all?
vfo[i].phase = p; // Entry checks pass, so do the actual setting
vfo[i].flag = 1;
}
void si_enable(int i, bool en)
{
uint8_t data[2];
if ((i<0)||(i>1)) return; // Check VFO range
data[0] = SI_CLK_OE; // Read OE register
i2c_write_blocking(i2c0, I2C_VFO, &data[0], 1, true);
i2c_read_blocking(i2c0, I2C_VFO, &data[1], 1, false);
data[0] = SI_CLK_OE;
if (i==0)
{
data[1] = en ? data[1]&~SI_VFO0_DISABLE : data[1]|SI_VFO0_DISABLE;
}
else
{
data[1] = en ? data[1]&~SI_VFO1_DISABLE : data[1]|SI_VFO1_DISABLE;
}
i2c_write_blocking(i2c0, I2C_VFO, &data[0], 2, false);
}
/*
* read contents of SI5351 registers, from reg to reg+len-1, output in data array
*/
int si_getreg(uint8_t *data, uint8_t reg, uint8_t len)
{
int ret;
ret = i2c_write_blocking(i2c0, I2C_VFO, &reg, 1, true);
if (ret<0) printf ("I2C write error\n");
ret = i2c_read_blocking(i2c0, I2C_VFO, data, len, false);
if (ret<0) printf ("I2C read error\n");
return(len);
}
/*
* Set up MSN PLL divider for vfo[i], assuming MSN has been set in vfo[i]
* Optimize for speed, this may be called with short intervals
* See also SiLabs AN619 section 3.2
*/
void si_setmsn(int i)
{
uint8_t data[16]; // I2C trx buffer
uint32_t P1, P2; // MSN parameters
uint32_t A;
uint32_t B;
if ((i<0)||(i>1)) return; // Check VFO range
A = (uint32_t)(floor(vfo[i].msn)); // A is integer part of MSN
B = (uint32_t)((vfo[i].msn - (double)A) * SI_PLL_C); // B is C * fraction part of MSN (C is a constant)
P2 = (uint32_t)(floor((double)(128 * B) / (double)SI_PLL_C));
P1 = (uint32_t)(128 * A + P2 - 512);
P2 = (uint32_t)(128 * B - SI_PLL_C * P2);
// transfer PLL A or PLL B registers
if (i==0)
data[0] = SI_SYNTH_PLLA;
else
data[0] = SI_SYNTH_PLLB;
data[1] = (SI_PLL_C & 0x0000FF00) >> 8;
data[2] = (SI_PLL_C & 0x000000FF);
data[3] = (P1 & 0x00030000) >> 16;
data[4] = (P1 & 0x0000FF00) >> 8;
data[5] = (P1 & 0x000000FF);
data[6] = ((SI_PLL_C & 0x000F0000) >> 12) | ((P2 & 0x000F0000) >> 16);
data[7] = (P2 & 0x0000FF00) >> 8;
data[8] = (P2 & 0x000000FF);
i2c_write_blocking(i2c0, I2C_VFO, data, 9, false);
}
/*
* Set up registers with MS and R divider for vfo[i], assuming values have been set in vfo[i]
* In this implementation we only use integer mode, i.e. b=0 and P3=1
* See also SiLabs AN619 section 4.1
*/
void si_setmsi(uint8_t i)
{
uint8_t data[16]; // I2C trx buffer
uint32_t P1;
uint8_t R;
i=(i>0?1:0);
P1 = (uint32_t)(128*(uint32_t)floor(vfo[i].msi) - 512);
R = vfo[i].ri;
R = (R&0xf0) ? ((R&0xc0)?((R&0x80)?7:6):(R&0x20)?5:4) : ((R&0x0c)?((R&0x08)?3:2):(R&0x02)?1:0); // quick log2(r)
if (i==0)
data[0] = SI_SYNTH_MS0;
else
data[0] = SI_SYNTH_MS2;
data[1] = 0x00;
data[2] = 0x01;
data[3] = ((P1 & 0x00030000) >> 16) | (R << 4 );
data[4] = (P1 & 0x0000FF00) >> 8;
data[5] = (P1 & 0x000000FF);
data[6] = 0x00;
data[7] = 0x00;
data[8] = 0x00;
i2c_write_blocking(i2c0, I2C_VFO, data, 9, false);
// If vfo[0] also set clk 1
if (i==0)
{
data[0] = SI_SYNTH_MS1; // Same data in synthesizer
i2c_write_blocking(i2c0, I2C_VFO, data, 9, false);
if (vfo[0].phase&1) // Phase is either 90 or 270 deg?
{
data[0] = SI_CLK1_PHOFF;
data[1] = vfo[0].msi; // offset == MSi for 90deg
i2c_write_blocking(i2c0, I2C_VFO, data, 2, false);
}
else // Phase is 0 or 180 deg
{
data[0] = SI_CLK1_PHOFF;
data[1] = 0; // offset == 0 for 0deg
i2c_write_blocking(i2c0, I2C_VFO, data, 2, false);
}
if (vfo[0].phase&2) // Phase is 180 or 270 deg?
{
data[0] = SI_CLK1_CTL; // Then set the invert flag
data[1] = 0x5d; // CLK1: INT, PLLA, INV, MS, 8mA
i2c_write_blocking(i2c0, I2C_VFO, data, 2, false);
}
}
// Reset associated PLL
data[0] = SI_PLL_RESET;
data[1] = (i==1)?0x80:0x20;
i2c_write_blocking(i2c0, I2C_VFO, data, 2, false);
}
/*
* For each vfo, calculate required MSN setting, MSN = MSi*Ri*Fout/Fxtal
* If in range, just set MSN registers
* If not in range, recalculate MSi and Ri and also MSN
* Set MSN, MSi and Ri registers (implicitly resets PLL)
*/
void si_evaluate(void)
{
double msn;
if (vfo[0].flag)
{
msn = (double)(vfo[0].msi); // Re-calculate MSN
msn = msn * (double)(vfo[0].ri);
msn = msn * (double)(vfo[0].freq) / SI_XTAL_FREQ;
if ((msn>=SI_MSN_LO)&&(msn<SI_MSN_HI))
{
vfo[0].msn = msn;
si_setmsn(0);
}
else
{
// Pre-scale Ri, stretch down Ri=1 range
if (vfo[0].freq<1000000)
vfo[0].ri = 128;
else if (vfo[0].freq<3000000)
vfo[0].ri = 32;
else
vfo[0].ri = 1;
// Set MSi
if ((vfo[0].freq >= 3000000)&&(vfo[0].freq < 6000000)) // Handle Low end of Ri=1 range
vfo[0].msi = (uint8_t)126; // Maximum MSi on Fvco=(4x126)MHz
else // Or calculate MSi on Fvco=750MHz
vfo[0].msi = (uint8_t)(750000000UL / (vfo[0].freq * vfo[0].ri)) & 0x000000fe;
msn = (double)(vfo[0].msi); // Re-calculate MSN
msn = msn * (double)(vfo[0].ri);
msn = msn * (double)(vfo[0].freq) / SI_XTAL_FREQ;
vfo[0].msn = msn;
si_setmsn(0);
si_setmsi(0);
}
vfo[0].flag = 0;
}
if (vfo[1].flag)
{
vfo[1].flag = 0;
}
}
/*
* Initialize the Si5351 VFO registers
* Hard initialize Synth registers to: 7.074MHz, CLK1 90 deg ahead, PLLA for CLK 0&1, PLLB for CLK2
| Ri=1,
| MSi=68, P1=8192, P2=0, P3=1
| MSN=27.2 P1=2969, P2=600000, P3=1000000
*/
void si_init(void)
{
uint8_t data[16]; // I2C trx buffer
vfo[0].freq = 10000000; // Check this, should be 7074000?
vfo[0].flag = 0;
vfo[0].phase = 1;
vfo[0].ri = 1;
vfo[0].msi = 68;
vfo[0].msn = 27.2;
vfo[1].freq = 10000000; // Check this, should be 7074000?
vfo[1].flag = 0;
vfo[1].phase = 0;
vfo[1].ri = 1;
vfo[1].msi = 68;
vfo[1].msn = 27.2;
// PLLA: MSN P1=0x00000b99, P2=0x000927c0, P3=0x000f4240
data[0] = SI_SYNTH_PLLA;
data[1] = 0x42; // MSNA_P3[15:8]
data[2] = 0x40; // MSNA_P3[7:0]
data[3] = 0x00; // 0b000000 , MSNA_P1[17:16]
data[4] = 0x0b; // MSNA_P1[15:8]
data[5] = 0x99; // MSNA_P1[7:0]
data[6] = 0xf9; // MSNA_P3[19:16] , MSNA_P2[19:16]
data[7] = 0x27; // MSNA_P2[15:8]
data[8] = 0xc0; // MSNA_P2[7:0]
i2c_write_blocking(i2c0, I2C_VFO, data, 9, false);
// PLLB: MSN P1=0x00000b99, P2=0x000927c0, P3=0x000f4240
data[0] = SI_SYNTH_PLLB; // Same content
i2c_write_blocking(i2c0, I2C_VFO, data, 9, false);
// MS0 P1=0x00002000, P2=0x00000000, P3=0x00000001, R=1
data[0] = SI_SYNTH_MS0;
data[1] = 0x00; // MS0_P3[15:8]
data[2] = 0x01; // MS0_P3[7:0]
data[3] = 0x00; // 0b0, R0_DIV[2:0] , MS0_DIVBY4[1:0] , MS0_P1[17:16]
data[4] = 0x20; // MS0_P1[15:8]
data[5] = 0x00; // MS0_P1[7:0]
data[6] = 0x00; // MS0_P3[19:16] , MS0_P2[19:16]
data[7] = 0x00; // MS0_P2[15:8]
data[8] = 0x00; // MS0_P2[7:0]
i2c_write_blocking(i2c0, I2C_VFO, data, 9, false);
// MS1 P1=0x00002000, P2=0x00000000, P3=0x00000001, R=1
data[0] = SI_SYNTH_MS1; // Same content
i2c_write_blocking(i2c0, I2C_VFO, data, 9, false);
// MS2 P1=0x00002000, P2=0x00000000, P3=0x00000001, R=1
data[0] = SI_SYNTH_MS2; // Same content
i2c_write_blocking(i2c0, I2C_VFO, data, 9, false);
// Phase offsets for 3 clocks
data[0] = SI_CLK0_PHOFF;
data[1] = 0x00; // CLK0: phase 0 deg
data[2] = 0x44; // CLK1: phase 90 deg (=MSi)
data[3] = 0x00; // CLK2: phase 0 deg
i2c_write_blocking(i2c0, I2C_VFO, data, 4, false);
// Output port settings for 3 clocks
data[0] = SI_CLK0_CTL;
data[1] = 0x4d; // CLK0: INT, PLLA, nonINV, MS, 4mA
data[2] = 0x4d; // CLK1: INT, PLLA, nonINV, MS, 4mA
data[3] = 0x6f; // CLK2: INT, PLLB, nonINV, MS, 8mA
i2c_write_blocking(i2c0, I2C_VFO, data, 4, false);
// Disable spread spectrum (startup state is undefined)
data[0] = SI_SS_EN;
data[1] = 0x00;
i2c_write_blocking(i2c0, I2C_VFO, data, 2, false);
// Reset both PLL
data[0] = SI_PLL_RESET;
data[1] = 0xa0;
i2c_write_blocking(i2c0, I2C_VFO, data, 2, false);
// Enable only VFO0 outputs
data[0] = SI_CLK_OE;
data[1] = ~SI_VFO0_DISABLE;
i2c_write_blocking(i2c0, I2C_VFO, data, 2, false);
}