tnc3-firmware/Src/main.c

1528 wiersze
49 KiB
C

/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32l4xx_hal.h"
#include "cmsis_os.h"
#include "usb_device.h"
/* USER CODE BEGIN Includes */
#include "usbd_core.h"
#include "IOEventTask.h"
#include "PortInterface.h"
#include "LEDIndicator.h"
#include "bm78.h"
#include "base64.h"
#include "KissHardware.h"
/* USER CODE END Includes */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
CRC_HandleTypeDef hcrc;
DAC_HandleTypeDef hdac1;
DMA_HandleTypeDef hdma_dac_ch1;
I2C_HandleTypeDef hi2c1;
DMA_HandleTypeDef hdma_i2c1_tx;
DMA_HandleTypeDef hdma_i2c1_rx;
IWDG_HandleTypeDef hiwdg;
OPAMP_HandleTypeDef hopamp1;
RNG_HandleTypeDef hrng;
RTC_HandleTypeDef hrtc;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim6;
TIM_HandleTypeDef htim7;
UART_HandleTypeDef huart3;
DMA_HandleTypeDef hdma_usart3_tx;
DMA_HandleTypeDef hdma_usart3_rx;
osThreadId defaultTaskHandle;
uint32_t defaultTaskBuffer[ 256 ];
osStaticThreadDef_t defaultTaskControlBlock;
osThreadId ioEventTaskHandle;
uint32_t ioEventTaskBuffer[ 384 ];
osStaticThreadDef_t ioEventTaskControlBlock;
osThreadId ledBlinkerHandle;
uint32_t ledBlinkerBuffer[ 128 ];
osStaticThreadDef_t ledBlinkerControlBlock;
osThreadId audioInputTaskHandle;
uint32_t audioInputTaskBuffer[ 512 ];
osStaticThreadDef_t audioInputTaskControlBlock;
osThreadId modulatorTaskHandle;
uint32_t modulatorTaskBuffer[ 384 ];
osStaticThreadDef_t modulatorTaskControlBlock;
osMessageQId ioEventQueueHandle;
uint8_t ioEventQueueBuffer[ 16 * sizeof( uint32_t ) ];
osStaticMessageQDef_t ioEventQueueControlBlock;
osMessageQId serialInputQueueHandle;
uint8_t serialInputQueueBuffer[ 16 * sizeof( uint32_t ) ];
osStaticMessageQDef_t serialInputQueueControlBlock;
osMessageQId serialOutputQueueHandle;
uint8_t serialOutputQueueBuffer[ 16 * sizeof( uint32_t ) ];
osStaticMessageQDef_t serialOutputQueueControlBlock;
osMessageQId audioInputQueueHandle;
uint8_t audioInputQueueBuffer[ 4 * sizeof( uint8_t ) ];
osStaticMessageQDef_t audioInputQueueControlBlock;
osMessageQId hdlcInputQueueHandle;
uint8_t hdlcInputQueueBuffer[ 3 * sizeof( uint32_t ) ];
osStaticMessageQDef_t hdlcInputQueueControlBlock;
osMessageQId hdlcOutputQueueHandle;
uint8_t hdlcOutputQueueBuffer[ 3 * sizeof( uint32_t ) ];
osStaticMessageQDef_t hdlcOutputQueueControlBlock;
osMessageQId dacOutputQueueHandle;
uint8_t dacOutputQueueBuffer[ 128 * sizeof( uint8_t ) ];
osStaticMessageQDef_t dacOutputQueueControlBlock;
osMessageQId adcInputQueueHandle;
uint8_t adcInputQueueBuffer[ 3 * sizeof( uint32_t ) ];
osStaticMessageQDef_t adcInputQueueControlBlock;
osTimerId beaconTimer1Handle;
osStaticTimerDef_t beaconTimer1ControlBlock;
osTimerId beaconTimer2Handle;
osStaticTimerDef_t beaconTimer2ControlBlock;
osTimerId beaconTimer3Handle;
osStaticTimerDef_t beaconTimer3ControlBlock;
osTimerId beaconTimer4Handle;
osStaticTimerDef_t beaconTimer4ControlBlock;
osTimerId usbShutdownTimerHandle;
osStaticTimerDef_t usbShutdownTimerControlBlock;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
int lost_power = 0;
int reset_requested = 0;
char serial_number_64[17] = {0};
// Make sure it is not overwritten during resets (bss3).
uint8_t mac_address[6] __attribute__((section(".bss3"))) = {0};
char error_message[80] __attribute__((section(".bss3"))) = {0};
// USB power control -- need to renegotiate USB charging in STOP mode.
int go_back_to_sleep __attribute__((section(".bss3")));
int stop_now __attribute__((section(".bss3")));
int charging_enabled __attribute__((section(".bss3")));
int usb_wake_state __attribute__((section(".bss3")));
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_RTC_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_DAC1_Init(void);
static void MX_ADC1_Init(void);
static void MX_CRC_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM6_Init(void);
static void MX_TIM7_Init(void);
static void MX_RNG_Init(void);
static void MX_IWDG_Init(void);
static void MX_TIM1_Init(void);
static void MX_OPAMP1_Init(void);
void StartDefaultTask(void const * argument);
extern void startIOEventTask(void const * argument);
extern void startLedBlinkerTask(void const * argument);
extern void startAudioInputTask(void const * argument);
extern void startModulatorTask(void const * argument);
extern void beacon(void const * argument);
extern void shutdown(void const * argument);
void encode_serial_number(void);
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
void stop2(void) __attribute__((noinline));
void configure_gpio_for_stop(void) __attribute__((noinline));
void power_down_vdd(void);
void power_up_vdd(void);
void configure_wakeup_gpio(void);
void enable_debug_gpio(void);
void init_rtc_date_time(void);
void init_rtc_alarm(void);
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
extern PCD_HandleTypeDef hpcd_USB_FS;
void configure_gpio_for_stop()
{
GPIO_InitTypeDef GPIO_InitStruct;
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
HAL_NVIC_DisableIRQ(EXTI3_IRQn);
// BT_STATE1
HAL_GPIO_DeInit(BT_STATE1_GPIO_Port, BT_STATE1_Pin);
HAL_NVIC_DisableIRQ(BT_STATE1_EXTI_IRQn);
HAL_NVIC_ClearPendingIRQ(BT_STATE1_EXTI_IRQn);
// BT_STATE2
HAL_GPIO_DeInit(BT_STATE2_GPIO_Port, BT_STATE2_Pin);
HAL_NVIC_DisableIRQ(BT_STATE2_EXTI_IRQn);
HAL_NVIC_ClearPendingIRQ(BT_STATE2_EXTI_IRQn);
// SW_BOOT
HAL_GPIO_DeInit(SW_BOOT_GPIO_Port, SW_BOOT_Pin);
HAL_NVIC_DisableIRQ(SW_BOOT_EXTI_IRQn);
HAL_NVIC_ClearPendingIRQ(SW_BOOT_EXTI_IRQn);
// LEDs
HAL_GPIO_DeInit(GPIOA, LED_BT_Pin|LED_TX_Pin|LED_RX_Pin);
// I2C
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_8|GPIO_PIN_9);
// USB
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_11|GPIO_PIN_12);
// UART
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_1|GPIO_PIN_10|GPIO_PIN_11);
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_6);
// Battery level circuit.
HAL_GPIO_DeInit(BAT_LEVEL_GPIO_Port, BAT_LEVEL_Pin);
HAL_GPIO_DeInit(BAT_DIVIDER_GPIO_Port, BAT_DIVIDER_Pin);
if (charging_enabled)
{
HAL_GPIO_WritePin(GPIOB, USB_CE_Pin, GPIO_PIN_RESET);
}
else
{
HAL_GPIO_DeInit(USB_CE_GPIO_Port, USB_CE_Pin); // Hi-Z
}
// Bluetooth module
HAL_GPIO_DeInit(GPIOC, BT_WAKE_Pin);
HAL_GPIO_DeInit(GPIOB, BT_RESET_Pin|BT_CMD_Pin);
HAL_GPIO_WritePin(BT_SLEEP_GPIO_Port, BT_SLEEP_Pin, GPIO_PIN_RESET);
HAL_Delay(250);
// Analog pins
HAL_GPIO_DeInit(GPIOA, AUDIO_IN_Pin|AUDIO_IN_AMP_Pin|DAC_AUDIO_OUT_Pin|DC_OFFSET_Pin);
HAL_GPIO_DeInit(GPIOB, AUDIO_ATTEN_Pin);
// PTT pins
HAL_GPIO_DeInit(GPIOB, PTT_A_Pin|PTT_B_Pin);
}
void power_down_vdd()
{
__HAL_RCC_GPIOB_CLK_ENABLE();
HAL_GPIO_WritePin(VDD_EN_GPIO_Port, VDD_EN_Pin, GPIO_PIN_RESET);
for (int i = 0; i < 4800; ++i) asm volatile("nop");
}
void power_up_vdd()
{
GPIO_InitTypeDef GPIO_InitStruct;
__HAL_RCC_GPIOB_CLK_ENABLE();
GPIO_InitStruct.Pin = VDD_EN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(VDD_EN_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(VDD_EN_GPIO_Port, VDD_EN_Pin, GPIO_PIN_SET);
}
void configure_wakeup_gpio()
{
if (!__HAL_RCC_GPIOH_IS_CLK_ENABLED()) Error_Handler();
GPIO_InitTypeDef GPIO_InitStruct;
// Reset wakeup pins
HAL_NVIC_DisableIRQ(EXTI0_IRQn);
HAL_NVIC_DisableIRQ(EXTI1_IRQn);
HAL_GPIO_DeInit(GPIOH, USB_POWER_Pin|SW_POWER_Pin);
// Wake up whenever there is a change in VUSB to handle connect/disconnect events.
GPIO_InitStruct.Pin = USB_POWER_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLDOWN; // needed to act as a voltage divider
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
// Only wake up after the button has been released. This avoids the case
// where the TNC is woken up on button down and then immediately put back
// to sleep when the BUTTON_UP interrupt is received.
GPIO_InitStruct.Pin = SW_POWER_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
}
void enable_debug_gpio()
{
if (!__HAL_RCC_GPIOA_IS_CLK_ENABLED()) Error_Handler();
if (!__HAL_RCC_GPIOB_IS_CLK_ENABLED()) Error_Handler();
GPIO_InitTypeDef GPIO_InitStruct;
// DEBUG PINS
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Alternate = GPIO_AF0_SWJ;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
// USART CTS is connected to a device on VDD
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Alternate = GPIO_AF0_TRACE;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/**
* Shutdown is used to enter stop mode in a clean state. This ensures that
* all IP have been reset & re-initialized to their default state when
* entering low-power stop mode. This is a work-around until we can
* determine what causes a high-discharge state after USB is enabled.
*
* @param argument is unused.
*/
void shutdown(void const * argument)
{
UNUSED(argument);
stop_now = 1;
HAL_NVIC_SystemReset();
}
/*
* Same algorithm as here: https://github.com/libopencm3/libopencm3/blob/master/lib/stm32/desig.c
*/
void encode_serial_number()
{
uint8_t *uid = (uint8_t *)UID_BASE;
uint8_t serial[6];
serial[0] = uid[11];
serial[1] = uid[10] + uid[2];
serial[2] = uid[9];
serial[3] = uid[8] + uid[0];
serial[4] = uid[7];
serial[5] = uid[6];
snprintf(
serial_number_64,
sizeof(serial_number_64),
"%02X%02X%02X%02X%02X%02X",
serial[0], serial[1], serial[2],
serial[3], serial[4], serial[5]
);
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
*
* @retval None
*/
int main(void)
{
/* USER CODE BEGIN 1 */
// If not a software reset, reset the flags. This prevents odd behavior
// during initial power on and hardware resets where SRAM2 may be in an
// inconsistent state. During a soft reset, it should be initialized.
if (!(RCC->CSR & RCC_CSR_SFTRSTF)) {
go_back_to_sleep = 0;
stop_now = 0;
usb_wake_state = 0;
}
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
#ifdef KISS_LOGGING
printf("start\r\n");
#endif
// Note that it is important that all GPIO interrupts are disabled until
// the FreeRTOS kernel has started. All GPIO interrupts send messages
// to the ioEventTask thread. Attempts to use any message queues before
// FreeRTOS has started will lead to problems. Because of this, these
// interrupts are enabled only when the ioEventTask thread starts.
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_RTC_Init();
MX_USART3_UART_Init();
MX_DAC1_Init();
MX_ADC1_Init();
MX_CRC_Init();
MX_I2C1_Init();
MX_TIM6_Init();
MX_TIM7_Init();
MX_OPAMP1_Init();
/* USER CODE BEGIN 2 */
if (stop_now) stop2();
MX_TIM1_Init(); // Initialize the LED PWM timer and GPIOs.
SCB->SHCSR |= 0x70000; // Enable fault handlers;
if (!go_back_to_sleep) {
indicate_turning_on(); // LEDs on during boot.
}
encode_serial_number();
if (!go_back_to_sleep) {
// The Bluetooth module is powered on during MX_GPIO_Init(). BT_CMD
// has a weak pull-up on the BT module and is in OD mode. Pull the
// pin low during boot to enter Bluetooth programming mode. Here the
// BT_CMD pin is switched to input mode to detect the state. The
// TNC must be reset to exit programming mode.
// Wait for BT module to settle.
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Pin = BT_CMD_Pin;
GPIO_InitStructure.Mode = GPIO_MODE_INPUT;
GPIO_InitStructure.Pull = GPIO_PULLUP;
HAL_GPIO_Init(BT_CMD_GPIO_Port, &GPIO_InitStructure);
HAL_Delay(10);
if (HAL_GPIO_ReadPin(BT_CMD_GPIO_Port, BT_CMD_Pin) == GPIO_PIN_RESET) {
// Special test mode for programming the Bluetooth module. The TNC
// has the BT_CMD pin actively being pulled low. In this case we
// power on the BT module with BT_CMD held low and wait here without
// initializing the UART. We only exit via reset.
HAL_UART_MspDeInit(&huart3);
HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_RESET);
HAL_Delay(1);
HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_SET);
HAL_Delay(200);
printf("Bluetooth programming mode\r\n");
while (1);
}
// Not in BT programming mode. Switch BT_CMD back to OD mode.
HAL_GPIO_WritePin(BT_CMD_GPIO_Port, BT_CMD_Pin, GPIO_PIN_SET);
GPIO_InitStructure.Pin = BT_CMD_Pin;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStructure.Pull = GPIO_PULLUP;
HAL_GPIO_Init(BT_CMD_GPIO_Port, &GPIO_InitStructure);
}
/* USER CODE END 2 */
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* Create the timer(s) */
/* definition and creation of beaconTimer1 */
osTimerStaticDef(beaconTimer1, beacon, &beaconTimer1ControlBlock);
beaconTimer1Handle = osTimerCreate(osTimer(beaconTimer1), osTimerPeriodic, NULL);
/* definition and creation of beaconTimer2 */
osTimerStaticDef(beaconTimer2, beacon, &beaconTimer2ControlBlock);
beaconTimer2Handle = osTimerCreate(osTimer(beaconTimer2), osTimerPeriodic, NULL);
/* definition and creation of beaconTimer3 */
osTimerStaticDef(beaconTimer3, beacon, &beaconTimer3ControlBlock);
beaconTimer3Handle = osTimerCreate(osTimer(beaconTimer3), osTimerPeriodic, NULL);
/* definition and creation of beaconTimer4 */
osTimerStaticDef(beaconTimer4, beacon, &beaconTimer4ControlBlock);
beaconTimer4Handle = osTimerCreate(osTimer(beaconTimer4), osTimerPeriodic, NULL);
/* definition and creation of usbShutdownTimer */
osTimerStaticDef(usbShutdownTimer, shutdown, &usbShutdownTimerControlBlock);
usbShutdownTimerHandle = osTimerCreate(osTimer(usbShutdownTimer), osTimerOnce, NULL);
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* Create the thread(s) */
/* definition and creation of defaultTask */
osThreadStaticDef(defaultTask, StartDefaultTask, osPriorityIdle, 0, 256, defaultTaskBuffer, &defaultTaskControlBlock);
defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);
/* definition and creation of ioEventTask */
osThreadStaticDef(ioEventTask, startIOEventTask, osPriorityLow, 0, 384, ioEventTaskBuffer, &ioEventTaskControlBlock);
ioEventTaskHandle = osThreadCreate(osThread(ioEventTask), NULL);
/* definition and creation of ledBlinker */
osThreadStaticDef(ledBlinker, startLedBlinkerTask, osPriorityIdle, 0, 128, ledBlinkerBuffer, &ledBlinkerControlBlock);
ledBlinkerHandle = osThreadCreate(osThread(ledBlinker), NULL);
/* definition and creation of audioInputTask */
osThreadStaticDef(audioInputTask, startAudioInputTask, osPriorityAboveNormal, 0, 512, audioInputTaskBuffer, &audioInputTaskControlBlock);
audioInputTaskHandle = osThreadCreate(osThread(audioInputTask), NULL);
/* definition and creation of modulatorTask */
osThreadStaticDef(modulatorTask, startModulatorTask, osPriorityAboveNormal, 0, 384, modulatorTaskBuffer, &modulatorTaskControlBlock);
modulatorTaskHandle = osThreadCreate(osThread(modulatorTask), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* Create the queue(s) */
/* definition and creation of ioEventQueue */
osMessageQStaticDef(ioEventQueue, 16, uint32_t, ioEventQueueBuffer, &ioEventQueueControlBlock);
ioEventQueueHandle = osMessageCreate(osMessageQ(ioEventQueue), NULL);
/* definition and creation of serialInputQueue */
osMessageQStaticDef(serialInputQueue, 16, uint32_t, serialInputQueueBuffer, &serialInputQueueControlBlock);
serialInputQueueHandle = osMessageCreate(osMessageQ(serialInputQueue), NULL);
/* definition and creation of serialOutputQueue */
osMessageQStaticDef(serialOutputQueue, 16, uint32_t, serialOutputQueueBuffer, &serialOutputQueueControlBlock);
serialOutputQueueHandle = osMessageCreate(osMessageQ(serialOutputQueue), NULL);
/* definition and creation of audioInputQueue */
osMessageQStaticDef(audioInputQueue, 4, uint8_t, audioInputQueueBuffer, &audioInputQueueControlBlock);
audioInputQueueHandle = osMessageCreate(osMessageQ(audioInputQueue), NULL);
/* definition and creation of hdlcInputQueue */
osMessageQStaticDef(hdlcInputQueue, 3, uint32_t, hdlcInputQueueBuffer, &hdlcInputQueueControlBlock);
hdlcInputQueueHandle = osMessageCreate(osMessageQ(hdlcInputQueue), NULL);
/* definition and creation of hdlcOutputQueue */
osMessageQStaticDef(hdlcOutputQueue, 3, uint32_t, hdlcOutputQueueBuffer, &hdlcOutputQueueControlBlock);
hdlcOutputQueueHandle = osMessageCreate(osMessageQ(hdlcOutputQueue), NULL);
/* definition and creation of dacOutputQueue */
osMessageQStaticDef(dacOutputQueue, 128, uint8_t, dacOutputQueueBuffer, &dacOutputQueueControlBlock);
dacOutputQueueHandle = osMessageCreate(osMessageQ(dacOutputQueue), NULL);
/* definition and creation of adcInputQueue */
osMessageQStaticDef(adcInputQueue, 3, uint32_t, adcInputQueueBuffer, &adcInputQueueControlBlock);
adcInputQueueHandle = osMessageCreate(osMessageQ(adcInputQueue), NULL);
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE BEGIN RTOS_QUEUES */
// Initialize the DC offset DAC and the PGA op amp. Calibrate the ADC.
if (HAL_DAC_SetValue(&hdac1, DAC_CHANNEL_2, DAC_ALIGN_12B_R, 1024) != HAL_OK) Error_Handler();
if (HAL_DAC_Start(&hdac1, DAC_CHANNEL_2) != HAL_OK) Error_Handler();
if (HAL_OPAMP_SelfCalibrate(&hopamp1) != HAL_OK) Error_Handler();
if (HAL_OPAMP_Start(&hopamp1) != HAL_OK) Error_Handler();
if (HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED) != HAL_OK) Error_Handler();
if (!go_back_to_sleep) {
// Initialize the BM78 Bluetooth module and the RTC date/time the first time we boot.
if (!bm78_initialized()) {
bm78_initialize();
memset(error_message, 0, sizeof(error_message));
// init_rtc_date_time();
}
else bm78_wait_until_ready();
}
init_ioport();
initCDC();
initSerial();
// Initialize option bytes.
FLASH_OBProgramInitTypeDef obInit = {0};
HAL_FLASHEx_OBGetConfig(&obInit);
if ((obInit.OptionType & OPTIONBYTE_USER) == RESET) {
printf("FAIL: option byte init\r\n");
Error_Handler();
}
#if 1
// Do not erase SRAM2 during reset.
if ((obInit.USERConfig & FLASH_OPTR_SRAM2_RST) == RESET) {
obInit.OptionType = OPTIONBYTE_USER;
obInit.USERType = OB_USER_SRAM2_RST;
obInit.USERConfig = FLASH_OPTR_SRAM2_RST;
HAL_FLASH_OB_Unlock();
HAL_FLASHEx_OBProgram(&obInit);
HAL_FLASH_OB_Lock();
HAL_FLASH_OB_Launch();
}
#endif
#if 1
// Enable hardware parity check on SRAM2
if ((obInit.USERConfig & FLASH_OPTR_SRAM2_PE) == RESET) {
obInit.OptionType = OPTIONBYTE_USER;
obInit.USERType = OB_USER_SRAM2_PE;
obInit.USERConfig = FLASH_OPTR_SRAM2_PE;
HAL_FLASH_OB_Unlock();
HAL_FLASHEx_OBProgram(&obInit);
HAL_FLASH_OB_Lock();
HAL_FLASH_OB_Launch();
}
#endif
/* USER CODE END RTOS_QUEUES */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
RCC_CRSInitTypeDef RCC_CRSInitStruct;
/**Configure LSE Drive Capability
*/
HAL_PWR_EnableBkUpAccess();
__HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_MEDIUMLOW);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_LSE
|RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = 0;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 24;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_USART3
|RCC_PERIPHCLK_I2C1|RCC_PERIPHCLK_USB
|RCC_PERIPHCLK_RNG|RCC_PERIPHCLK_ADC;
PeriphClkInit.Usart3ClockSelection = RCC_USART3CLKSOURCE_PCLK1;
PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_PCLK1;
PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_PLLSAI1;
PeriphClkInit.RngClockSelection = RCC_RNGCLKSOURCE_PLLSAI1;
PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_MSI;
PeriphClkInit.PLLSAI1.PLLSAI1M = 1;
PeriphClkInit.PLLSAI1.PLLSAI1N = 24;
PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;
PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;
PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV2;
PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_48M2CLK|RCC_PLLSAI1_ADC1CLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
#ifdef KISS_LOGGING
HAL_RCCEx_EnableLSCO(RCC_LSCOSOURCE_LSE);
#endif
/**Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/**Enable MSI Auto calibration
*/
HAL_RCCEx_EnableMSIPLLMode();
/**Enable the SYSCFG APB clock
*/
__HAL_RCC_CRS_CLK_ENABLE();
/**Configures CRS
*/
RCC_CRSInitStruct.Prescaler = RCC_CRS_SYNC_DIV1;
RCC_CRSInitStruct.Source = RCC_CRS_SYNC_SOURCE_LSE;
RCC_CRSInitStruct.Polarity = RCC_CRS_SYNC_POLARITY_RISING;
RCC_CRSInitStruct.ReloadValue = __HAL_RCC_CRS_RELOADVALUE_CALCULATE(48000000,32768);
RCC_CRSInitStruct.ErrorLimitValue = 34;
RCC_CRSInitStruct.HSI48CalibrationValue = 32;
HAL_RCCEx_CRSConfig(&RCC_CRSInitStruct);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
}
/* ADC1 init function */
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig;
/**Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T6_TRGO;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.OversamplingMode = ENABLE;
hadc1.Init.Oversampling.Ratio = ADC_OVERSAMPLING_RATIO_16;
hadc1.Init.Oversampling.RightBitShift = ADC_RIGHTBITSHIFT_2;
hadc1.Init.Oversampling.TriggeredMode = ADC_TRIGGEREDMODE_SINGLE_TRIGGER;
hadc1.Init.Oversampling.OversamplingStopReset = ADC_REGOVERSAMPLING_CONTINUED_MODE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_8;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_12CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* CRC init function */
static void MX_CRC_Init(void)
{
hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_DISABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_DISABLE;
hcrc.Init.GeneratingPolynomial = 4129;
hcrc.Init.CRCLength = CRC_POLYLENGTH_16B;
hcrc.Init.InitValue = 0xFFFF;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* DAC1 init function */
static void MX_DAC1_Init(void)
{
DAC_ChannelConfTypeDef sConfig;
/**DAC Initialization
*/
hdac1.Instance = DAC1;
if (HAL_DAC_Init(&hdac1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**DAC channel OUT1 config
*/
sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE;
sConfig.DAC_Trigger = DAC_TRIGGER_T7_TRGO;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_ENABLE;
sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY;
if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**DAC channel OUT2 config
*/
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_ENABLE;
if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* I2C1 init function */
static void MX_I2C1_Init(void)
{
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x20000209;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**I2C Fast mode Plus enable
*/
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C1);
}
/* IWDG init function */
static void MX_IWDG_Init(void)
{
hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
hiwdg.Init.Window = 4095;
hiwdg.Init.Reload = 4095;
if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* OPAMP1 init function */
static void MX_OPAMP1_Init(void)
{
hopamp1.Instance = OPAMP1;
hopamp1.Init.PowerSupplyRange = OPAMP_POWERSUPPLY_HIGH;
hopamp1.Init.Mode = OPAMP_PGA_MODE;
hopamp1.Init.NonInvertingInput = OPAMP_NONINVERTINGINPUT_IO0;
hopamp1.Init.InvertingInput = OPAMP_INVERTINGINPUT_CONNECT_NO;
hopamp1.Init.PgaGain = OPAMP_PGA_GAIN_2;
hopamp1.Init.PowerMode = OPAMP_POWERMODE_NORMAL;
hopamp1.Init.UserTrimming = OPAMP_TRIMMING_FACTORY;
if (HAL_OPAMP_Init(&hopamp1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* RNG init function */
static void MX_RNG_Init(void)
{
hrng.Instance = RNG;
if (HAL_RNG_Init(&hrng) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* RTC init function */
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/**Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
init_rtc_date_time();
}
/* TIM1 init function */
static void MX_TIM1_Init(void)
{
TIM_ClockConfigTypeDef sClockSourceConfig;
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;
htim1.Instance = TIM1;
htim1.Init.Prescaler = 48;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 9999;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_SET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
sBreakDeadTimeConfig.Break2Filter = 0;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
HAL_TIM_MspPostInit(&htim1);
}
/* TIM6 init function */
static void MX_TIM6_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig;
htim6.Instance = TIM6;
htim6.Init.Prescaler = 0;
htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
htim6.Init.Period = 1817;
htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* TIM7 init function */
static void MX_TIM7_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig;
htim7.Instance = TIM7;
htim7.Init.Prescaler = 0;
htim7.Init.CounterMode = TIM_COUNTERMODE_UP;
htim7.Init.Period = 1817;
htim7.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim7) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim7, &sMasterConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* USART3 init function */
static void MX_USART3_UART_Init(void)
{
huart3.Instance = USART3;
huart3.Init.BaudRate = 115200;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart3.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart3) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/* DMA1_Channel2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
/* DMA1_Channel3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
/* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
/* DMA2_Channel4_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Channel4_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA2_Channel4_IRQn);
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
* Free pins are configured automatically as Analog (this feature is enabled through
* the Code Generation settings)
PA2 ------> RCC_LSCO
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(BT_WAKE_GPIO_Port, BT_WAKE_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, BT_SLEEP_Pin|BAT_DIVIDER_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, AUDIO_ATTEN_Pin|VDD_EN_Pin|USB_CE_Pin|BT_CMD_Pin
|BT_RESET_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, PTT_B_Pin|PTT_A_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : BT_WAKE_Pin */
GPIO_InitStruct.Pin = BT_WAKE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(BT_WAKE_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : SW_POWER_Pin SW_BOOT_Pin */
GPIO_InitStruct.Pin = SW_POWER_Pin|SW_BOOT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pins : USB_POWER_Pin */
GPIO_InitStruct.Pin = USB_POWER_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pin : BT_SLEEP_Pin */
GPIO_InitStruct.Pin = BT_SLEEP_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(BT_SLEEP_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : PA2 PA15 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : BAT_DIVIDER_Pin */
GPIO_InitStruct.Pin = BAT_DIVIDER_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(BAT_DIVIDER_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : AUDIO_ATTEN_Pin BT_CMD_Pin BT_RESET_Pin USB_CE_Pin*/
GPIO_InitStruct.Pin = AUDIO_ATTEN_Pin|BT_CMD_Pin|BT_RESET_Pin|USB_CE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : VDD_EN_Pin PTT_B_Pin PTT_A_Pin */
GPIO_InitStruct.Pin = VDD_EN_Pin|PTT_B_Pin|PTT_A_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : BT_STATE2_Pin BT_STATE1_Pin */
GPIO_InitStruct.Pin = BT_STATE2_Pin|BT_STATE1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
void stop2()
{
osThreadSuspendAll();
int usb_stop_state = HAL_GPIO_ReadPin(USB_POWER_GPIO_Port, USB_POWER_Pin);
HAL_OPAMP_DeInit(&hopamp1);
HAL_TIM_PWM_DeInit(&htim1);
HAL_I2C_DeInit(&hi2c1);
HAL_ADC_DeInit(&hadc1);
HAL_DAC_DeInit(&hdac1);
HAL_UART_DeInit(&huart3);
HAL_PWR_DisablePVD();
USB->BCDR = 0;
HAL_PWREx_DisableVddUSB();
HAL_ADCEx_EnterADCDeepPowerDownMode(&hadc1);
configure_gpio_for_stop();
if (!usb_stop_state) power_down_vdd();
HAL_RCCEx_DisableLSCO();
configure_wakeup_gpio();
__asm volatile ( "cpsid i" );
__asm volatile ( "dsb" );
__asm volatile ( "isb" );
go_back_to_sleep = 0;
stop_now = 0;
HAL_PWREx_DisableLowPowerRunMode();
HAL_DBGMCU_DisableDBGStopMode();
HAL_PWREx_EnterSTOP2Mode(PWR_STOPENTRY_WFE);
// Powered off state
// When awakened by USB_POWER pin change:
// If unplugged, re-init IO, disabling charging, then go back to STOP.
// If plugged, re-init IO, do charger detection then,
// If powerOnViaUSB(), stay awake, otherwise go back to STOP.
usb_wake_state = HAL_GPIO_ReadPin(USB_POWER_GPIO_Port, USB_POWER_Pin);
go_back_to_sleep = (usb_stop_state != usb_wake_state);
if (usb_wake_state) {
if (powerOnViaUSB()) {
go_back_to_sleep = 0;
}
} else {
charging_enabled = 0;
}
HAL_NVIC_SystemReset();
}
#if 1
long _write_r(struct _reent *r, int fd, const char *ptr, int len);
long _write_r(struct _reent *r, int fd, const char *ptr, int len)
{
UNUSED(r);
UNUSED(fd);
#ifdef KISS_LOGGING
for (int i = 0; i != len; ++i)
ITM_SendChar(ptr[i]);
#endif
return len;
}
int _write(int file, char *ptr, int len);
int _write(int file, char *ptr, int len) {
UNUSED(file);
#ifdef KISS_LOGGING
for (int i = 0; i != len; ++i)
ITM_SendChar(ptr[i]);
#endif
return len;
}
#endif
void init_rtc_date_time()
{
if (HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR1) != 0) return;
RTC_TimeTypeDef sTime;
RTC_DateTypeDef sDate;
/**Initialize RTC and set the Time and Date
*/
sTime.Hours = 0x0;
sTime.Minutes = 0x0;
sTime.Seconds = 0x0;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
sTime.TimeFormat = RTC_HOURFORMAT_24;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sDate.WeekDay = RTC_WEEKDAY_MONDAY;
sDate.Month = RTC_MONTH_JANUARY;
sDate.Date = 0x1;
sDate.Year = 0x0;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
void init_rtc_alarm()
{
RTC_AlarmTypeDef sAlarm;
/**Enable the Alarm A
*/
sAlarm.AlarmTime.Hours = 0x0;
sAlarm.AlarmTime.Minutes = 0x0;
sAlarm.AlarmTime.Seconds = 0x0;
sAlarm.AlarmTime.SubSeconds = 0x0;
sAlarm.AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sAlarm.AlarmTime.StoreOperation = RTC_STOREOPERATION_RESET;
sAlarm.AlarmMask = RTC_ALARMMASK_NONE;
sAlarm.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_ALL;
sAlarm.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_DATE;
sAlarm.AlarmDateWeekDay = 0x1;
sAlarm.Alarm = RTC_ALARM_A;
if (HAL_RTC_SetAlarm(&hrtc, &sAlarm, RTC_FORMAT_BCD) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Enable the Alarm B
*/
sAlarm.AlarmDateWeekDay = 0x1;
sAlarm.Alarm = RTC_ALARM_B;
}
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void const * argument)
{
/* USER CODE BEGIN 5 */
UNUSED(argument);
if (HAL_GPIO_ReadPin(USB_POWER_GPIO_Port, USB_POWER_Pin) == GPIO_PIN_SET)
{
#ifdef KISS_LOGGING
printf("VBUS detected\r\n");
#endif
MX_USB_DEVICE_Init();
HAL_PCD_MspInit(&hpcd_USB_FS);
HAL_PCDEx_ActivateBCD(&hpcd_USB_FS);
HAL_PCDEx_BCD_VBUSDetect(&hpcd_USB_FS);
} else {
#ifdef KISS_LOGGING
printf("VBUS not detected\r\n");
#endif
}
/* Infinite loop */
for(;;)
{
osDelay(osWaitForever);
}
/* USER CODE END 5 */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM2 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM2) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
if (htim->Instance == TIM1) {
HTIM1_PeriodElapsedCallback();
}
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @param file: The file name as string.
* @param line: The line in file as a number.
* @retval None
*/
void _Error_Handler(char *file, int line)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
#ifdef KISS_LOGGING
printf("Error handler called from file %s on line %d\r\n", file, line);
#endif
snprintf(error_message, sizeof(error_message), "Error: %s:%d", file, line);
stop_now = 0;
go_back_to_sleep = 0;
NVIC_SystemReset();
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/