
1

Micro SDR on a Pi-Pico
Arjan te Marvelde, Version 1.5 - November 2021 (initial version May 2021)

Since 2020, Raspberry offers a new module based on their own developed processor, the RP2040. This processor
contains a dual core, 125MHz Cortex based controller with plenty of Flash and RAM. It has many highly configurable I/O
pins, which make application of this module a breeze. The C-SDK does not seem to be fully mature yet (in May 2021)
but at least it provides a quick start in actually setting this Pi-Pico to use.

This document describes a test implementation of a small SDR, inspired by Hans Summers’ QCX and everything that
followed after that, such as μSDX. A main deviation in hardware is the use of FST3253 based mixers for both RX and TX
paths, which makes modularization and experimentation a bit easier. The RX and TX front-ends, the control, signal-
processing, audio i/f and mixer parts can now in principle be built separately.

The image above shows the test setup at date of writing, where the RX an TX parts are working and modules are built
into a Teko enclosure.

Note to builders: This project is highly experimental and will remain a work in progress, I try to spend some time on it
every now and then but it is just hobby. So, feel free to copy this project and add or change whatever you like. It is
intended for experimentation and hence should not be considered as a flawlessly working kit.
The project is maintained on GitHUB: https://github.com/ArjanteMarvelde/uSDR-pico.

https://github.com/ArjanteMarvelde/uSDR-pico

2

1 Raspberry Pi Pico (RP2040)

The Pi-Pico module is the heart of the implementation, so here is the pinout and the way it is used in this project.

Pi Pico pin usage for uSDR project
UART0 Tx GP0 Vbus Not used

UART0 Rx GP1 Vsys 5V power input

 GND GND

Encoder A input GP2 3V3 en Not used

Encoder B input GP3 3V3 out 3V3 to peripherals

Not used GP4 Va ref ADC 3V3 reference output

Not used GP5 GP28 ADC2: Audio input

 GND GND

Aux button 1 input GP6 GP27 ADC1: QSD Q-channel input

Aux button 2 input GP7 GP26 ADC0: QSD I-channel input

Aux button 3 input GP8 RUN Pushbutton to ground for reset

Aux button 4 input GP9 GP22 PWM 3A: Audio output

 GND GND

 GP10 GP21 PWM 2B: QSE Q-channel output

 GP11 GP20 PWM 2A: QSE: I-channel output

 GP12 GP19 I2C1 SCL: LCD screen, BPF

 GP13 GP18 I2C1 SDA: LCD screen, BPF

 GND GND

Squelch output GP14 GP17 I2C0 SCL: Si5351A

PTT input GP15 GP16 I2C0 SDA: Si5351A

3

2 Principle of operation
The block diagram shows the processor board and several peripherals. The VFO is based on a Si5351, which may be for
example an Adafruit board. The VFO clocks the receiver (Quadrature Sampling Detector, QSD) and transmitter
(Quadrature Sampling Exciter, QSE) mixers, which are based on the FST3253. In principle anything can be used that
produces a quadrature RX signal and consumes a quadrature TX signal. There are 4 GPIOs reserved for band filter
switching.

Note that the ADCs and DACs have a maximum range of 3V3.

On the user side, there are interfaces for Audio, PTT/Squelch, a Rotary Encoder, 4 (up to 8) Auxiliary Buttons, a serial
port for PC interface and another I2C interface to control LCD as well as the RF front end (BPF, LNA, Attenuation).

4

3 Software
The processor has two cores that work independently to a large extent, apart from some hit and miss waits caused by
memory access arbitration. The idea is to let core1 do all the signal processing, while core0 (the default) does all the
control stuff.

Note that the Pico uses an eXecute In Place (XIP) Flash interface, meaning that code is really executed from a smallish
cache-memory part of the SRAM. Normally this is okay, but time-critical portions of the code can also be loaded in
SRAM at boot time. Also, the time critical stuff is located in core1, and this should be given priority over core0 for
resource arbitration.

The signal processing on core1 is split up in two streams, an RX and a TX stream. All three ADC inputs are sampled
continuously on highest speed in Round-Robin fashion, and the interrupt handler merely copies the most recent
conversion results into buffers. This way, ADC samples for every channel are taken every 6us. The RX stream takes the
latest QSD I and Q samples from the buffer, processes these and outputs samples through a PWM-based DAC to the
audio interface. This introduces a bit of jitter between I and Q channels, but this is considered negligible compared to
the demodulated audio signal bandwidth. The TX stream does the reverse, taking the samples from the audio input,
process them and sending PWM-DAC I and Q signals to the QSE.

Each stream runs on an 16usec basis (62.5 kHz) which is controlled by a timer running on core0. The timer callback just
pushes a mode word (being TX or RX) through the inter-core FIFO, which subsequently sets off the associated process in
core1 (so either TX or RX processing, or possibly even both).

The Pico has two I2C buses, so we can make it easy and connect one dedicated to the Si5351 and use the other for the
remaining devices. There are four GPIOs reserved for auxiliary buttons. These could be used as direct controls, or with a
binary decoder to increase the number of control lines.

Overview of the files:

uSDR.c The main loop and system initialization.
The main loop further takes care of all user interfacing.

dsp.c All signal processing, TX and RX branches, and sample timing.

si5351.c Control of the VFO module, that provides I/Q clocks to the QSD and QSE.

lcd.c LCD output support and 16x2 byte output buffer.

hmi.c The user interaction, handling the control events.

monitor.c A command shell running on the stdio UART.

3.1 Signal processing (dsp.c)

3.1.1 RX stream

5

The RX stream can be functionally segmented into a part that does the sampling and decimation, a part that does the
actual demodulation type of choice, and a part that does the audio generation. The output gives rise to an AGC
feedback, where the amplification of the input is changed in factors of 2. The AGC mechanism is only local, the RX front-
end optionally includes larger scale attenuation of pre-amplification of the received signal.

Sampling

The RX stream function is called every 16usec, where the most recent I and Q samples are taken from the buffer,
resulting in 62.5kHz sampling rate for each channel.

The phase error between the I- and Q-samples is normally only the duration of an ADC conversion, 2usec or worst case
4usec depending on actual process timing. This 4usec results in a phase shift which is about 2% in the audio domain (at
4kHz), and hence there is no real need for intermittent sampling and the required phase correction by averaging the
last two samples on the I channel. This averaging process in fact results in a much larger distortion.

DC removal

The samples from the ADC are electrically centered on about half the reference voltage, which is half the dynamic
range. After subtraction of half the ADC range there is also a DC removal process, that subtracts the low-pass filtered
running average signal.

 dc += (sample – dc)/128

The stream is then amplified with the AGC gain factor, which is implemented as a simple bit-left-shift. Worst case this
results in some loss of accuracy, but this is somewhat hidden in the following decimation stage. This consists of a low-
pass filter and a 4x down-sampling, resulting in I and Q output streams of 15.625 ksps. This sample rate is used for the
remainder of the RX chain.

Demodulation

For SSB demodulation, the decimated I and Q samples are stored in a 15-sample delay line. A 15-tap Hilbert transform
on the Q channel is done and the result is subtracted from or added to the n-7 sample in the I delay line to obtain the
USB or LSB audio output respectively.

For AM demodulation the length of the I-Q vector needs to be calculated, and no further transform is required.

The resulting audio sample stream is handed to the Audio generation process.

6

Audio generation

The demodulated audio samples pass through a level detector, which generates an AGC feedback signal in order to
scale the output to within the PWM/DAC range. The scaling is logarithmic, in factors of 2 (6dB steps), enabling simple
bit shifts to be used as amplification/attenuation in the sampling block.

The process determines signal level by taking its absolute value and then leading it through an exponential averaging
(low-pass) filter:

 yn = (1-q)∙yn-1 + q∙|xn| ,

where q can be chosen 1/8, 1/16, etc depending on the required amount of filtering.

The averaged value is logarithmically compared to the desired reference level (R), which should be maximum half the
DAC range. Note that the full DAC output range is set to 256 resulting in a high enough PWM frequency to enable
simpler analogue filtering (125MHz/256), so maximum absolute value would be 127 (0x7f). The algorithm now only
needs to compare the most significant bit of R and Xn values, for R this is by definition bit 6 (64=0x40). Subtracting the
log2(yn) from 6 shows whether the signal is in the target range (64-127). A positive value means that the level is too low
and will increment the AGC gain value, a negative value will decrement the gain value while 0 will not change it. The
dynamic range and accuracy are not brilliant, but the mechanism is simple and should work with five 6dB steps.

Attack / decay times can be implemented by an integrator (accumulator) with different values of a, where the time is
roughly equivalent to the sampling time divided by a. So, with a sampling frequency of 15.625kHz and a=1/128 the
attack/decay time is max 8msec, which would be an okay attack time for the fast AGC setting. A value for slow AGC
setting could for example be a=1/1024. Every time the attack/decay time threshold is passed, the gain is incremented
or decremented and the accumulator reset. There are different constants defined for attack and decay times.

Low Pass Filters

Several 15-tap low pass filters have been created, with a corner frequency of Fc=3kHz. The stop-band depends on the
actual sample rate the filter is designed for. It usually starts around 5kHz, with a level of -40dB or better. The code
contains filters for 62.5 kHz, 31.25 kHz and 15.625 kHz sample rates, although only first and last are actually used.

7

These low pass filters are simple symmetric FIR filters, that represent the impulse response of the desired low pass
behavior. They consist of 15 signed integer arrays. Hence, per sample 15 multiplications and additions need to be done,
but the RP2040 has a single cycle 32bit MPY instruction, so that be fast enough.

To find the proper coefficients, see for example Iowa Hills DSP tools or the T-Filter on-line calculator:

• http://www.iowahills.com/

• http://t-filter.engineerjs.com/

T-filter parameters 62500, 31250 and 15625 sample rates, passband 3kHz ripple <5dB, stopband from 6kHz at -40dB:

Note that for the 3kHz low pass filter, a 15 tap FIR algorithm works best at lower sample rates. For high sample rates it
would be better to use more taps.

http://www.iowahills.com/
http://t-filter.engineerjs.com/

8

Hilbert transform

The Q delay line array has a length of 15, to enable a 15-tap classic Hilbert transform. The even samples have a zero
coefficient so, as in the above figure, only 8 of the samples are used in the calculation. Due to symmetry of this classic
Hilbert transform only 4 multiplications have to be performed. The resulting transformed output is in phase with the 8th
sample in the array, being I[7], Q[7] and the calculated Qh.

The coefficients for the taps can be derived from the Hilbert transform rules combined with the choice of a proper
windowing function. The window function suppresses the ripple otherwise seen in the frequency response. See Iowa
Hills tools to obtain a set of coefficients.

Note that the bandwidth of the classic Hilbert transform is half the sampling frequency. The response at the edges
drops off, so to get a response that extends far enough towards 0 either the sampling rate must be lowered or the
number of taps must be increased. This is one of the reasons for inserting the decimation stage.

3.1.2 TX stream

The TX stream is the inverse of the RX stream: the same components can be found here as in the RX stream.

Specifics will be detailed at a later stage.

9

3.2 Quadrature VFO (si5351.c)

The Si5351A is a triple clock generator, that can be controlled through I2C interface. There are three clock output
stages, that can be driven by two PLLs. These PLLs multiply the crystal oscillator frequency (usually 25MHz) by some
amount, from which the clock outputs are derived by another multiplication (division). Also, a phase offset can be given
to a clock output, and when two clocks rely on the same PLL, the phase relation is deterministic. This characteristic is
used to make a quadrature VFO, with two outputs with the same frequency but with controlled phase difference (0, 90,
180 or 270 degree). For the Q mixer input, a sin() is needed which has a -90˚ phase with regard to the I mixer input,
which is a cos() signal. You can also say that the sin() is a quarter wave delayed cos().

The fractional multiplier for the PLL stage must be so, that the resulting frequency is between 600 and 900MHz (MSN is
between 24 and 32). These boundaries are not very hard, and can logically be between 15 and 90, but for the moment
let’s stick to the prescribed range. The Multisynth fractional divider for clock i is MSi (8..2048), after which an additional
division with an integer factor Ri (1..128).

The multiplier and divider are written as: a+b/c

The trick is now to use integer mode for MSi, meaning that this should be an (even) integer division. Only then the
phase offset can be used to produce an exact phase difference.

So starting from mid-range PLL output (750MHz), you can set MSi and Ri to get into the ballpark desired output
frequency. Then tuning can be done by changing the PLL multiplicator MSN:

• Fout = Fvco / (MSi*Ri)

• Fvco = Fxo * MSN

10

Some range extremes (vary MSi to get anything between):

Ri MSi Range [MHz]

1 4 150.000 – 225.000

1 126 4.762 – 7.143

32 4 4.688 – 7.031

32 126 0.149 – 0.223

128 4 1.172 – 1.758

128 126 0.037 – 0.056

In practise we use:

• Ri=128 for Fout <1 MHz

• Ri=32 for Fout 1-6 MHz

• Ri=1 for Fout >6 MHz

Two VFOs have been defined, VFO 0 (output on clk0 and clk1) and VFO 1 (output on clk2). A number of macro’s have
been defined to control the vfo:

• SI_GETFREQ(i) Returns frequency of VFO i

• SI_INCFREQ(i, d) Increment frequency of VFO i with d Hz

• SI_DECFREQ(i, d) Decrement frequency of VFO i with d Hz

• SI_SETFREQ(i, f) Set frequency of VFO i to f Hz

• SI_SETPHASE(i, p) Set phase delay of VFO i to (p = {0, 1, 2, 3} x 90deg)

Note: SI_SETPHASE obviously only works for VFO 0, where the delay is introduced in clk1.

The function si_evaluate() is called to evaluate whether VFO settings have actually changed and then write the

new settings to the si5351 registers. That is more efficient than writing for every Hz when turning the tuning knob.

3.3 Display (lcd.c)
The display is a 16x2 LCD controlled with the familiar HD44780 chip, but the version used here is controlled over an I2C
bus. This allows to also use for example an OLED graphical display instead.

The software driver contains a 16x2 byte buffer, which can be copied to the LCD in two write actions, when necessary.
Of course, also characters can be written one after another. Also, the current cursor position is maintained with the
buffer, this should normally match the cursor position on screen.

Apart from the initialization function, there are several other available to control the output:

• lcd_ctrl() Controls display state.

• lcd_put() Output one byte to current cursor position.

• lcd_write() Output string to current cursor position.

The output functions also move the cursor location horizontally, until the last column is reached.

The control function supports the following actions:

• LCD_CLEAR Clear display, cursor to left top position

• LCD_HOME Cursor to left top position

• LCD_GOTO Move cursor to x, y position

• LCD_CURSOR Set cursor visible or not

• LCD_BLINK Set cursor blinking or not

11

3.4 User interface (hmi.c)
The user interface is event driven, and organized around an IRQ callback routine. This handler catches the events on the
GPIO pins used for the encoder, for the buttons and for the PTT. The interrupts are caused by rising and falling edges
detected on the GPIO. From this the encoder increment and decrement events as well as the key-pressed events for
the other buttons are deduced.

Events:

• Encoder increment

• Encoder decrement

• Enter key

• Escape key

• Left key

• Right key

• PTT activated

• PTT released

The HMI can be in several states, and depending on the state the events will have different effects. The top level is the
normal operational state, which only allows tuning the operating frequency. From this top-level the sub-menu level can
be entered by pressing the ESC button. There is only one sub-menu level.

In the sub menus a value can be changed with the Encoder and accepted with Return. Left and Right buttons cycle
through the sub menus and pressing ESC again exits the sub-menu level.

Submenu States (to be expanded):

• Mode (USB, LSB, AM, CW)

• AGC (Fast, Slow, Off)

• Pre amp (+10dB, 0dB, -10dB, -20dB, -30dB)

Transmission

The PTT active event enables the TX path. The PTT event is directly associated with the HW PTT signal, that also directly
controls HW like the BPF.

3.5 Command shell (monitor.c)
The command shell provides a command line interface on stdin/stdout. The Pico supports two mappings for stdio,
either to the USB or to the physical UART0, selectable in CMakeLists.txt. In the final situation the idea is to provide a
proper serial interface through the UART. This then also supports logging errors during the device start-up phase.

To enable stdio, a call has to be made to stdio_init_all(). This is actually done inside the monitor initialization

routine, so best to call this early in the start-up sequence.

The shell vocabulary is contained in an array of strings. Whenever a CR/LF is entered on stdin, the collected characters
are treated as command-line, and a match is attempted with the strings in the shell array. When a match is found, the
corresponding handler is invoked, with the remainder of the command-line.

Handlers can be added where needed, for debugging or control purposes.

12

4 Implementation
The uSDR prototype will be based on off the shelf modules and will end up in a Teco 1500 enclosure. It mainly serves as
a test and experimentation environment, possible basis for a more integrated implementation on the longer term.
However, the modularity of the prototype is good for experimentation, since it allows to swap out certain functions of
the system that do not function appropriately. The largest part of the functionality is realized in software.

The modular architecture is set up as follows:

The signal path leads from Audio board to BPF and vice versa. Internal control is done through an I2C bus and a discrete
PTT signal. The latter is either passed through from a microphone, generated by the VOX or issued by SW in the
Processor.

In summary, the modules are:

• Processor board: This is simply a carrier for the Pi Pico as well as the VFO module. The interfacing comprises
the RS232 levelling, switch debouncing and PWM/DAC filtering

• Audio board: This contains all analogue audio handling, VOX and external PTT interfaces.

• Display module: The display module can be anything suitable with an I2C interface. The SW is made for a
regular 16x2 alphanumeric type.

• Mixer board: This is a design based on two FST3253 multiplexers. Clock shaping is done with a 7400 ACT or
HCT, and analogue IF signal handling with three LM4562.

• RX/TX front ends: These two boards contain the TX PA and the RX LNA and attenuators.

• Filter board: This contains a set of 5 switched bandpass filters, that go in between RF front-end and antenna.
The switching between the RX and TX path is done by a PTT controlled relay.

The Processor, Mixer, RX and TX boards all have the same form factor, 2” x 3.2” (51x82mm). The Filter board did not fit
and is slightly bigger (51x94mm).

13

4.1 Processor board

The processor board hosts the Pico module, the Si5351A VFO module and the user interfaces. There is also a serial
interface that provides a monitor with a command line interface. The audio handling and PTT/VOX circuitry is moved
outside the CPU/IO board, for modularity reasons.

14

4.2 Mixer board

The mixer board hosts the two mixers, QSD for RX branch and a QSE for the TX branch. The switches are clocked from
the Si5351 board, through two HCT NAND gates that take care of level shifting and some signal cleanup. TX path can be
disabled when PTT is not active. RX path is always enabled.

4.3 TX board

The TX board contains a wideband linear driver as proposed by Harry Lytthal (SM0VPO) that outputs up to 500mW. The
end-stage, also a class AB push-pull configuration, should be good for about 5 Watts. The symmetry of this circuit
should better suppress the even harmonics.

15

4.4 RX board

The RX board just contains the selectable attenuators and low noise amplifier.

16

4.5 BPF board

The 5 band filters are selected through relays, controlled from the Pico via the I2C bus. A sixth relay is connected to the
PTT signal, and connects either RX or TX path to the filters.

The (roughly octave) filters are calculated with ELSIE, and have the following pass-through characteristics:

17

4.6 PCB layout

18

4.7 Mechanics
The mechanical construction matches the pin-headers/connectors on the different PCBs for an optimal wiring. The only
error at present is the power and I2C connections on the BPF board, which should ideally be on opposite sides of the
board.

The lot will be built into a Teko Euro93 series enclosure, type 936. The bottom has a partial aluminum base-plate, onto
which the PCBs are mounted. The available space will be organized roughly as follows:

The grey parts represent aluminum supports, which carry the various PCBs shown in tan color. Component side is
where the name tag is. Dashed white areas indicate approximate space taken by the components.

19

5 Testing
The mixer, processor and RX frontend work fine, at least they are a sufficient basis for further software development.
BPF and RX/TX frontend are next to be prototyped on a PCB. As of now, the plan is to take the audio processing off the
Processor board, and make a separate module that contains the PTT, the audio input amplifier, the VOX circuits and an
audio output buffer.

As the screen-dump shows, the current version works nicely on the 40m FT8 channel. The AGC now also works, albeit
not yet controllable from the menu. It makes sure that the output signal is maintained between 1.6Vpp and 3.3Vpp.

