stlink/src/common.c

3298 wiersze
107 KiB
C

#define DEBUG_FLASH 0
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "stlink.h"
#include "stlink/mmap.h"
#include "stlink/logging.h"
#include "md5.h"
#ifndef O_BINARY
#define O_BINARY 0
#endif
#ifdef _MSC_VER
#define __attribute__(x)
#endif
/* todo: stm32l15xxx flash memory, pm0062 manual */
/* stm32f FPEC flash controller interface, pm0063 manual */
// TODO - all of this needs to be abstracted out....
// STM32F05x is identical, based on RM0091 (DM00031936, Doc ID 018940 Rev 2, August 2012)
#define FLASH_REGS_ADDR 0x40022000
#define FLASH_REGS_SIZE 0x28
#define FLASH_ACR (FLASH_REGS_ADDR + 0x00)
#define FLASH_KEYR (FLASH_REGS_ADDR + 0x04)
#define FLASH_SR (FLASH_REGS_ADDR + 0x0c)
#define FLASH_CR (FLASH_REGS_ADDR + 0x10)
#define FLASH_AR (FLASH_REGS_ADDR + 0x14)
#define FLASH_OBR (FLASH_REGS_ADDR + 0x1c)
#define FLASH_WRPR (FLASH_REGS_ADDR + 0x20)
// STM32F10x_XL has two flash memory banks with separate registers to control the second bank.
#define FLASH_KEYR2 (FLASH_REGS_ADDR + 0x44)
#define FLASH_SR2 (FLASH_REGS_ADDR + 0x4c)
#define FLASH_CR2 (FLASH_REGS_ADDR + 0x50)
#define FLASH_AR2 (FLASH_REGS_ADDR + 0x54)
#define FLASH_BANK2_START_ADDR 0x08080000
// For STM32F05x, the RDPTR_KEY may be wrong, but as it is not used anywhere...
#define FLASH_RDPTR_KEY 0x00a5
#define FLASH_KEY1 0x45670123
#define FLASH_KEY2 0xcdef89ab
#define FLASH_SR_BSY 0
#define FLASH_SR_EOP 5
#define FLASH_CR_PG 0
#define FLASH_CR_PER 1
#define FLASH_CR_MER 2
#define FLASH_CR_STRT 6
#define FLASH_CR_LOCK 7
//32L = 32F1 same CoreID as 32F4!
#define STM32L_FLASH_REGS_ADDR ((uint32_t)0x40023c00)
#define STM32L_FLASH_ACR (STM32L_FLASH_REGS_ADDR + 0x00)
#define STM32L_FLASH_PECR (STM32L_FLASH_REGS_ADDR + 0x04)
#define STM32L_FLASH_PDKEYR (STM32L_FLASH_REGS_ADDR + 0x08)
#define STM32L_FLASH_PEKEYR (STM32L_FLASH_REGS_ADDR + 0x0c)
#define STM32L_FLASH_PRGKEYR (STM32L_FLASH_REGS_ADDR + 0x10)
#define STM32L_FLASH_OPTKEYR (STM32L_FLASH_REGS_ADDR + 0x14)
#define STM32L_FLASH_SR (STM32L_FLASH_REGS_ADDR + 0x18)
#define STM32L_FLASH_OBR (STM32L_FLASH_REGS_ADDR + 0x1c)
#define STM32L_FLASH_WRPR (STM32L_FLASH_REGS_ADDR + 0x20)
#define FLASH_L1_FPRG 10
#define FLASH_L1_PROG 3
// Flash registers common to STM32G0 and STM32G4 series.
#define STM32Gx_FLASH_REGS_ADDR ((uint32_t)0x40022000)
#define STM32Gx_FLASH_ACR (STM32G0_FLASH_REGS_ADDR + 0x00)
#define STM32Gx_FLASH_KEYR (STM32G0_FLASH_REGS_ADDR + 0x08)
#define STM32Gx_FLASH_OPTKEYR (STM32G0_FLASH_REGS_ADDR + 0x0c)
#define STM32Gx_FLASH_SR (STM32G0_FLASH_REGS_ADDR + 0x10)
#define STM32Gx_FLASH_CR (STM32G0_FLASH_REGS_ADDR + 0x14)
#define STM32Gx_FLASH_ECCR (STM32G0_FLASH_REGS_ADDR + 0x18)
#define STM32Gx_FLASH_OPTR (STM32G0_FLASH_REGS_ADDR + 0x20)
// G0 (RM0444 Table 1, sec 3.7)
// Mostly the same as G4 chips, but the notation
// varies a bit after the 'OPTR' register.
#define STM32G0_FLASH_REGS_ADDR (STM32Gx_FLASH_REGS_ADDR)
#define STM32G0_FLASH_PCROP1ASR (STM32G0_FLASH_REGS_ADDR + 0x24)
#define STM32G0_FLASH_PCROP1AER (STM32G0_FLASH_REGS_ADDR + 0x28)
#define STM32G0_FLASH_WRP1AR (STM32G0_FLASH_REGS_ADDR + 0x2C)
#define STM32G0_FLASH_WRP1BR (STM32G0_FLASH_REGS_ADDR + 0x30)
#define STM32G0_FLASH_PCROP1BSR (STM32G0_FLASH_REGS_ADDR + 0x34)
#define STM32G0_FLASH_PCROP1BER (STM32G0_FLASH_REGS_ADDR + 0x38)
#define STM32G0_FLASH_SECR (STM32G0_FLASH_REGS_ADDR + 0x80)
// G4 (RM0440 Table 17, sec 3.7.19)
// Mostly the same as STM32G0 chips, but there are a few extra
// registers because 'cat 3' devices can have two Flash banks.
#define STM32G4_FLASH_REGS_ADDR (STM32Gx_FLASH_REGS_ADDR)
#define STM32G4_FLASH_PDKEYR (STM32G4_FLASH_REGS_ADDR + 0x04)
#define STM32G4_FLASH_PCROP1SR (STM32G4_FLASH_REGS_ADDR + 0x24)
#define STM32G4_FLASH_PCROP1ER (STM32G4_FLASH_REGS_ADDR + 0x28)
#define STM32G4_FLASH_WRP1AR (STM32G4_FLASH_REGS_ADDR + 0x2C)
#define STM32G4_FLASH_WRP1BR (STM32G4_FLASH_REGS_ADDR + 0x30)
#define STM32G4_FLASH_PCROP2SR (STM32G4_FLASH_REGS_ADDR + 0x44)
#define STM32G4_FLASH_PCROP2ER (STM32G4_FLASH_REGS_ADDR + 0x48)
#define STM32G4_FLASH_WRP2AR (STM32G4_FLASH_REGS_ADDR + 0x4C)
#define STM32G4_FLASH_WRP2BR (STM32G4_FLASH_REGS_ADDR + 0x50)
#define STM32G4_FLASH_SEC1R (STM32G4_FLASH_REGS_ADDR + 0x70)
#define STM32G4_FLASH_SEC2R (STM32G4_FLASH_REGS_ADDR + 0x74)
// G0/G4 FLASH control register
#define STM32Gx_FLASH_CR_PG (0) /* Program */
#define STM32Gx_FLASH_CR_PER (1) /* Page erase */
#define STM32Gx_FLASH_CR_MER1 (2) /* Mass erase */
#define STM32Gx_FLASH_CR_PNB (3) /* Page number */
#define STM32G0_FLASH_CR_PNG_LEN (5) /* STM32G0: 5 page number bits */
#define STM32G4_FLASH_CR_PNG_LEN (7) /* STM32G4: 7 page number bits */
#define STM32Gx_FLASH_CR_MER2 (15) /* Mass erase (2nd bank)*/
#define STM32Gx_FLASH_CR_STRT (16) /* Start */
#define STM32Gx_FLASH_CR_OPTSTRT (17) /* Start of modification of option bytes */
#define STM32Gx_FLASH_CR_FSTPG (18) /* Fast programming */
#define STM32Gx_FLASH_CR_EOPIE (24) /* End of operation interrupt enable */
#define STM32Gx_FLASH_CR_ERRIE (25) /* Error interrupt enable */
#define STM32Gx_FLASH_CR_OBL_LAUNCH (27) /* Forces the option byte loading */
#define STM32Gx_FLASH_CR_OPTLOCK (30) /* Options Lock */
#define STM32Gx_FLASH_CR_LOCK (31) /* FLASH_CR Lock */
// G0/G4 FLASH status register
#define STM32Gx_FLASH_SR_ERROR_MASK (0x3fa)
#define STM32Gx_FLASH_SR_BSY (16) /* FLASH_SR Busy */
#define STM32Gx_FLASH_SR_EOP (0) /* FLASH_EOP End of Operation */
// G4 FLASH option register
#define STM32G4_FLASH_OPTR_DBANK (22) /* FLASH_OPTR Dual Bank Mode */
// WB (RM0434)
#define STM32WB_FLASH_REGS_ADDR ((uint32_t)0x58004000)
#define STM32WB_FLASH_ACR (STM32WB_FLASH_REGS_ADDR + 0x00)
#define STM32WB_FLASH_KEYR (STM32WB_FLASH_REGS_ADDR + 0x08)
#define STM32WB_FLASH_OPT_KEYR (STM32WB_FLASH_REGS_ADDR + 0x0C)
#define STM32WB_FLASH_SR (STM32WB_FLASH_REGS_ADDR + 0x10)
#define STM32WB_FLASH_CR (STM32WB_FLASH_REGS_ADDR + 0x14)
#define STM32WB_FLASH_ECCR (STM32WB_FLASH_REGS_ADDR + 0x18)
#define STM32WB_FLASH_OPTR (STM32WB_FLASH_REGS_ADDR + 0x20)
#define STM32WB_FLASH_PCROP1ASR (STM32WB_FLASH_REGS_ADDR + 0x24)
#define STM32WB_FLASH_PCROP1AER (STM32WB_FLASH_REGS_ADDR + 0x28)
#define STM32WB_FLASH_WRP1AR (STM32WB_FLASH_REGS_ADDR + 0x2C)
#define STM32WB_FLASH_WRP1BR (STM32WB_FLASH_REGS_ADDR + 0x30)
#define STM32WB_FLASH_PCROP1BSR (STM32WB_FLASH_REGS_ADDR + 0x34)
#define STM32WB_FLASH_PCROP1BER (STM32WB_FLASH_REGS_ADDR + 0x38)
#define STM32WB_FLASH_IPCCBR (STM32WB_FLASH_REGS_ADDR + 0x3C)
#define STM32WB_FLASH_C2ACR (STM32WB_FLASH_REGS_ADDR + 0x5C)
#define STM32WB_FLASH_C2SR (STM32WB_FLASH_REGS_ADDR + 0x60)
#define STM32WB_FLASH_C2CR (STM32WB_FLASH_REGS_ADDR + 0x64)
#define STM32WB_FLASH_SFR (STM32WB_FLASH_REGS_ADDR + 0x80)
#define STM32WB_FLASH_SRRVR (STM32WB_FLASH_REGS_ADDR + 0x84)
// WB Flash control register.
#define STM32WB_FLASH_CR_STRT (16) /* FLASH_CR Start */
#define STM32WB_FLASH_CR_LOCK (31) /* FLASH_CR Lock */
// WB Flash status register.
#define STM32WB_FLASH_SR_BSY (16) /* FLASH_SR Busy */
//32L4 register base is at FLASH_REGS_ADDR (0x40022000)
#define STM32L4_FLASH_KEYR (FLASH_REGS_ADDR + 0x08)
#define STM32L4_FLASH_OPTKEYR (FLASH_REGS_ADDR + 0x0C)
#define STM32L4_FLASH_SR (FLASH_REGS_ADDR + 0x10)
#define STM32L4_FLASH_CR (FLASH_REGS_ADDR + 0x14)
#define STM32L4_FLASH_OPTR (FLASH_REGS_ADDR + 0x20)
#define STM32L4_FLASH_SR_BSY 16
#define STM32L4_FLASH_SR_ERRMASK 0x3f8 /* SR [9:3] */
#define STM32L4_FLASH_CR_LOCK 31 /* Lock control register */
#define STM32L4_FLASH_CR_OPTLOCK 30 /* Lock option bytes */
#define STM32L4_FLASH_CR_PG 0 /* Program */
#define STM32L4_FLASH_CR_PER 1 /* Page erase */
#define STM32L4_FLASH_CR_MER1 2 /* Bank 1 erase */
#define STM32L4_FLASH_CR_MER2 15 /* Bank 2 erase */
#define STM32L4_FLASH_CR_STRT 16 /* Start command */
#define STM32L4_FLASH_CR_OPTSTRT 17 /* Start writing option bytes */
#define STM32L4_FLASH_CR_BKER 11 /* Bank select for page erase */
#define STM32L4_FLASH_CR_PNB 3 /* Page number (8 bits) */
#define STM32L4_FLASH_CR_OBL_LAUNCH 27 /* Option bytes reload */
// Bits requesting flash operations (useful when we want to clear them)
#define STM32L4_FLASH_CR_OPBITS \
(uint32_t)((1lu<<STM32L4_FLASH_CR_PG) | (1lu<<STM32L4_FLASH_CR_PER) \
| (1lu<<STM32L4_FLASH_CR_MER1) | (1lu<<STM32L4_FLASH_CR_MER1))
// Page is fully specified by BKER and PNB
#define STM32L4_FLASH_CR_PAGEMASK (uint32_t)(0x1fflu << STM32L4_FLASH_CR_PNB)
#define STM32L4_FLASH_OPTR_DUALBANK 21
//STM32L0x flash register base and offsets
//same as 32L1 above
// RM0090 - DM00031020.pdf
#define STM32L0_FLASH_REGS_ADDR ((uint32_t)0x40022000)
#define STM32L0_FLASH_PELOCK_BIT (1u << 0)
#define STM32L0_FLASH_OPTLOCK_BIT (1u << 2)
#define STM32L0_FLASH_OBL_LAUNCH_BIT (1u << 18)
#define FLASH_ACR_OFF ((uint32_t) 0x00)
#define FLASH_PECR_OFF ((uint32_t) 0x04)
#define FLASH_PDKEYR_OFF ((uint32_t) 0x08)
#define FLASH_PEKEYR_OFF ((uint32_t) 0x0c)
#define FLASH_PRGKEYR_OFF ((uint32_t) 0x10)
#define FLASH_OPTKEYR_OFF ((uint32_t) 0x14)
#define FLASH_SR_OFF ((uint32_t) 0x18)
#define FLASH_OBR_OFF ((uint32_t) 0x1c)
#define FLASH_WRPR_OFF ((uint32_t) 0x20)
//STM32L1
#define STM32L1_FLASH_REGS_ADDR ((uint32_t)0x40023c00)
#define STM32L1_FLASH_PELOCK_BIT (1u << 0)
#define STM32L1_FLASH_OPTLOCK_BIT (1u << 2)
#define STM32L1_FLASH_OBL_LAUNCH_BIT (1u << 18)
//STM32F4
#define FLASH_F4_REGS_ADDR ((uint32_t)0x40023c00)
#define FLASH_F4_KEYR (FLASH_F4_REGS_ADDR + 0x04)
#define FLASH_F4_OPT_KEYR (FLASH_F4_REGS_ADDR + 0x08)
#define FLASH_F4_SR (FLASH_F4_REGS_ADDR + 0x0c)
#define FLASH_F4_CR (FLASH_F4_REGS_ADDR + 0x10)
#define FLASH_F4_OPT_CR (FLASH_F4_REGS_ADDR + 0x14)
#define FLASH_F4_OPT_LOCK_BIT (1u << 0)
#define FLASH_F4_CR_STRT 16
#define FLASH_F4_CR_LOCK 31
#define FLASH_F4_CR_SER 1
#define FLASH_F4_CR_SNB 3
#define FLASH_F4_CR_SNB_MASK 0xf8
#define FLASH_F4_SR_BSY 16
//STM32F2
#define FLASH_F2_REGS_ADDR ((uint32_t)0x40023c00)
#define FLASH_F2_KEYR (FLASH_F2_REGS_ADDR + 0x04)
#define FLASH_F2_OPT_KEYR (FLASH_F2_REGS_ADDR + 0x08)
#define FLASH_F2_SR (FLASH_F2_REGS_ADDR + 0x0c)
#define FLASH_F2_CR (FLASH_F2_REGS_ADDR + 0x10)
#define FLASH_F2_OPT_CR (FLASH_F2_REGS_ADDR + 0x14)
#define FLASH_F2_OPT_LOCK_BIT (1u << 0)
#define FLASH_F2_CR_STRT 16
#define FLASH_F2_CR_LOCK 31
#define FLASH_F2_CR_SER 1
#define FLASH_F2_CR_SNB 3
#define FLASH_F2_CR_SNB_MASK 0x78
#define FLASH_F2_SR_BSY 16
#define L1_WRITE_BLOCK_SIZE 0x80
#define L0_WRITE_BLOCK_SIZE 0x40
void write_uint32(unsigned char* buf, uint32_t ui) {
if (!is_bigendian()) { // le -> le (don't swap)
buf[0] = ((unsigned char*) &ui)[0];
buf[1] = ((unsigned char*) &ui)[1];
buf[2] = ((unsigned char*) &ui)[2];
buf[3] = ((unsigned char*) &ui)[3];
} else {
buf[0] = ((unsigned char*) &ui)[3];
buf[1] = ((unsigned char*) &ui)[2];
buf[2] = ((unsigned char*) &ui)[1];
buf[3] = ((unsigned char*) &ui)[0];
}
}
void write_uint16(unsigned char* buf, uint16_t ui) {
if (!is_bigendian()) { // le -> le (don't swap)
buf[0] = ((unsigned char*) &ui)[0];
buf[1] = ((unsigned char*) &ui)[1];
} else {
buf[0] = ((unsigned char*) &ui)[1];
buf[1] = ((unsigned char*) &ui)[0];
}
}
uint32_t read_uint32(const unsigned char *c, const int pt) {
uint32_t ui;
char *p = (char *) &ui;
if (!is_bigendian()) { // le -> le (don't swap)
p[0] = c[pt + 0];
p[1] = c[pt + 1];
p[2] = c[pt + 2];
p[3] = c[pt + 3];
} else {
p[0] = c[pt + 3];
p[1] = c[pt + 2];
p[2] = c[pt + 1];
p[3] = c[pt + 0];
}
return ui;
}
static uint32_t __attribute__((unused)) read_flash_rdp(stlink_t *sl) {
uint32_t rdp;
stlink_read_debug32(sl, FLASH_WRPR, &rdp);
return rdp & 0xff;
}
static inline uint32_t read_flash_cr(stlink_t *sl) {
uint32_t reg, res;
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
reg = FLASH_F4_CR;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
reg = STM32L4_FLASH_CR;
else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4)
reg = STM32Gx_FLASH_CR;
else if (sl->flash_type == STLINK_FLASH_TYPE_WB)
reg = STM32WB_FLASH_CR;
else
reg = FLASH_CR;
stlink_read_debug32(sl, reg, &res);
#if DEBUG_FLASH
fprintf(stdout, "CR:0x%x\n", res);
#endif
return res;
}
static inline uint32_t read_flash_cr2(stlink_t *sl) {
uint32_t res;
stlink_read_debug32(sl, FLASH_CR2, &res);
#if DEBUG_FLASH
fprintf(stdout, "CR2:0x%x\n", res);
#endif
return res;
}
static inline unsigned int is_flash_locked(stlink_t *sl) {
/* return non zero for true */
uint32_t cr_lock_shift, cr = read_flash_cr(sl);
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
cr_lock_shift = FLASH_F4_CR_LOCK;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
cr_lock_shift = STM32L4_FLASH_CR_LOCK;
else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4)
cr_lock_shift = STM32Gx_FLASH_CR_LOCK;
else if (sl->flash_type == STLINK_FLASH_TYPE_WB)
cr_lock_shift = STM32WB_FLASH_CR_LOCK;
else
cr_lock_shift = FLASH_CR_LOCK;
return cr & (1u << cr_lock_shift);
}
static void unlock_flash(stlink_t *sl) {
uint32_t key_reg;
/* the unlock sequence consists of 2 write cycles where
2 key values are written to the FLASH_KEYR register.
an invalid sequence results in a definitive lock of
the FPEC block until next reset.
*/
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
key_reg = FLASH_F4_KEYR;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
key_reg = STM32L4_FLASH_KEYR;
else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4)
key_reg = STM32Gx_FLASH_KEYR;
else if (sl->flash_type == STLINK_FLASH_TYPE_WB)
key_reg = STM32WB_FLASH_KEYR;
else
key_reg = FLASH_KEYR;
stlink_write_debug32(sl, key_reg, FLASH_KEY1);
stlink_write_debug32(sl, key_reg, FLASH_KEY2);
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
stlink_write_debug32(sl, FLASH_KEYR2, FLASH_KEY1);
stlink_write_debug32(sl, FLASH_KEYR2, FLASH_KEY2);
}
}
static int unlock_flash_if(stlink_t *sl) {
/* unlock flash if already locked */
if (is_flash_locked(sl)) {
unlock_flash(sl);
if (is_flash_locked(sl)) {
WLOG("Failed to unlock flash!\n");
return -1;
}
}
DLOG("Successfully unlocked flash\n");
return 0;
}
static void lock_flash(stlink_t *sl) {
uint32_t cr_lock_shift, cr_reg, n;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_lock_shift = FLASH_F4_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_lock_shift = STM32L4_FLASH_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
cr_lock_shift = STM32Gx_FLASH_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
cr_lock_shift = STM32WB_FLASH_CR_LOCK;
} else {
cr_reg = FLASH_CR;
cr_lock_shift = FLASH_CR_LOCK;
}
n = read_flash_cr(sl) | (1u << cr_lock_shift);
stlink_write_debug32(sl, cr_reg, n);
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
n = read_flash_cr2(sl) | (1u << cr_lock_shift);
stlink_write_debug32(sl, FLASH_CR2, n);
}
}
static void set_flash_cr_pg(stlink_t *sl) {
uint32_t cr_reg, x;
x = read_flash_cr(sl);
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
x |= 1 << FLASH_CR_PG;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
x &= ~STM32L4_FLASH_CR_OPBITS;
x |= 1 << STM32L4_FLASH_CR_PG;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
x |= (1 << FLASH_CR_PG);
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
x |= (1 << FLASH_CR_PG);
} else {
cr_reg = FLASH_CR;
x = 1 << FLASH_CR_PG;
}
stlink_write_debug32(sl, cr_reg, x);
}
static void clear_flash_cr_pg(stlink_t *sl) {
uint32_t cr_reg, n;
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
cr_reg = FLASH_F4_CR;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
cr_reg = STM32L4_FLASH_CR;
else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4)
cr_reg = STM32Gx_FLASH_CR;
else if (sl->flash_type == STLINK_FLASH_TYPE_WB)
cr_reg = STM32WB_FLASH_CR;
else
cr_reg = FLASH_CR;
n = read_flash_cr(sl) & ~(1 << FLASH_CR_PG);
stlink_write_debug32(sl, cr_reg, n);
}
static void set_flash_cr_per(stlink_t *sl) {
uint32_t cr_reg, val;
if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4)
cr_reg = STM32Gx_FLASH_CR;
else if (sl->flash_type == STLINK_FLASH_TYPE_WB)
cr_reg = STM32WB_FLASH_CR;
else
cr_reg = FLASH_CR;
stlink_read_debug32(sl, cr_reg, &val);
val |= (1 << FLASH_CR_PER);
stlink_write_debug32(sl, cr_reg, val);
}
static void set_flash_cr2_per(stlink_t *sl) {
const uint32_t n = 1 << FLASH_CR_PER;
stlink_write_debug32(sl, FLASH_CR2, n);
}
static void clear_flash_cr_per(stlink_t *sl) {
uint32_t cr_reg;
if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4)
cr_reg = STM32Gx_FLASH_CR;
else if (sl->flash_type == STLINK_FLASH_TYPE_WB)
cr_reg = STM32WB_FLASH_CR;
else
cr_reg = FLASH_CR;
const uint32_t n = read_flash_cr(sl) & ~(1 << FLASH_CR_PER);
stlink_write_debug32(sl, cr_reg, n);
}
static void set_flash_cr_mer(stlink_t *sl, bool v) {
uint32_t val, cr_reg, cr_mer, cr_pg;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_mer = 1 << FLASH_CR_MER;
cr_pg = 1 << FLASH_CR_PG;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_mer = (1 << STM32L4_FLASH_CR_MER1) | (1 << STM32L4_FLASH_CR_MER2);
cr_pg = 1 << STM32L4_FLASH_CR_PG;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
cr_mer = (1 << STM32Gx_FLASH_CR_MER1);
if (sl->has_dual_bank) {
cr_mer |= (1 << STM32Gx_FLASH_CR_MER2);
}
cr_pg = (1 << FLASH_CR_PG);
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
cr_mer = (1 << FLASH_CR_MER);
cr_pg = (1 << FLASH_CR_PG);
} else {
cr_reg = FLASH_CR;
cr_mer = 1 << FLASH_CR_MER;
cr_pg = 1 << FLASH_CR_PG;
}
stlink_read_debug32(sl, cr_reg, &val);
if (val & cr_pg) {
/* STM32F030 will drop MER bit if PG was set */
val &= ~cr_pg;
stlink_write_debug32(sl, cr_reg, val);
}
if (v)
val |= cr_mer;
else
val &= ~cr_mer;
stlink_write_debug32(sl, cr_reg, val);
}
static void set_flash_cr2_mer(stlink_t *sl, bool v) {
const uint32_t cr_pg = 1 << FLASH_CR_PER;
const uint32_t cr_mer = 1 << FLASH_CR_MER;
uint32_t val;
stlink_read_debug32(sl, FLASH_CR2, &val);
val &= ~cr_pg;
if (v)
val |= cr_mer;
else
val &= ~cr_mer;
stlink_write_debug32(sl, FLASH_CR2, val);
}
static void __attribute__((unused)) clear_flash_cr_mer(stlink_t *sl) {
uint32_t val, cr_reg, cr_mer;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_mer = 1 << FLASH_CR_MER;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_mer = (1 << STM32L4_FLASH_CR_MER1) | (1 << STM32L4_FLASH_CR_MER2);
} else {
cr_reg = FLASH_CR;
cr_mer = 1 << FLASH_CR_MER;
}
stlink_read_debug32(sl, cr_reg, &val);
val &= ~cr_mer;
stlink_write_debug32(sl, cr_reg, val);
}
static void set_flash_cr_strt(stlink_t *sl) {
uint32_t val, cr_reg, cr_strt;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_strt = 1 << FLASH_F4_CR_STRT;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_strt = 1 << STM32L4_FLASH_CR_STRT;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
cr_strt = 1 << STM32Gx_FLASH_CR_STRT;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
cr_strt = 1 << STM32WB_FLASH_CR_STRT;
} else {
cr_reg = FLASH_CR;
cr_strt = 1 << FLASH_CR_STRT;
}
stlink_read_debug32(sl, cr_reg, &val);
val |= cr_strt;
stlink_write_debug32(sl, cr_reg, val);
}
static void set_flash_cr2_strt(stlink_t *sl) {
uint32_t val;
stlink_read_debug32(sl, FLASH_CR2, &val);
val |= 1 << FLASH_CR_STRT;
stlink_write_debug32(sl, FLASH_CR2, val);
}
static inline uint32_t read_flash_sr(stlink_t *sl) {
uint32_t res, sr_reg;
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
sr_reg = FLASH_F4_SR;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
sr_reg = STM32L4_FLASH_SR;
else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4)
sr_reg = STM32Gx_FLASH_SR;
else if (sl->flash_type == STLINK_FLASH_TYPE_WB)
sr_reg = STM32WB_FLASH_SR;
else
sr_reg = FLASH_SR;
stlink_read_debug32(sl, sr_reg, &res);
return res;
}
static inline uint32_t read_flash_sr2(stlink_t *sl) {
uint32_t res;
stlink_read_debug32(sl, FLASH_SR2, &res);
return res;
}
static inline unsigned int is_flash_busy(stlink_t *sl) {
uint32_t sr_busy_shift;
unsigned int res;
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
sr_busy_shift = FLASH_F4_SR_BSY;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
sr_busy_shift = STM32L4_FLASH_SR_BSY;
else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4)
sr_busy_shift = STM32Gx_FLASH_SR_BSY;
else if (sl->flash_type == STLINK_FLASH_TYPE_WB)
sr_busy_shift = STM32WB_FLASH_SR_BSY;
else
sr_busy_shift = FLASH_SR_BSY;
res = read_flash_sr(sl) & (1 << sr_busy_shift);
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
res |= read_flash_sr2(sl) & (1 << sr_busy_shift);
}
return res;
}
static void wait_flash_busy(stlink_t *sl) {
/* todo: add some delays here */
while (is_flash_busy(sl))
;
}
static void wait_flash_busy_progress(stlink_t *sl) {
int i = 0;
fprintf(stdout, "Mass erasing");
fflush(stdout);
while (is_flash_busy(sl)) {
usleep(10000);
i++;
if (i % 100 == 0) {
fprintf(stdout, ".");
fflush(stdout);
}
}
fprintf(stdout, "\n");
}
static int check_flash_error(stlink_t *sl)
{
uint32_t res = 0;
if ((sl->flash_type == STLINK_FLASH_TYPE_G0) ||
(sl->flash_type == STLINK_FLASH_TYPE_G4)) {
res = read_flash_sr(sl) & STM32Gx_FLASH_SR_ERROR_MASK;
}
if (res) {
ELOG("Flash programming error : %#010x\n", res);
return -1;
}
return 0;
}
static inline unsigned int is_flash_eop(stlink_t *sl) {
return read_flash_sr(sl) & (1 << FLASH_SR_EOP);
}
static void __attribute__((unused)) clear_flash_sr_eop(stlink_t *sl) {
const uint32_t n = read_flash_sr(sl) & ~(1 << FLASH_SR_EOP);
stlink_write_debug32(sl, FLASH_SR, n);
}
static void __attribute__((unused)) wait_flash_eop(stlink_t *sl) {
/* todo: add some delays here */
while (is_flash_eop(sl) == 0)
;
}
static inline void write_flash_ar(stlink_t *sl, uint32_t n) {
stlink_write_debug32(sl, FLASH_AR, n);
}
static inline void write_flash_ar2(stlink_t *sl, uint32_t n) {
stlink_write_debug32(sl, FLASH_AR2, n);
}
static inline void write_flash_cr_psiz(stlink_t *sl, uint32_t n) {
uint32_t x = read_flash_cr(sl);
x &= ~(0x03 << 8);
x |= (n << 8);
#if DEBUG_FLASH
fprintf(stdout, "PSIZ:0x%x 0x%x\n", x, n);
#endif
stlink_write_debug32(sl, FLASH_F4_CR, x);
}
static inline void write_flash_cr_snb(stlink_t *sl, uint32_t n) {
uint32_t x = read_flash_cr(sl);
x &= ~FLASH_F4_CR_SNB_MASK;
x |= (n << FLASH_F4_CR_SNB);
x |= (1 << FLASH_F4_CR_SER);
#if DEBUG_FLASH
fprintf(stdout, "SNB:0x%x 0x%x\n", x, n);
#endif
stlink_write_debug32(sl, FLASH_F4_CR, x);
}
static inline void write_flash_cr_bker_pnb(stlink_t *sl, uint32_t n) {
stlink_write_debug32(sl, STM32L4_FLASH_SR, 0xFFFFFFFF & ~(1<<STM32L4_FLASH_SR_BSY));
uint32_t x = read_flash_cr(sl);
x &= ~ STM32L4_FLASH_CR_OPBITS;
x &= ~ STM32L4_FLASH_CR_PAGEMASK;
x &= ~(1<<STM32L4_FLASH_CR_MER1);
x &= ~(1<<STM32L4_FLASH_CR_MER2);
x |= (n << STM32L4_FLASH_CR_PNB);
x |= (uint32_t)(1lu << STM32L4_FLASH_CR_PER);
#if DEBUG_FLASH
fprintf(stdout, "BKER:PNB:0x%x 0x%x\n", x, n);
#endif
stlink_write_debug32(sl, STM32L4_FLASH_CR, x);
}
// Delegates to the backends...
void stlink_close(stlink_t *sl) {
DLOG("*** stlink_close ***\n");
if (!sl)
return;
sl->backend->close(sl);
free(sl);
}
int stlink_exit_debug_mode(stlink_t *sl) {
int ret;
DLOG("*** stlink_exit_debug_mode ***\n");
ret = stlink_write_debug32(sl, STLINK_REG_DHCSR, STLINK_REG_DHCSR_DBGKEY);
if (ret == -1)
return ret;
return sl->backend->exit_debug_mode(sl);
}
int stlink_enter_swd_mode(stlink_t *sl) {
DLOG("*** stlink_enter_swd_mode ***\n");
return sl->backend->enter_swd_mode(sl);
}
// Force the core into the debug mode -> halted state.
int stlink_force_debug(stlink_t *sl) {
DLOG("*** stlink_force_debug_mode ***\n");
return sl->backend->force_debug(sl);
}
int stlink_exit_dfu_mode(stlink_t *sl) {
DLOG("*** stlink_exit_dfu_mode ***\n");
return sl->backend->exit_dfu_mode(sl);
}
int stlink_core_id(stlink_t *sl) {
int ret;
DLOG("*** stlink_core_id ***\n");
ret = sl->backend->core_id(sl);
if (ret == -1) {
ELOG("Failed to read core_id\n");
return ret;
}
if (sl->verbose > 2)
stlink_print_data(sl);
DLOG("core_id = 0x%08x\n", sl->core_id);
return ret;
}
// stlink_chip_id() is called by stlink_load_device_params()
// do not call this procedure directly.
int stlink_chip_id(stlink_t *sl, uint32_t *chip_id) {
int ret;
ret = stlink_read_debug32(sl, 0xE0042000, chip_id);
if (ret == -1)
return ret;
if (*chip_id == 0)
ret = stlink_read_debug32(sl, 0x40015800, chip_id); //Try Corex M0 DBGMCU_IDCODE register address
return ret;
}
/**
* Cortex m3 tech ref manual, CPUID register description
* @param sl stlink context
* @param cpuid pointer to the result object
*/
int stlink_cpu_id(stlink_t *sl, cortex_m3_cpuid_t *cpuid) {
uint32_t raw;
if (stlink_read_debug32(sl, STLINK_REG_CM3_CPUID, &raw))
return -1;
cpuid->implementer_id = (raw >> 24) & 0x7f;
cpuid->variant = (raw >> 20) & 0xf;
cpuid->part = (raw >> 4) & 0xfff;
cpuid->revision = raw & 0xf;
return 0;
}
/**
* reads and decodes the flash parameters, as dynamically as possible
* @param sl
* @return 0 for success, or -1 for unsupported core type.
*/
int stlink_load_device_params(stlink_t *sl) {
// This seems to normally work so is unnecessary info for a normal
// user. Demoted to debug. -- REW
DLOG("Loading device parameters....\n");
const struct stlink_chipid_params *params = NULL;
stlink_core_id(sl);
uint32_t chip_id;
uint32_t flash_size;
stlink_chip_id(sl, &chip_id);
sl->chip_id = chip_id & 0xfff;
/* Fix chip_id for F4 rev A errata , Read CPU ID, as CoreID is the same for F2/F4*/
if (sl->chip_id == 0x411) {
uint32_t cpuid;
stlink_read_debug32(sl, 0xE000ED00, &cpuid);
if ((cpuid & 0xfff0) == 0xc240)
sl->chip_id = 0x413;
}
params = stlink_chipid_get_params(sl->chip_id); // chipid.c
if (params == NULL) {
WLOG("unknown chip id! %#x\n", chip_id);
return -1;
}
if (params->flash_type == STLINK_FLASH_TYPE_UNKNOWN) {
WLOG("Invalid flash type, please check device declaration\n");
sl->flash_size = 0;
return 0;
}
// These are fixed...
sl->flash_base = STM32_FLASH_BASE;
sl->sram_base = STM32_SRAM_BASE;
stlink_read_debug32(sl,(params->flash_size_reg) & ~3, &flash_size);
if (params->flash_size_reg & 2)
flash_size = flash_size >>16;
flash_size = flash_size & 0xffff;
if ((sl->chip_id == STLINK_CHIPID_STM32_L1_MEDIUM ||
sl->chip_id == STLINK_CHIPID_STM32_F1_VL_MEDIUM_LOW ||
sl->chip_id == STLINK_CHIPID_STM32_L1_MEDIUM_PLUS) && ( flash_size == 0 )) {
sl->flash_size = 128 * 1024;
} else if (sl->chip_id == STLINK_CHIPID_STM32_L1_CAT2) {
sl->flash_size = (flash_size & 0xff) * 1024;
} else if ((sl->chip_id & 0xFFF) == STLINK_CHIPID_STM32_L1_HIGH) {
// 0 is 384k and 1 is 256k
if ( flash_size == 0){
sl->flash_size = 384 * 1024;
} else {
sl->flash_size = 256 * 1024;
}
} else {
sl->flash_size = flash_size * 1024;
}
sl->flash_type = params->flash_type;
sl->has_dual_bank = params->has_dual_bank;
sl->flash_pgsz = params->flash_pagesize;
sl->sram_size = params->sram_size;
sl->sys_base = params->bootrom_base;
sl->sys_size = params->bootrom_size;
//medium and low devices have the same chipid. ram size depends on flash size.
//STM32F100xx datasheet Doc ID 16455 Table 2
if (sl->chip_id == STLINK_CHIPID_STM32_F1_VL_MEDIUM_LOW && sl->flash_size < 64 * 1024){
sl->sram_size = 0x1000;
}
if (sl->chip_id == STLINK_CHIPID_STM32_G4_CAT3) {
uint32_t flash_optr;
stlink_read_debug32(sl, STM32Gx_FLASH_OPTR, &flash_optr);
if (!(flash_optr & (1 << STM32G4_FLASH_OPTR_DBANK))) {
sl->flash_pgsz <<= 1;
}
}
#if 0
// Old code -- REW
ILOG("Device connected is: %s, id %#x\n", params->description, chip_id);
// TODO make note of variable page size here.....
ILOG("SRAM size: %#x bytes (%d KiB), Flash: %#x bytes (%d KiB) in pages of %u bytes\n",
sl->sram_size, sl->sram_size / 1024, sl->flash_size, sl->flash_size / 1024,
(unsigned int)sl->flash_pgsz);
#else
ILOG("%s: %d KiB SRAM, %d KiB flash in %d %s pages.\n",
params->description, sl->sram_size / 1024, sl->flash_size / 1024,
(sl->flash_pgsz < 1024)? sl->flash_pgsz : sl->flash_pgsz/1024,
(sl->flash_pgsz < 1024)? "byte" : "KiB");
#endif
return 0;
}
int stlink_reset(stlink_t *sl) {
DLOG("*** stlink_reset ***\n");
return sl->backend->reset(sl);
}
int stlink_jtag_reset(stlink_t *sl, int value) {
DLOG("*** stlink_jtag_reset ***\n");
return sl->backend->jtag_reset(sl, value);
}
int stlink_run(stlink_t *sl) {
DLOG("*** stlink_run ***\n");
return sl->backend->run(sl);
}
int stlink_set_swdclk(stlink_t *sl, uint16_t divisor) {
DLOG("*** set_swdclk ***\n");
return sl->backend->set_swdclk(sl, divisor);
}
int stlink_status(stlink_t *sl) {
int ret;
DLOG("*** stlink_status ***\n");
ret = sl->backend->status(sl);
stlink_core_stat(sl);
return ret;
}
/**
* Decode the version bits, originally from -sg, verified with usb
* @param sl stlink context, assumed to contain valid data in the buffer
* @param slv output parsed version object
*/
void _parse_version(stlink_t *sl, stlink_version_t *slv) {
if (sl->version.stlink_v < 3) {
uint32_t b0 = sl->q_buf[0]; //lsb
uint32_t b1 = sl->q_buf[1];
uint32_t b2 = sl->q_buf[2];
uint32_t b3 = sl->q_buf[3];
uint32_t b4 = sl->q_buf[4];
uint32_t b5 = sl->q_buf[5]; //msb
// b0 b1 || b2 b3 | b4 b5
// 4b | 6b | 6b || 2B | 2B
// stlink_v | jtag_v | swim_v || st_vid | stlink_pid
slv->stlink_v = (b0 & 0xf0) >> 4;
slv->jtag_v = ((b0 & 0x0f) << 2) | ((b1 & 0xc0) >> 6);
slv->swim_v = b1 & 0x3f;
slv->st_vid = (b3 << 8) | b2;
slv->stlink_pid = (b5 << 8) | b4;
} else {
// V3 uses different version format, for reference see OpenOCD source
// (that was written from docs available from ST under NDA):
// https://github.com/ntfreak/openocd/blob/a6dacdff58ef36fcdac00c53ec27f19de1fbce0d/src/jtag/drivers/stlink_usb.c#L965
slv->stlink_v = sl->q_buf[0];
slv->swim_v = sl->q_buf[1];
slv->jtag_v = sl->q_buf[2];
slv->st_vid = (uint32_t)((sl->q_buf[9] << 8) | sl->q_buf[8]);
slv->stlink_pid = (uint32_t)((sl->q_buf[11] << 8) | sl->q_buf[10]);
}
return;
}
int stlink_version(stlink_t *sl) {
DLOG("*** looking up stlink version\n");
if (sl->backend->version(sl))
return -1;
_parse_version(sl, &sl->version);
DLOG("st vid = 0x%04x (expect 0x%04x)\n", sl->version.st_vid, STLINK_USB_VID_ST);
DLOG("stlink pid = 0x%04x\n", sl->version.stlink_pid);
DLOG("stlink version = 0x%x\n", sl->version.stlink_v);
DLOG("jtag version = 0x%x\n", sl->version.jtag_v);
DLOG("swim version = 0x%x\n", sl->version.swim_v);
if (sl->version.jtag_v == 0) {
DLOG(" notice: the firmware doesn't support a jtag/swd interface\n");
}
if (sl->version.swim_v == 0) {
DLOG(" notice: the firmware doesn't support a swim interface\n");
}
return 0;
}
int stlink_target_voltage(stlink_t *sl) {
int voltage = -1;
DLOG("*** reading target voltage\n");
if (sl->backend->target_voltage != NULL) {
voltage = sl->backend->target_voltage(sl);
if (voltage != -1) {
DLOG("target voltage = %ldmV\n", voltage);
} else {
DLOG("error reading target voltage\n");
}
} else {
DLOG("reading voltage not supported by backend\n");
}
return voltage;
}
int stlink_read_debug32(stlink_t *sl, uint32_t addr, uint32_t *data) {
int ret;
ret = sl->backend->read_debug32(sl, addr, data);
if (!ret)
DLOG("*** stlink_read_debug32 %x is %#x\n", *data, addr);
return ret;
}
int stlink_write_debug32(stlink_t *sl, uint32_t addr, uint32_t data) {
DLOG("*** stlink_write_debug32 %x to %#x\n", data, addr);
return sl->backend->write_debug32(sl, addr, data);
}
int stlink_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_write_mem32 %u bytes to %#x\n", len, addr);
if (len % 4 != 0) {
fprintf(stderr, "Error: Data length doesn't have a 32 bit alignment: +%d byte.\n", len % 4);
abort();
}
return sl->backend->write_mem32(sl, addr, len);
}
int stlink_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_read_mem32 ***\n");
if (len % 4 != 0) { // !!! never ever: fw gives just wrong values
fprintf(stderr, "Error: Data length doesn't have a 32 bit alignment: +%d byte.\n",
len % 4);
abort();
}
return sl->backend->read_mem32(sl, addr, len);
}
int stlink_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_write_mem8 ***\n");
if (len > 0x40){ // !!! never ever: Writing more then 0x40 bytes gives unexpected behaviour
fprintf(stderr, "Error: Data length > 64: +%d byte.\n",
len);
abort();
}
return sl->backend->write_mem8(sl, addr, len);
}
int stlink_read_all_regs(stlink_t *sl, struct stlink_reg *regp) {
DLOG("*** stlink_read_all_regs ***\n");
return sl->backend->read_all_regs(sl, regp);
}
int stlink_read_all_unsupported_regs(stlink_t *sl, struct stlink_reg *regp) {
DLOG("*** stlink_read_all_unsupported_regs ***\n");
return sl->backend->read_all_unsupported_regs(sl, regp);
}
int stlink_write_reg(stlink_t *sl, uint32_t reg, int idx) {
DLOG("*** stlink_write_reg\n");
return sl->backend->write_reg(sl, reg, idx);
}
int stlink_read_reg(stlink_t *sl, int r_idx, struct stlink_reg *regp) {
DLOG("*** stlink_read_reg\n");
DLOG(" (%d) ***\n", r_idx);
if (r_idx > 20 || r_idx < 0) {
fprintf(stderr, "Error: register index must be in [0..20]\n");
return -1;
}
return sl->backend->read_reg(sl, r_idx, regp);
}
int stlink_read_unsupported_reg(stlink_t *sl, int r_idx, struct stlink_reg *regp) {
int r_convert;
DLOG("*** stlink_read_unsupported_reg\n");
DLOG(" (%d) ***\n", r_idx);
/* Convert to values used by STLINK_REG_DCRSR */
if (r_idx >= 0x1C && r_idx <= 0x1F) { /* primask, basepri, faultmask, or control */
r_convert = 0x14;
} else if (r_idx == 0x40) { /* FPSCR */
r_convert = 0x21;
} else if (r_idx >= 0x20 && r_idx < 0x40) {
r_convert = 0x40 + (r_idx - 0x20);
} else {
fprintf(stderr, "Error: register address must be in [0x1C..0x40]\n");
return -1;
}
return sl->backend->read_unsupported_reg(sl, r_convert, regp);
}
int stlink_write_unsupported_reg(stlink_t *sl, uint32_t val, int r_idx, struct stlink_reg *regp) {
int r_convert;
DLOG("*** stlink_write_unsupported_reg\n");
DLOG(" (%d) ***\n", r_idx);
/* Convert to values used by STLINK_REG_DCRSR */
if (r_idx >= 0x1C && r_idx <= 0x1F) { /* primask, basepri, faultmask, or control */
r_convert = r_idx; /* The backend function handles this */
} else if (r_idx == 0x40) { /* FPSCR */
r_convert = 0x21;
} else if (r_idx >= 0x20 && r_idx < 0x40) {
r_convert = 0x40 + (r_idx - 0x20);
} else {
fprintf(stderr, "Error: register address must be in [0x1C..0x40]\n");
return -1;
}
return sl->backend->write_unsupported_reg(sl, val, r_convert, regp);
}
bool stlink_is_core_halted(stlink_t *sl)
{
bool ret = false;
stlink_status(sl);
if (sl->q_buf[0] == STLINK_CORE_HALTED)
ret = true;
return ret;
}
int stlink_step(stlink_t *sl) {
DLOG("*** stlink_step ***\n");
return sl->backend->step(sl);
}
int stlink_current_mode(stlink_t *sl) {
int mode = sl->backend->current_mode(sl);
switch (mode) {
case STLINK_DEV_DFU_MODE:
DLOG("stlink current mode: dfu\n");
return mode;
case STLINK_DEV_DEBUG_MODE:
DLOG("stlink current mode: debug (jtag or swd)\n");
return mode;
case STLINK_DEV_MASS_MODE:
DLOG("stlink current mode: mass\n");
return mode;
}
DLOG("stlink mode: unknown!\n");
return STLINK_DEV_UNKNOWN_MODE;
}
// End of delegates.... Common code below here...
// Endianness
// http://www.ibm.com/developerworks/aix/library/au-endianc/index.html
// const int i = 1;
// #define is_bigendian() ( (*(char*)&i) == 0 )
unsigned int is_bigendian(void) {
static volatile const unsigned int i = 1;
return *(volatile const char*) &i == 0;
}
uint16_t read_uint16(const unsigned char *c, const int pt) {
uint32_t ui;
char *p = (char *) &ui;
if (!is_bigendian()) { // le -> le (don't swap)
p[0] = c[pt + 0];
p[1] = c[pt + 1];
} else {
p[0] = c[pt + 1];
p[1] = c[pt + 0];
}
return ui;
}
// same as above with entrypoint.
void stlink_run_at(stlink_t *sl, stm32_addr_t addr) {
stlink_write_reg(sl, addr, 15); /* pc register */
stlink_run(sl);
while (stlink_is_core_halted(sl))
usleep(3000000);
}
// this function is called by stlink_status()
// do not call stlink_core_stat() directly, always use stlink_status()
void stlink_core_stat(stlink_t *sl) {
if (sl->q_len <= 0)
return;
switch (sl->q_buf[0]) {
case STLINK_CORE_RUNNING:
sl->core_stat = STLINK_CORE_RUNNING;
DLOG(" core status: running\n");
return;
case STLINK_CORE_HALTED:
sl->core_stat = STLINK_CORE_HALTED;
DLOG(" core status: halted\n");
return;
default:
sl->core_stat = STLINK_CORE_STAT_UNKNOWN;
fprintf(stderr, " core status: unknown\n");
}
}
void stlink_print_data(stlink_t * sl) {
if (sl->q_len <= 0 || sl->verbose < UDEBUG)
return;
if (sl->verbose > 2)
fprintf(stdout, "data_len = %d 0x%x\n", sl->q_len, sl->q_len);
for (int i = 0; i < sl->q_len; i++) {
if (i % 16 == 0) {
/*
if (sl->q_data_dir == Q_DATA_OUT)
fprintf(stdout, "\n<- 0x%08x ", sl->q_addr + i);
else
fprintf(stdout, "\n-> 0x%08x ", sl->q_addr + i);
*/
}
fprintf(stdout, " %02x", (unsigned int) sl->q_buf[i]);
}
fputs("\n\n", stdout);
}
/* memory mapped file */
typedef struct mapped_file {
uint8_t* base;
size_t len;
} mapped_file_t;
#define MAPPED_FILE_INITIALIZER { NULL, 0 }
static int map_file(mapped_file_t* mf, const char* path) {
int error = -1;
struct stat st;
const int fd = open(path, O_RDONLY | O_BINARY);
if (fd == -1) {
fprintf(stderr, "open(%s) == -1\n", path);
return -1;
}
if (fstat(fd, &st) == -1) {
fprintf(stderr, "fstat(%s) == -1\n", path);
goto on_error;
}
if (sizeof(st.st_size) != sizeof(size_t)) {
/* On 32 bit systems, check if there is an overflow */
if (st.st_size > (off_t)UINT32_MAX) {
fprintf(stderr, "mmap() size_t overflow for file %s\n", path);
goto on_error;
}
}
mf->base = (uint8_t*) mmap(NULL, (size_t)(st.st_size), PROT_READ, MAP_SHARED, fd, 0);
if (mf->base == MAP_FAILED) {
fprintf(stderr, "mmap() == MAP_FAILED for file %s\n", path);
goto on_error;
}
mf->len = st.st_size;
/* success */
error = 0;
on_error:
close(fd);
return error;
}
static void unmap_file(mapped_file_t * mf) {
munmap((void*) mf->base, mf->len);
mf->base = (unsigned char*) MAP_FAILED;
mf->len = 0;
}
/* Limit the block size to compare to 0x1800
Anything larger will stall the STLINK2
Maybe STLINK V1 needs smaller value!*/
static int check_file(stlink_t* sl, mapped_file_t* mf, stm32_addr_t addr) {
size_t off;
size_t n_cmp = sl->flash_pgsz;
if ( n_cmp > 0x1800)
n_cmp = 0x1800;
for (off = 0; off < mf->len; off += n_cmp) {
size_t aligned_size;
/* adjust last page size */
size_t cmp_size = n_cmp;
if ((off + n_cmp) > mf->len)
cmp_size = mf->len - off;
aligned_size = cmp_size;
if (aligned_size & (4 - 1))
aligned_size = (cmp_size + 4) & ~(4 - 1);
stlink_read_mem32(sl, addr + (uint32_t) off, aligned_size);
if (memcmp(sl->q_buf, mf->base + off, cmp_size))
return -1;
}
return 0;
}
static void md5_calculate(mapped_file_t *mf) {
/* calculate md5 checksum of given binary file */
Md5Context md5Context;
MD5_HASH md5Hash;
Md5Initialise(&md5Context);
Md5Update(&md5Context, mf->base, (uint32_t)mf->len);
Md5Finalise(&md5Context, &md5Hash);
printf("md5 checksum: ");
for (int i = 0; i < (int) sizeof(md5Hash); i++) {
printf("%x", md5Hash.bytes[i]);
}
printf(", ");
}
static void stlink_checksum(mapped_file_t *mp) {
/* checksum that backward compatible with official ST tools */
uint32_t sum = 0;
uint8_t *mp_byte = (uint8_t *)mp->base;
for (size_t i = 0; i < mp->len; ++i) {
sum += mp_byte[i];
}
printf("stlink checksum: 0x%08x\n", sum);
}
static void stlink_fwrite_finalize(stlink_t *sl, stm32_addr_t addr) {
unsigned int val;
/* set stack*/
stlink_read_debug32(sl, addr, &val);
stlink_write_reg(sl, val, 13);
/* Set PC to the reset routine*/
stlink_read_debug32(sl, addr + 4, &val);
stlink_write_reg(sl, val, 15);
stlink_run(sl);
}
int stlink_mwrite_sram(stlink_t * sl, uint8_t* data, uint32_t length, stm32_addr_t addr) {
/* write the file in sram at addr */
int error = -1;
size_t off;
size_t len;
/* check addr range is inside the sram */
if (addr < sl->sram_base) {
fprintf(stderr, "addr too low\n");
goto on_error;
} else if ((addr + length) < addr) {
fprintf(stderr, "addr overruns\n");
goto on_error;
} else if ((addr + length) > (sl->sram_base + sl->sram_size)) {
fprintf(stderr, "addr too high\n");
goto on_error;
} else if (addr & 3) {
/* todo */
fprintf(stderr, "unaligned addr\n");
goto on_error;
}
len = length;
if (len & 3) {
len -= len & 3;
}
/* do the copy by 1k blocks */
for (off = 0; off < len; off += 1024) {
size_t size = 1024;
if ((off + size) > len)
size = len - off;
memcpy(sl->q_buf, data + off, size);
/* round size if needed */
if (size & 3)
size += 2;
stlink_write_mem32(sl, addr + (uint32_t) off, size);
}
if (length > len) {
memcpy(sl->q_buf, data + len, length - len);
stlink_write_mem8(sl, addr + (uint32_t) len, length - len);
}
/* success */
error = 0;
stlink_fwrite_finalize(sl, addr);
on_error:
return error;
}
int stlink_fwrite_sram(stlink_t * sl, const char* path, stm32_addr_t addr) {
/* write the file in sram at addr */
int error = -1;
size_t off;
size_t len;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1) {
fprintf(stderr, "map_file() == -1\n");
return -1;
}
printf("file %s ", path);
md5_calculate(&mf);
stlink_checksum(&mf);
/* check addr range is inside the sram */
if (addr < sl->sram_base) {
fprintf(stderr, "addr too low\n");
goto on_error;
} else if ((addr + mf.len) < addr) {
fprintf(stderr, "addr overruns\n");
goto on_error;
} else if ((addr + mf.len) > (sl->sram_base + sl->sram_size)) {
fprintf(stderr, "addr too high\n");
goto on_error;
} else if (addr & 3) {
/* todo */
fprintf(stderr, "unaligned addr\n");
goto on_error;
}
len = mf.len;
if (len & 3) {
len -= len & 3;
}
/* do the copy by 1k blocks */
for (off = 0; off < len; off += 1024) {
size_t size = 1024;
if ((off + size) > len)
size = len - off;
memcpy(sl->q_buf, mf.base + off, size);
/* round size if needed */
if (size & 3)
size += 2;
stlink_write_mem32(sl, addr + (uint32_t) off, size);
}
if (mf.len > len) {
memcpy(sl->q_buf, mf.base + len, mf.len - len);
stlink_write_mem8(sl, addr + (uint32_t) len, mf.len - len);
}
/* check the file ha been written */
if (check_file(sl, &mf, addr) == -1) {
fprintf(stderr, "check_file() == -1\n");
goto on_error;
}
/* success */
error = 0;
stlink_fwrite_finalize(sl, addr);
on_error:
unmap_file(&mf);
return error;
}
typedef bool (*save_block_fn)(void* arg, uint8_t* block, ssize_t len);
static int stlink_read(stlink_t* sl, stm32_addr_t addr, size_t size, save_block_fn fn, void* fn_arg) {
int error = -1;
if (size <1)
size = sl->flash_size;
if (size > sl->flash_size)
size = sl->flash_size;
size_t cmp_size = (sl->flash_pgsz > 0x1800)? 0x1800:sl->flash_pgsz;
for (size_t off = 0; off < size; off += cmp_size) {
size_t aligned_size;
/* adjust last page size */
if ((off + cmp_size) > size)
cmp_size = size - off;
aligned_size = cmp_size;
if (aligned_size & (4 - 1))
aligned_size = (cmp_size + 4) & ~(4 - 1);
stlink_read_mem32(sl, addr + (uint32_t) off, aligned_size);
if (!fn(fn_arg, sl->q_buf, aligned_size)) {
goto on_error;
}
}
/* success */
error = 0;
on_error:
return error;
}
struct stlink_fread_worker_arg {
int fd;
};
static bool stlink_fread_worker(void* arg, uint8_t* block, ssize_t len) {
struct stlink_fread_worker_arg* the_arg = (struct stlink_fread_worker_arg*)arg;
if (write(the_arg->fd, block, len) != len) {
fprintf(stderr, "write() != aligned_size\n");
return false;
}
else {
return true;
}
}
struct stlink_fread_ihex_worker_arg {
FILE* file;
uint32_t addr;
uint32_t lba;
uint8_t buf[16];
uint8_t buf_pos;
};
static bool stlink_fread_ihex_newsegment(struct stlink_fread_ihex_worker_arg* the_arg) {
uint32_t addr = the_arg->addr;
uint8_t sum = 2 + 4 + (uint8_t)((addr & 0xFF000000) >> 24) + (uint8_t)((addr & 0x00FF0000) >> 16);
if (17 != fprintf(the_arg->file, ":02000004%04X%02X\r\n", (addr & 0xFFFF0000) >> 16, (uint8_t)(0x100 - sum)))
return false;
the_arg->lba = (addr & 0xFFFF0000);
return true;
}
static bool stlink_fread_ihex_writeline(struct stlink_fread_ihex_worker_arg* the_arg) {
uint8_t count = the_arg->buf_pos;
if (count == 0) return true;
uint32_t addr = the_arg->addr;
if (the_arg->lba != (addr & 0xFFFF0000)) { // segment changed
if (!stlink_fread_ihex_newsegment(the_arg)) return false;
}
uint8_t sum = count + (uint8_t)((addr & 0x0000FF00) >> 8) + (uint8_t)(addr & 0x000000FF);
if (9 != fprintf(the_arg->file, ":%02X%04X00", count, (addr & 0x0000FFFF)))
return false;
for (uint8_t i = 0; i < count; ++i) {
uint8_t b = the_arg->buf[i];
sum += b;
if (2 != fprintf(the_arg->file, "%02X", b))
return false;
}
if (4 != fprintf(the_arg->file, "%02X\r\n", (uint8_t)(0x100 - sum)))
return false;
the_arg->addr += count;
the_arg->buf_pos = 0;
return true;
}
static bool stlink_fread_ihex_init(struct stlink_fread_ihex_worker_arg* the_arg, int fd, stm32_addr_t addr) {
the_arg->file = fdopen(fd, "w");
the_arg->addr = addr;
the_arg->lba = 0;
the_arg->buf_pos = 0;
return (the_arg->file != NULL);
}
static bool stlink_fread_ihex_worker(void* arg, uint8_t* block, ssize_t len) {
struct stlink_fread_ihex_worker_arg* the_arg = (struct stlink_fread_ihex_worker_arg*)arg;
for (ssize_t i = 0; i < len; ++i) {
if (the_arg->buf_pos == sizeof(the_arg->buf)) { // line is full
if (!stlink_fread_ihex_writeline(the_arg)) return false;
}
the_arg->buf[the_arg->buf_pos++] = block[i];
}
return true;
}
static bool stlink_fread_ihex_finalize(struct stlink_fread_ihex_worker_arg* the_arg) {
if (!stlink_fread_ihex_writeline(the_arg)) return false;
// FIXME do we need the Start Linear Address?
if (13 != fprintf(the_arg->file, ":00000001FF\r\n")) // EoF
return false;
return (0 == fclose(the_arg->file));
}
int stlink_fread(stlink_t* sl, const char* path, bool is_ihex, stm32_addr_t addr, size_t size) {
/* read size bytes from addr to file */
int error;
int fd = open(path, O_RDWR | O_TRUNC | O_CREAT | O_BINARY, 00700);
if (fd == -1) {
fprintf(stderr, "open(%s) == -1\n", path);
return -1;
}
if (is_ihex) {
struct stlink_fread_ihex_worker_arg arg;
if (stlink_fread_ihex_init(&arg, fd, addr)) {
error = stlink_read(sl, addr, size, &stlink_fread_ihex_worker, &arg);
if (!stlink_fread_ihex_finalize(&arg))
error = -1;
}
else {
error = -1;
}
}
else {
struct stlink_fread_worker_arg arg = { fd };
error = stlink_read(sl, addr, size, &stlink_fread_worker, &arg);
}
close(fd);
return error;
}
int write_buffer_to_sram(stlink_t *sl, flash_loader_t* fl, const uint8_t* buf, size_t size) {
/* write the buffer right after the loader */
size_t chunk = size & ~0x3;
size_t rem = size & 0x3;
if (chunk) {
memcpy(sl->q_buf, buf, chunk);
stlink_write_mem32(sl, fl->buf_addr, chunk);
}
if (rem) {
memcpy(sl->q_buf, buf+chunk, rem);
stlink_write_mem8(sl, (fl->buf_addr) + (uint32_t) chunk, rem);
}
return 0;
}
uint32_t calculate_F4_sectornum(uint32_t flashaddr){
uint32_t offset = 0;
flashaddr &= ~STM32_FLASH_BASE; //Page now holding the actual flash address
if (flashaddr >= 0x100000) {
offset = 12;
flashaddr -= 0x100000;
}
if (flashaddr<0x4000) return (offset + 0);
else if (flashaddr<0x8000) return(offset + 1);
else if (flashaddr<0xc000) return(offset + 2);
else if (flashaddr<0x10000) return(offset + 3);
else if (flashaddr<0x20000) return(offset + 4);
else return offset + (flashaddr/0x20000) +4;
}
uint32_t calculate_F7_sectornum(uint32_t flashaddr){
flashaddr &= ~STM32_FLASH_BASE; //Page now holding the actual flash address
if (flashaddr<0x20000) return(flashaddr/0x8000);
else if (flashaddr<0x40000) return(4);
else return(flashaddr/0x40000) +4;
}
// Returns BKER:PNB for the given page address
uint32_t calculate_L4_page(stlink_t *sl, uint32_t flashaddr) {
uint32_t bker = 0;
uint32_t flashopt;
stlink_read_debug32(sl, STM32L4_FLASH_OPTR, &flashopt);
flashaddr -= STM32_FLASH_BASE;
if (sl->chip_id == STLINK_CHIPID_STM32_L4 ||
sl->chip_id == STLINK_CHIPID_STM32_L496X ||
sl->chip_id == STLINK_CHIPID_STM32_L4RX) {
// This chip use dual banked flash
if (flashopt & (uint32_t)(1lu << STM32L4_FLASH_OPTR_DUALBANK)) {
uint32_t banksize = (uint32_t) sl->flash_size / 2;
if (flashaddr >= banksize) {
flashaddr -= banksize;
bker = 0x100;
}
}
}
// For 1MB chips without the dual-bank option set, the page address will
// overflow into the BKER bit, which gives us the correct bank:page value.
return bker | flashaddr/(uint32_t)sl->flash_pgsz;
}
uint32_t stlink_calculate_pagesize(stlink_t *sl, uint32_t flashaddr){
if ((sl->chip_id == STLINK_CHIPID_STM32_F2) ||
(sl->chip_id == STLINK_CHIPID_STM32_F4) ||
(sl->chip_id == STLINK_CHIPID_STM32_F4_DE) ||
(sl->chip_id == STLINK_CHIPID_STM32_F4_LP) ||
(sl->chip_id == STLINK_CHIPID_STM32_F4_HD) ||
(sl->chip_id == STLINK_CHIPID_STM32_F411RE) ||
(sl->chip_id == STLINK_CHIPID_STM32_F446) ||
(sl->chip_id == STLINK_CHIPID_STM32_F4_DSI) ||
(sl->chip_id == STLINK_CHIPID_STM32_F72XXX) ||
(sl->chip_id == STLINK_CHIPID_STM32_F412)) {
uint32_t sector=calculate_F4_sectornum(flashaddr);
if (sector>= 12) {
sector -= 12;
}
if (sector<4) sl->flash_pgsz=0x4000;
else if (sector<5) sl->flash_pgsz=0x10000;
else sl->flash_pgsz=0x20000;
}
else if (sl->chip_id == STLINK_CHIPID_STM32_F7 ||
sl->chip_id == STLINK_CHIPID_STM32_F7XXXX) {
uint32_t sector=calculate_F7_sectornum(flashaddr);
if (sector<4) sl->flash_pgsz=0x8000;
else if (sector<5) sl->flash_pgsz=0x20000;
else sl->flash_pgsz=0x40000;
}
return (uint32_t) sl->flash_pgsz;
}
/**
* Erase a page of flash, assumes sl is fully populated with things like chip/core ids
* @param sl stlink context
* @param flashaddr an address in the flash page to erase
* @return 0 on success -ve on failure
*/
int stlink_erase_flash_page(stlink_t *sl, stm32_addr_t flashaddr)
{
if (sl->flash_type == STLINK_FLASH_TYPE_F4 ||
sl->flash_type == STLINK_FLASH_TYPE_L4) {
/* wait for ongoing op to finish */
wait_flash_busy(sl);
/* unlock if locked */
unlock_flash_if(sl);
/* select the page to erase */
if ((sl->chip_id == STLINK_CHIPID_STM32_L4) ||
(sl->chip_id == STLINK_CHIPID_STM32_L43X) ||
(sl->chip_id == STLINK_CHIPID_STM32_L46X) ||
(sl->chip_id == STLINK_CHIPID_STM32_L496X) ||
(sl->chip_id == STLINK_CHIPID_STM32_L4RX)) {
// calculate the actual bank+page from the address
uint32_t page = calculate_L4_page(sl, flashaddr);
fprintf(stderr, "EraseFlash - Page:0x%x Size:0x%x ", page, stlink_calculate_pagesize(sl, flashaddr));
write_flash_cr_bker_pnb(sl, page);
} else if (sl->chip_id == STLINK_CHIPID_STM32_F7 ||
sl->chip_id == STLINK_CHIPID_STM32_F7XXXX) {
// calculate the actual page from the address
uint32_t sector=calculate_F7_sectornum(flashaddr);
fprintf(stderr, "EraseFlash - Sector:0x%x Size:0x%x ", sector, stlink_calculate_pagesize(sl, flashaddr));
write_flash_cr_snb(sl, sector);
} else {
// calculate the actual page from the address
uint32_t sector=calculate_F4_sectornum(flashaddr);
fprintf(stderr, "EraseFlash - Sector:0x%x Size:0x%x ", sector, stlink_calculate_pagesize(sl, flashaddr));
//the SNB values for flash sectors in the second bank do not directly follow the values for the first bank on 2mb devices...
if (sector >= 12) sector += 4;
write_flash_cr_snb(sl, sector);
}
/* start erase operation */
set_flash_cr_strt(sl);
/* wait for completion */
wait_flash_busy(sl);
/* relock the flash */
//todo: fails to program if this is in
lock_flash(sl);
#if DEBUG_FLASH
fprintf(stdout, "Erase Final CR:0x%x\n", read_flash_cr(sl));
#endif
} else if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
uint32_t val;
uint32_t flash_regs_base;
if (sl->chip_id == STLINK_CHIPID_STM32_L0 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT5 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT2 ||
sl->chip_id == STLINK_CHIPID_STM32_L011) {
flash_regs_base = STM32L0_FLASH_REGS_ADDR;
} else {
flash_regs_base = STM32L_FLASH_REGS_ADDR;
}
/* check if the locks are set */
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
if ((val & (1<<0))||(val & (1<<1))) {
/* disable pecr protection */
stlink_write_debug32(sl, flash_regs_base + FLASH_PEKEYR_OFF, 0x89abcdef);
stlink_write_debug32(sl, flash_regs_base + FLASH_PEKEYR_OFF, 0x02030405);
/* check pecr.pelock is cleared */
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
if (val & (1 << 0)) {
WLOG("pecr.pelock not clear (%#x)\n", val);
return -1;
}
/* unlock program memory */
stlink_write_debug32(sl, flash_regs_base + FLASH_PRGKEYR_OFF, 0x8c9daebf);
stlink_write_debug32(sl, flash_regs_base + FLASH_PRGKEYR_OFF, 0x13141516);
/* check pecr.prglock is cleared */
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
if (val & (1 << 1)) {
WLOG("pecr.prglock not clear (%#x)\n", val);
return -1;
}
}
/* set pecr.{erase,prog} */
val |= (1 << 9) | (1 << 3);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
#if 0 /* fix_to_be_confirmed */
/* wait for sr.busy to be cleared
* MP: Test shows that busy bit is not set here. Perhaps, PM0062 is
* wrong and we do not need to wait here for clearing the busy bit.
* TEXANE: ok, if experience says so and it works for you, we comment
* it. If someone has a problem, please drop an email.
*/
do {
stlink_read_debug32(sl, STM32L_FLASH_SR, &val)
} while ((val & (1 << 0)) != 0);
#endif /* fix_to_be_confirmed */
/* write 0 to the first word of the page to be erased */
stlink_write_debug32(sl, flashaddr, 0);
/* MP: It is better to wait for clearing the busy bit after issuing
page erase command, even though PM0062 recommends to wait before it.
Test shows that a few iterations is performed in the following loop
before busy bit is cleared.*/
do {
stlink_read_debug32(sl, flash_regs_base + FLASH_SR_OFF, &val);
} while ((val & (1 << 0)) != 0);
/* reset lock bits */
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val |= (1 << 0) | (1 << 1) | (1 << 2);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB ||
sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
uint32_t val;
// Wait for any ongoing Flash operation to finish.
wait_flash_busy(sl);
// Unlock Flash if necessary.
unlock_flash_if(sl);
// Set the 'enable Flash erase' bit.
set_flash_cr_per(sl);
// Set the page to erase.
if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
uint32_t flash_page = ((flashaddr - STM32_FLASH_BASE) / (uint32_t)(sl->flash_pgsz));
stlink_read_debug32(sl, STM32WB_FLASH_CR, &val);
// sec 3.10.5 - PNB[7:0] is offset by 3.
val &= ~(0xFF << 3); // Clear previously set page number (if any)
val |= ((flash_page & 0xFF) << 3);
stlink_write_debug32(sl, STM32WB_FLASH_CR, val);
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0) {
uint32_t flash_page = ((flashaddr - STM32_FLASH_BASE) / (uint32_t)(sl->flash_pgsz));
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
// sec 3.7.5 - PNB[5:0] is offset by 3. PER is 0x2.
val &= ~(0x3F << 3);
val |= ((flash_page & 0x3F) << 3) | ( 1 << FLASH_CR_PER );
stlink_write_debug32(sl, STM32Gx_FLASH_CR, val);
} else if (sl->flash_type == STLINK_FLASH_TYPE_G4) {
uint32_t flash_page = ((flashaddr - STM32_FLASH_BASE) / (uint32_t)(sl->flash_pgsz));
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
// sec 3.7.5 - PNB[6:0] is offset by 3. PER is 0x2.
val &= ~(0x7F << 3);
val |= ((flash_page & 0x7F) << 3) | ( 1 << FLASH_CR_PER );
stlink_write_debug32(sl, STM32Gx_FLASH_CR, val);
}
// Set the 'start operation' bit.
set_flash_cr_strt(sl);
// Wait for the 'busy' bit to clear.
wait_flash_busy(sl);
// Clear the 'enable page erase' bit.
clear_flash_cr_per(sl);
// Re-lock the flash.
lock_flash(sl);
} else if ((sl->flash_type == STLINK_FLASH_TYPE_F0) ||
((sl->flash_type == STLINK_FLASH_TYPE_F1_XL) && (flashaddr < FLASH_BANK2_START_ADDR))) {
/* wait for ongoing op to finish */
wait_flash_busy(sl);
/* unlock if locked */
unlock_flash_if(sl);
/* clear the pg bit */
clear_flash_cr_pg(sl);
/* set the page erase bit */
set_flash_cr_per(sl);
/* select the page to erase */
write_flash_ar(sl, flashaddr);
/* start erase operation, reset by hw with bsy bit */
set_flash_cr_strt(sl);
/* wait for completion */
wait_flash_busy(sl);
/* relock the flash */
lock_flash(sl);
} else if ((sl->flash_type == STLINK_FLASH_TYPE_F1_XL) && (flashaddr >= FLASH_BANK2_START_ADDR)) {
/* wait for ongoing op to finish */
wait_flash_busy(sl);
/* unlock if locked */
unlock_flash_if(sl);
/* set the page erase bit */
set_flash_cr2_per(sl);
/* select the page to erase */
write_flash_ar2(sl, flashaddr);
/* start erase operation, reset by hw with bsy bit */
set_flash_cr2_strt(sl);
/* wait for completion */
wait_flash_busy(sl);
/* relock the flash */
lock_flash(sl);
} else {
WLOG("unknown coreid %x, page erase failed\n", sl->core_id);
return -1;
}
/* todo: verify the erased page */
return 0;
}
int stlink_erase_flash_mass(stlink_t *sl) {
/* TODO: User MER bit to mass-erase G0, G4, WB series. */
if (sl->flash_type == STLINK_FLASH_TYPE_L0 ||
sl->flash_type == STLINK_FLASH_TYPE_WB) {
/* erase each page */
int i = 0, num_pages = (int)(sl->flash_size/sl->flash_pgsz);
for (i = 0; i < num_pages; i++) {
/* addr must be an addr inside the page */
stm32_addr_t addr = (stm32_addr_t) sl->flash_base + i * (stm32_addr_t) sl->flash_pgsz;
if (stlink_erase_flash_page(sl, addr) == -1) {
WLOG("Failed to erase_flash_page(%#zx) == -1\n", addr);
return -1;
}
fprintf(stdout,"-> Flash page at %5d/%5d erased\n", i, num_pages);
fflush(stdout);
}
fprintf(stdout, "\n");
} else {
/* wait for ongoing op to finish */
wait_flash_busy(sl);
/* unlock if locked */
unlock_flash_if(sl);
/* set the mass erase bit */
set_flash_cr_mer(sl,1);
/* start erase operation, reset by hw with bsy bit */
set_flash_cr_strt(sl);
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
/* set the mass erase bit in bank 2 */
set_flash_cr2_mer(sl,1);
/* start erase operation in bank 2 */
set_flash_cr2_strt(sl);
}
/* wait for completion */
wait_flash_busy_progress(sl);
check_flash_error(sl);
/* relock the flash */
lock_flash(sl);
/* reset the mass erase bit */
set_flash_cr_mer(sl,0);
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
/* reset the mass erase bit in bank 2 */
set_flash_cr2_mer(sl,0);
}
/* todo: verify the erased memory */
}
return 0;
}
int stlink_fcheck_flash(stlink_t *sl, const char* path, stm32_addr_t addr) {
/* check the contents of path are at addr */
int res;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1)
return -1;
res = check_file(sl, &mf, addr);
unmap_file(&mf);
return res;
}
/**
* Verify addr..addr+len is binary identical to base...base+len
* @param sl stlink context
* @param address stm device address
* @param data host side buffer to check against
* @param length how much
* @return 0 for success, -ve for failure
*/
int stlink_verify_write_flash(stlink_t *sl, stm32_addr_t address, uint8_t *data, unsigned length) {
size_t off;
size_t cmp_size = (sl->flash_pgsz > 0x1800)? 0x1800:sl->flash_pgsz;
ILOG("Starting verification of write complete\n");
for (off = 0; off < length; off += cmp_size) {
size_t aligned_size;
/* adjust last page size */
if ((off + cmp_size) > length)
cmp_size = length - off;
aligned_size = cmp_size;
if (aligned_size & (4 - 1))
aligned_size = (cmp_size + 4) & ~(4 - 1);
stlink_read_mem32(sl, address + (uint32_t) off, aligned_size);
if (memcmp(sl->q_buf, data + off, cmp_size)) {
ELOG("Verification of flash failed at offset: %u\n", (unsigned int)off);
return -1;
}
}
ILOG("Flash written and verified! jolly good!\n");
return 0;
}
int stm32l1_write_half_pages(stlink_t *sl, stm32_addr_t addr, uint8_t* base, uint32_t len, uint32_t pagesize)
{
unsigned int count;
unsigned int num_half_pages = len / pagesize;
uint32_t val;
uint32_t flash_regs_base;
flash_loader_t fl;
if (sl->chip_id == STLINK_CHIPID_STM32_L0 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT5 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT2 ||
sl->chip_id == STLINK_CHIPID_STM32_L011) {
flash_regs_base = STM32L0_FLASH_REGS_ADDR;
} else {
flash_regs_base = STM32L_FLASH_REGS_ADDR;
}
ILOG("Starting Half page flash write for STM32L core id\n");
/* flash loader initialization */
if (stlink_flash_loader_init(sl, &fl) == -1) {
WLOG("stlink_flash_loader_init() == -1\n");
return -1;
}
/* Unlock already done */
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val |= (1 << FLASH_L1_FPRG);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
val |= (1 << FLASH_L1_PROG);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
do {
stlink_read_debug32(sl, flash_regs_base + FLASH_SR_OFF, &val);
} while ((val & (1 << 0)) != 0);
for (count = 0; count < num_half_pages; count ++) {
if (stlink_flash_loader_run(sl, &fl, addr + count * pagesize, base + count * pagesize, pagesize) == -1) {
WLOG("l1_stlink_flash_loader_run(%#zx) failed! == -1\n", addr + count * pagesize);
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val &= ~((1 << FLASH_L1_FPRG) |(1 << FLASH_L1_PROG));
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
return -1;
}
/* wait for sr.busy to be cleared */
if (sl->verbose >= 1) {
/* show progress. writing procedure is slow
and previous errors are misleading */
fprintf(stdout, "\r%3u/%u halfpages written", count + 1, num_half_pages);
fflush(stdout);
}
do {
stlink_read_debug32(sl, flash_regs_base + FLASH_SR_OFF, &val);
} while ((val & (1 << 0)) != 0);
}
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val &= ~(1 << FLASH_L1_PROG);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val &= ~(1 << FLASH_L1_FPRG);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
return 0;
}
int stlink_write_flash(stlink_t *sl, stm32_addr_t addr, uint8_t* base, uint32_t len, uint8_t eraseonly) {
size_t off;
flash_loader_t fl;
ILOG("Attempting to write %d (%#x) bytes to stm32 address: %u (%#x)\n",
len, len, addr, addr);
/* check addr range is inside the flash */
stlink_calculate_pagesize(sl, addr);
if (addr < sl->flash_base) {
ELOG("addr too low %#x < %#x\n", addr, sl->flash_base);
return -1;
} else if ((addr + len) < addr) {
ELOG("addr overruns\n");
return -1;
} else if ((addr + len) > (sl->flash_base + sl->flash_size)) {
ELOG("addr too high\n");
return -1;
} else if (addr & 1) {
ELOG("unaligned addr 0x%x\n", addr);
return -1;
} else if (len & 1) {
WLOG("unaligned len 0x%x -- padding with zero\n", len);
len += 1;
} else if (addr & (sl->flash_pgsz - 1)) {
ELOG("addr not a multiple of pagesize, not supported\n");
return -1;
}
// Make sure we've loaded the context with the chip details
stlink_core_id(sl);
/* erase each page */
int page_count = 0;
for (off = 0; off < len; off += stlink_calculate_pagesize(sl, addr + (uint32_t) off)) {
/* addr must be an addr inside the page */
if (stlink_erase_flash_page(sl, addr + (uint32_t) off) == -1) {
ELOG("Failed to erase_flash_page(%#zx) == -1\n", addr + off);
return -1;
}
fprintf(stdout,"\rFlash page at addr: 0x%08lx erased",
(unsigned long)(addr + off));
fflush(stdout);
page_count++;
}
fprintf(stdout,"\n");
ILOG("Finished erasing %d pages of %d (%#x) bytes\n",
page_count, sl->flash_pgsz, sl->flash_pgsz);
if (eraseonly)
return 0;
if ((sl->flash_type == STLINK_FLASH_TYPE_F4) || (sl->flash_type == STLINK_FLASH_TYPE_L4)) {
/* todo: check write operation */
ILOG("Starting Flash write for F2/F4/L4\n");
/* flash loader initialization */
if (stlink_flash_loader_init(sl, &fl) == -1) {
ELOG("stlink_flash_loader_init() == -1\n");
return -1;
}
/* First unlock the cr */
unlock_flash_if(sl);
/* TODO: Check that Voltage range is 2.7 - 3.6 V */
if ((sl->chip_id != STLINK_CHIPID_STM32_L4) &&
(sl->chip_id != STLINK_CHIPID_STM32_L43X) &&
(sl->chip_id != STLINK_CHIPID_STM32_L46X) &&
(sl->chip_id != STLINK_CHIPID_STM32_L496X) &&
(sl->chip_id != STLINK_CHIPID_STM32_L4RX)) {
if ( sl->version.stlink_v == 1){
printf("STLINK V1 cannot read voltage, defaulting to 32-bit writes on F4 devices\n");
write_flash_cr_psiz(sl, 2);
}
else {
/* set parallelisim to 32 bit*/
int voltage = stlink_target_voltage(sl);
if (voltage == -1) {
printf("Failed to read Target voltage\n");
return voltage;
} else if (voltage > 2700) {
printf("enabling 32-bit flash writes\n");
write_flash_cr_psiz(sl, 2);
} else {
printf("Target voltage (%d mV) too low for 32-bit flash, using 8-bit flash writes\n", voltage);
write_flash_cr_psiz(sl, 0);
}
}
} else {
/* L4 does not have a byte-write mode */
int voltage = stlink_target_voltage(sl);
if (voltage == -1) {
printf("Failed to read Target voltage\n");
return voltage;
} else if (voltage < 1710) {
printf("Target voltage (%d mV) too low for flash writes!\n", voltage);
return -1;
}
}
/* set programming mode */
set_flash_cr_pg(sl);
size_t buf_size = (sl->sram_size > 0x8000) ? 0x8000 : 0x4000;
for (off = 0; off < len;) {
size_t size = len - off > buf_size ? buf_size : len - off;
printf("size: %u\n", (unsigned int)size);
if (stlink_flash_loader_run(sl, &fl, addr + (uint32_t) off, base + off, size) == -1) {
ELOG("stlink_flash_loader_run(%#zx) failed! == -1\n", addr + off);
return -1;
}
off += size;
}
/* Relock flash */
clear_flash_cr_pg(sl);
lock_flash(sl);
} //STM32F4END
else if (sl->flash_type == STLINK_FLASH_TYPE_WB ||
sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
fprintf(stdout, "Writing\r\n");
fflush(stdout);
// Wait for any ongoing operations to finish.
wait_flash_busy(sl);
// Unlock flash if necessary.
unlock_flash_if(sl);
// Set PG 'allow programming' bit.
set_flash_cr_pg(sl);
// Write all words.
off = 0;
fprintf(stdout, "Starting %3u page write\r\n", (unsigned int)(len/sl->flash_pgsz));
fflush(stdout);
for ( ; off < len; off += sizeof(uint32_t)) {
uint32_t data;
if (off > 254)
fprintf(stdout, "\r");
if ((off % sl->flash_pgsz) > (sl->flash_pgsz -5)) {
fprintf(stdout, "\r%3u/%3u pages written",
(unsigned int)(off/sl->flash_pgsz),
(unsigned int)(len/sl->flash_pgsz));
fflush(stdout);
}
write_uint32((unsigned char*) &data, *(uint32_t*) (base + off));
stlink_write_debug32(sl, addr + (uint32_t) off, data);
// Wait for 'busy' bit in FLASH_SR to clear.
wait_flash_busy(sl);
}
// (Flash writes happen 2 words at a time.)
if ((off / sizeof(uint32_t)) % 2 != 0) {
// Write a single word of zeros.
stlink_write_debug32(sl, addr + (uint32_t) off, 0);
// Wait for 'busy' bit in FLASH_SR to clear.
wait_flash_busy(sl);
}
// Reset PG bit.
clear_flash_cr_pg(sl);
// Re-lock flash.
lock_flash(sl);
}
else if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
/* use fast word write. todo: half page. */
uint32_t val;
uint32_t flash_regs_base;
uint32_t pagesize;
if (sl->chip_id == STLINK_CHIPID_STM32_L0 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT5 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT2 ||
sl->chip_id == STLINK_CHIPID_STM32_L011) {
flash_regs_base = STM32L0_FLASH_REGS_ADDR;
pagesize = L0_WRITE_BLOCK_SIZE;
} else {
flash_regs_base = STM32L_FLASH_REGS_ADDR;
pagesize = L1_WRITE_BLOCK_SIZE;
}
/* todo: check write operation */
/* disable pecr protection */
stlink_write_debug32(sl, flash_regs_base + FLASH_PEKEYR_OFF, 0x89abcdef);
stlink_write_debug32(sl, flash_regs_base + FLASH_PEKEYR_OFF, 0x02030405);
/* check pecr.pelock is cleared */
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
if (val & (1 << 0)) {
fprintf(stderr, "pecr.pelock not clear\n");
return -1;
}
/* unlock program memory */
stlink_write_debug32(sl, flash_regs_base + FLASH_PRGKEYR_OFF, 0x8c9daebf);
stlink_write_debug32(sl, flash_regs_base + FLASH_PRGKEYR_OFF, 0x13141516);
/* check pecr.prglock is cleared */
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
if (val & (1 << 1)) {
fprintf(stderr, "pecr.prglock not clear\n");
return -1;
}
off = 0;
if (len > pagesize) {
if (stm32l1_write_half_pages(sl, addr, base, len, pagesize) == -1) {
/* This may happen on a blank device! */
WLOG("\nwrite_half_pages failed == -1\n");
} else {
off = (len / pagesize)*pagesize;
}
}
/* write remainingword in program memory */
for ( ; off < len; off += sizeof(uint32_t)) {
uint32_t data;
if (off > 254)
fprintf(stdout, "\r");
if ((off % sl->flash_pgsz) > (sl->flash_pgsz -5)) {
fprintf(stdout, "\r%3u/%3u pages written",
(unsigned int)(off/sl->flash_pgsz),
(unsigned int)(len/sl->flash_pgsz));
fflush(stdout);
}
write_uint32((unsigned char*) &data, *(uint32_t*) (base + off));
stlink_write_debug32(sl, addr + (uint32_t) off, data);
/* wait for sr.busy to be cleared */
do {
stlink_read_debug32(sl, flash_regs_base + FLASH_SR_OFF, &val);
} while ((val & (1 << 0)) != 0);
/* todo: check redo write operation */
}
fprintf(stdout, "\n");
/* reset lock bits */
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val |= (1 << 0) | (1 << 1) | (1 << 2);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
} else if ((sl->flash_type == STLINK_FLASH_TYPE_F0) || (sl->flash_type == STLINK_FLASH_TYPE_F1_XL)) {
ILOG("Starting Flash write for VL/F0/F3/F1_XL core id\n");
/* flash loader initialization */
if (stlink_flash_loader_init(sl, &fl) == -1) {
ELOG("stlink_flash_loader_init() == -1\n");
return -1;
}
int write_block_count = 0;
for (off = 0; off < len; off += sl->flash_pgsz) {
/* adjust last write size */
size_t size = sl->flash_pgsz;
if ((off + sl->flash_pgsz) > len) size = len - off;
/* unlock and set programming mode */
unlock_flash_if(sl);
if (sl->flash_type != STLINK_FLASH_TYPE_F1_XL) {
set_flash_cr_pg(sl);
}
DLOG("Finished unlocking flash, running loader!\n");
if (stlink_flash_loader_run(sl, &fl, addr + (uint32_t) off, base + off, size) == -1) {
ELOG("stlink_flash_loader_run(%#zx) failed! == -1\n", addr + off);
return -1;
}
lock_flash(sl);
if (sl->verbose >= 1) {
/* show progress. writing procedure is slow
and previous errors are misleading */
fprintf(stdout, "\r%3u/%lu pages written", ++write_block_count, (unsigned long)((len+sl->flash_pgsz-1)/sl->flash_pgsz));
fflush(stdout);
}
}
fprintf(stdout, "\n");
} else {
ELOG("unknown coreid, not sure how to write: %x\n", sl->core_id);
return -1;
}
return stlink_verify_write_flash(sl, addr, base, len);
}
// note: length not checked
static uint8_t stlink_parse_hex(const char* hex) {
uint8_t d[2];
for (int i = 0; i < 2; ++i) {
char c = *(hex + i);
if (c >= '0' && c <= '9') d[i] = c - '0';
else if (c >= 'A' && c <= 'F') d[i] = c - 'A' + 10;
else if (c >= 'a' && c <= 'f') d[i] = c - 'a' + 10;
else return 0; // error
}
return (d[0] << 4) | (d[1]);
}
int stlink_parse_ihex(const char* path, uint8_t erased_pattern, uint8_t * * mem, size_t * size, uint32_t * begin) {
int res = 0;
*begin = UINT32_MAX;
uint8_t* data = NULL;
uint32_t end = 0;
bool eof_found = false;
for (int scan = 0; (res == 0) && (scan < 2); ++scan) { // parse file two times - first to find memory range, second - to fill it
if (scan == 1) {
if (!eof_found) {
ELOG("No EoF recond\n");
res = -1;
break;
}
if (*begin >= end) {
ELOG("No data found in file\n");
res = -1;
break;
}
*size = (end - *begin) + 1;
data = calloc(*size, 1); // use calloc to get NULL if out of memory
if (!data) {
ELOG("Cannot allocate %d bytes\n", *size);
res = -1;
break;
}
memset(data, erased_pattern, *size);
}
FILE* file = fopen(path, "r");
if (!file) {
ELOG("Cannot open file\n");
res = -1;
break;
}
uint32_t lba = 0;
char line[1 + 5*2 + 255*2 + 2];
while (fgets(line, sizeof(line), file)) {
if (line[0] == '\n' || line[0] == '\r') continue; // skip empty lines
if (line[0] != ':') { // no marker - wrong file format
ELOG("Wrong file format - no marker\n");
res = -1;
break;
}
size_t l = strlen(line);
while (l > 0 && (line[l-1] == '\n' || line[l-1] == '\r')) --l; // trim EoL
if ((l < 11) || (l == (sizeof(line)-1))) { // line too short or long - wrong file format
ELOG("Wrong file format - wrong line length\n");
res = -1;
break;
}
// check sum
uint8_t chksum = 0;
for (size_t i = 1; i < l; i += 2) {
chksum += stlink_parse_hex(line + i);
}
if (chksum != 0) {
ELOG("Wrong file format - checksum mismatch\n");
res = -1;
break;
}
uint8_t reclen = stlink_parse_hex(line + 1);
if (((uint32_t)reclen + 5)*2 + 1 != l) {
ELOG("Wrong file format - record length mismatch\n");
res = -1;
break;
}
uint16_t offset = ((uint16_t)stlink_parse_hex(line + 3) << 8) | ((uint16_t)stlink_parse_hex(line + 5));
uint8_t rectype = stlink_parse_hex(line + 7);
switch(rectype) {
case 0: // data
if (scan == 0) {
uint32_t b = lba + offset;
uint32_t e = b + reclen - 1;
if (b < *begin) *begin = b;
if (e > end) end = e;
}
else {
for (uint8_t i = 0; i < reclen; ++i) {
uint8_t b = stlink_parse_hex(line + 9 + i*2);
uint32_t addr = lba + offset + i;
if (addr >= *begin && addr <= end) {
data[addr - *begin] = b;
}
}
}
break;
case 1: // EoF
eof_found = true;
break;
case 2: // Extended Segment Address, unexpected
res = -1;
break;
case 3: // Start Segment Address, unexpected
res = -1;
break;
case 4: // Extended Linear Address
if (reclen == 2) {
lba = ((uint32_t)stlink_parse_hex(line + 9) << 24) | ((uint32_t)stlink_parse_hex(line + 11) << 16);
}
else {
ELOG("Wrong file format - wrong LBA length\n");
res = -1;
}
break;
case 5: // Start Linear Address - expected, but ignore
break;
default:
ELOG("Wrong file format - unexpected record type %d\n", rectype);
res = -1;
}
if (res != 0) break;
}
fclose(file);
}
if (res == 0) {
*mem = data;
}
else {
free(data);
}
return res;
}
uint8_t stlink_get_erased_pattern(stlink_t *sl) {
if (sl->flash_type == STLINK_FLASH_TYPE_L0)
return 0x00;
else
return 0xff;
}
int stlink_mwrite_flash(stlink_t *sl, uint8_t* data, uint32_t length, stm32_addr_t addr) {
/* write the block in flash at addr */
int err;
unsigned int num_empty, idx;
uint8_t erased_pattern = stlink_get_erased_pattern(sl);
/*
* This optimization may cause unexpected garbage data remaining
* Turned off by default
*/
if (sl->opt) {
idx = (unsigned int)length;
for (num_empty = 0; num_empty != length; ++num_empty) {
if (data[--idx] != erased_pattern) {
break;
}
}
/* Round down to words */
num_empty -= (num_empty & 3);
if (num_empty != 0) {
ILOG("Ignoring %d bytes of 0x%02x at end of file\n", num_empty, erased_pattern);
}
} else {
num_empty = 0;
}
/*
* TODO: investigate:
* a kind of weird behaviour here:
* if the file is identified to be all-empty and four-bytes aligned,
* still flash the whole file even if ignoring message is printed
*/
err = stlink_write_flash(sl, addr, data, (num_empty == length) ? (uint32_t) length : (uint32_t) length - num_empty, num_empty == length);
stlink_fwrite_finalize(sl, addr);
return err;
}
/**
* Write the given binary file into flash at address "addr"
* @param sl
* @param path readable file path, should be binary image
* @param addr where to start writing
* @return 0 on success, -ve on failure.
*/
int stlink_fwrite_flash(stlink_t *sl, const char* path, stm32_addr_t addr) {
/* write the file in flash at addr */
int err;
unsigned int num_empty, idx;
uint8_t erased_pattern = stlink_get_erased_pattern(sl);
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1) {
ELOG("map_file() == -1\n");
return -1;
}
printf("file %s ", path);
md5_calculate(&mf);
stlink_checksum(&mf);
if (sl->opt) {
idx = (unsigned int) mf.len;
for (num_empty = 0; num_empty != mf.len; ++num_empty) {
if (mf.base[--idx] != erased_pattern) {
break;
}
}
/* Round down to words */
num_empty -= (num_empty & 3);
if (num_empty != 0) {
ILOG("Ignoring %d bytes of 0x%02x at end of file\n", num_empty, erased_pattern);
}
} else {
num_empty = 0;
}
/*
* TODO: investigate:
* a kind of weird behaviour here:
* if the file is identified to be all-empty and four-bytes aligned,
* still flash the whole file even if ignoring message is printed
*/
err = stlink_write_flash(sl, addr, mf.base, (num_empty == mf.len) ? (uint32_t) mf.len : (uint32_t) mf.len - num_empty, num_empty == mf.len);
stlink_fwrite_finalize(sl, addr);
unmap_file(&mf);
return err;
}
/**
* Write option bytes
* @param sl
* @param addr of the memory mapped option bytes
* @param base option bytes to write
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_g0x(stlink_t *sl, uint8_t* base, uint32_t len) {
uint32_t val;
if (len != 4) {
ELOG("Wrong length for writing option bytes, must be 4 is %d\n", len);
return -1;
}
// Make sure we've loaded the context with the chip details
stlink_core_id(sl);
/* Check if chip is supported and for correct address */
if (sl->chip_id != STLINK_CHIPID_STM32_G0_CAT1 &&
sl->chip_id != STLINK_CHIPID_STM32_G0_CAT2) {
ELOG("Option bytes writing is currently only supported for the STM32G0\n");
return -1;
}
/* Unlock flash if necessary (ref manuel page 52) */
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
if ((val & (1u << STM32Gx_FLASH_CR_LOCK))) {
/* disable flash write protection. */
stlink_write_debug32(sl, STM32Gx_FLASH_KEYR, 0x45670123);
stlink_write_debug32(sl, STM32Gx_FLASH_KEYR, 0xCDEF89AB);
// check that the lock is no longer set.
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
if ((val & (1u << STM32Gx_FLASH_CR_LOCK))) {
ELOG("Flash unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
/* Unlock option bytes if necessary (ref manuel page 61) */
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
if ((val & (1 << STM32Gx_FLASH_CR_OPTLOCK))) {
/* disable option byte write protection. */
stlink_write_debug32(sl, STM32Gx_FLASH_OPTKEYR, 0x08192A3B);
stlink_write_debug32(sl, STM32Gx_FLASH_OPTKEYR, 0x4C5D6E7F);
/* check that the lock is no longer set. */
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
if ((val & (1 << STM32Gx_FLASH_CR_OPTLOCK))) {
ELOG("Options bytes unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
/* Write options bytes */
uint32_t data;
write_uint32((unsigned char*) &data, *(uint32_t*) (base));
WLOG("Writing option bytes 0x%04x\n", data);
//stlink_write_debug32(sl, addr, data);
stlink_write_debug32(sl, STM32Gx_FLASH_OPTR, data);
/* Set Options Start bit */
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
val |= (1 << STM32Gx_FLASH_CR_OPTSTRT);
stlink_write_debug32(sl, STM32Gx_FLASH_CR, val);
/* Wait for 'busy' bit in FLASH_SR to clear. */
do {
stlink_read_debug32(sl, STM32Gx_FLASH_SR, &val);
} while ((val & (1 << 16)) != 0);
/* apply options bytes immediate */
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
val |= (1 << STM32Gx_FLASH_CR_OBL_LAUNCH);
stlink_write_debug32(sl, STM32Gx_FLASH_CR, val);
/* Re-lock option bytes */
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
val |= (1u << STM32Gx_FLASH_CR_OPTLOCK);
stlink_write_debug32(sl, STM32Gx_FLASH_CR, val);
/* Re-lock flash. */
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
val |= (1u << STM32Gx_FLASH_CR_LOCK);
stlink_write_debug32(sl, STM32Gx_FLASH_CR, val);
return 0;
}
/**
* Write option bytes
* @param sl
* @param addr of the memory mapped option bytes
* @param base option bytes to write
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_l0_cat2(stlink_t *sl, uint8_t* base, uint32_t len) {
uint32_t val;
if (len != 4) {
ELOG("Wrong length for writting option bytes, must be 4 is %d\n", len);
return -1;
}
stlink_read_debug32(sl, STM32L0_FLASH_REGS_ADDR + FLASH_PECR_OFF, &val);
if (val & STM32L0_FLASH_PELOCK_BIT) {
WLOG("Unlocking flash\n");
//Unlock data EEPROM and the FLASH_PECR register (reference page 74)
stlink_write_debug32(sl, STM32L0_FLASH_REGS_ADDR + FLASH_PEKEYR_OFF, 0x89ABCDEF);
stlink_write_debug32(sl, STM32L0_FLASH_REGS_ADDR + FLASH_PEKEYR_OFF, 0x02030405);
stlink_read_debug32(sl, STM32L0_FLASH_REGS_ADDR + FLASH_PECR_OFF, &val);
if (val & STM32L0_FLASH_PELOCK_BIT) {
ELOG("Flash unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
stlink_read_debug32(sl, STM32L0_FLASH_REGS_ADDR + FLASH_PECR_OFF, &val);
if ((val & (STM32L0_FLASH_OPTLOCK_BIT))) {
WLOG("Unlocking options\n");
//Unlock the Option bytes area (reference page 76)
stlink_write_debug32(sl, STM32L0_FLASH_REGS_ADDR + FLASH_OPTKEYR_OFF, 0xFBEAD9C8);
stlink_write_debug32(sl, STM32L0_FLASH_REGS_ADDR + FLASH_OPTKEYR_OFF, 0x24252627);
stlink_read_debug32(sl, STM32L0_FLASH_REGS_ADDR + FLASH_PECR_OFF, &val);
if (val & STM32L0_FLASH_OPTLOCK_BIT) {
ELOG("Options unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
/* Write options bytes */
uint32_t data;
write_uint32((unsigned char*) &data, *(uint32_t*) (base));
WLOG("Writing option bytes 0x%04x\n", data);
stlink_write_debug32(sl, STM32_L0_CAT2_OPTION_BYTES_BASE, data);
/* Reload options */
stlink_read_debug32(sl, STM32L0_FLASH_REGS_ADDR + FLASH_PECR_OFF, &val);
val |= (STM32L0_FLASH_OBL_LAUNCH_BIT);
stlink_write_debug32(sl, STM32L0_FLASH_REGS_ADDR + FLASH_PECR_OFF, val);
return 0;
}
/**
* Write option bytes
* @param sl
* @param addr of the memory mapped option bytes
* @param base option bytes to write
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_l1(stlink_t *sl, uint8_t* base, stm32_addr_t addr, uint32_t len) {
uint32_t val;
uint32_t data;
if (len != 4 && len != 8) {
ELOG("Wrong length for writting option bytes, must be 4 or 8 is %d\n", len);
return -1;
}
stlink_read_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_PECR_OFF, &val);
if (val & STM32L1_FLASH_PELOCK_BIT) {
WLOG("Unlocking flash\n");
//Unlock data EEPROM and the FLASH_PECR register (reference page 74)
stlink_write_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_PEKEYR_OFF, 0x89ABCDEF);
stlink_write_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_PEKEYR_OFF, 0x02030405);
stlink_read_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_PECR_OFF, &val);
if (val & STM32L1_FLASH_PELOCK_BIT) {
ELOG("Flash unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
stlink_read_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_PECR_OFF, &val);
if ((val & (STM32L1_FLASH_OPTLOCK_BIT))) {
WLOG("Unlocking options\n");
//Unlock the Option bytes area (reference page 76)
stlink_write_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_OPTKEYR_OFF, 0xFBEAD9C8);
stlink_write_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_OPTKEYR_OFF, 0x24252627);
stlink_read_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_PECR_OFF, &val);
if (val & STM32L1_FLASH_OPTLOCK_BIT) {
ELOG("Options unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
/* Clear errors */
stlink_write_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_SR_OFF, 0x00003F00);
stlink_read_debug32(sl, addr, &val);
WLOG("Option bytes 0x%08x is 0x%08x\n",addr,val);
/* Write options bytes */
write_uint32((unsigned char*) &data, *(uint32_t*) (base));
if ( data != val ) {
WLOG("Writing option bytes 0x%04x\n", data);
stlink_write_debug32(sl, addr, data);
stlink_read_debug32(sl, addr, &val);
WLOG("Option bytes is 0x%08x\n",val);
}
if (len==8) {
/* Clear errors */
stlink_write_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_SR_OFF, 0x00003F00);
stlink_read_debug32(sl, addr+4, &val);
WLOG("2nd option bytes 0x%08x is 0x%08x\n",addr,val);
/* Write options bytes */
write_uint32((unsigned char*) &data, *(uint32_t*) (base+4));
if ( data != val ) {
WLOG("Writing 2nd option bytes 0x%04x\n", data);
stlink_write_debug32(sl, addr+4, data);
stlink_read_debug32(sl, addr+4, &val);
WLOG("2nd option bytes is 0x%08x\n",val);
}
}
/* Reload options */
stlink_read_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_PECR_OFF, &val);
val |= (STM32L1_FLASH_OBL_LAUNCH_BIT);
stlink_write_debug32(sl, STM32L1_FLASH_REGS_ADDR + FLASH_PECR_OFF, val);
return 0;
}
/**
* Write option bytes
* @param sl
* @param addr of the memory mapped option bytes
* @param base option bytes to write
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_l496x(stlink_t *sl, uint8_t* base, uint32_t len) {
uint32_t val;
if (len != 4) {
ELOG("Wrong length for writting option bytes, must be 4 is %d\n", len);
return -1;
}
/* Unlock flash if necessary */
stlink_read_debug32(sl, STM32L4_FLASH_CR, &val);
if ((val & (1u << STM32L4_FLASH_CR_LOCK))) {
/* disable flash write protection. */
stlink_write_debug32(sl, STM32L4_FLASH_KEYR, 0x45670123);
stlink_write_debug32(sl, STM32L4_FLASH_KEYR, 0xCDEF89AB);
// check that the lock is no longer set.
stlink_read_debug32(sl, STM32L4_FLASH_CR, &val);
if ((val & (1u << STM32L4_FLASH_CR_LOCK))) {
ELOG("Flash unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
/* Unlock option bytes if necessary (ref manuel page 61) */
stlink_read_debug32(sl, STM32L4_FLASH_CR, &val);
if ((val & (1 << STM32L4_FLASH_CR_OPTLOCK))) {
/* disable option byte write protection. */
stlink_write_debug32(sl, STM32L4_FLASH_OPTKEYR, 0x08192A3B);
stlink_write_debug32(sl, STM32L4_FLASH_OPTKEYR, 0x4C5D6E7F);
/* check that the lock is no longer set. */
stlink_read_debug32(sl, STM32L4_FLASH_CR, &val);
if ((val & (1 << STM32L4_FLASH_CR_OPTLOCK))) {
ELOG("Options bytes unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
/* Write options bytes */
uint32_t data;
write_uint32((unsigned char*) &data, *(uint32_t*) (base));
WLOG("Writing option bytes 0x%04x\n", data);
stlink_write_debug32(sl, STM32L4_FLASH_OPTR, data);
/* Set Options Start bit */
stlink_read_debug32(sl, STM32L4_FLASH_CR, &val);
val |= (1 << STM32L4_FLASH_CR_OPTSTRT);
stlink_write_debug32(sl, STM32L4_FLASH_CR, val);
/* Wait for 'busy' bit in FLASH_SR to clear. */
do {
stlink_read_debug32(sl, STM32L4_FLASH_SR, &val);
} while ((val & (1 << 16)) != 0);
/* apply options bytes immediate */
stlink_read_debug32(sl, STM32L4_FLASH_CR, &val);
val |= (1 << STM32L4_FLASH_CR_OBL_LAUNCH);
stlink_write_debug32(sl, STM32L4_FLASH_CR, val);
/* Re-lock option bytes */
stlink_read_debug32(sl, STM32L4_FLASH_CR, &val);
val |= (1u << STM32L4_FLASH_CR_OPTLOCK);
stlink_write_debug32(sl, STM32L4_FLASH_CR, val);
/* Re-lock flash. */
stlink_read_debug32(sl, STM32L4_FLASH_CR, &val);
val |= (1u << STM32L4_FLASH_CR_LOCK);
stlink_write_debug32(sl, STM32L4_FLASH_CR, val);
return 0;
}
/**
* Write option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_f2(stlink_t *sl, uint32_t option_byte) {
uint32_t val;
stlink_read_debug32(sl, FLASH_F2_OPT_CR, &val);
if (val & FLASH_F2_OPT_LOCK_BIT) {
WLOG("Unlocking option flash\n");
//Unlock the FLASH_OPT_CR register (FLASH Programming manual page 15)
//https://www.st.com/resource/en/programming_manual/cd00233952.pdf
stlink_write_debug32(sl, FLASH_F2_OPT_KEYR, 0x08192A3B);
stlink_write_debug32(sl, FLASH_F2_OPT_KEYR, 0x4C5D6E7F);
stlink_read_debug32(sl, FLASH_F2_OPT_CR, &val);
if (val & FLASH_F2_OPT_LOCK_BIT) {
ELOG("Option flash unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
stlink_read_debug32(sl, FLASH_F2_OPT_CR, &val);
WLOG("option bytes CR = %x\n",val);
stlink_write_debug32(sl, FLASH_F2_OPT_CR, option_byte & 0x0FFFFFFC);
stlink_write_debug32(sl, FLASH_F2_OPT_CR, (option_byte & 0x0FFFFFFC)|0x00000002);
stlink_read_debug32(sl, FLASH_F2_SR, &val);
WLOG("wait BSY flag to be 0\n");
while (val & 0x00010000){
stlink_read_debug32(sl, FLASH_F2_SR, &val);
}
WLOG("BSY flag is 0\n");
stlink_read_debug32(sl, FLASH_F2_OPT_CR, &val);
WLOG("option bytes CR = %x\n",val);
WLOG("Option flash re-lock\n");
stlink_write_debug32(sl, FLASH_F2_OPT_CR, val | 0x00000001);
DLOG("STM32 F2 option bytes are written\n");
return 0;
}
/**
* Write option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_f4(stlink_t *sl, uint32_t option_byte) {
uint32_t val;
stlink_read_debug32(sl, FLASH_F4_OPT_CR, &val);
if (val & FLASH_F4_OPT_LOCK_BIT) {
WLOG("Unlocking option flash\n");
//Unlock the FLASH_OPT_CR register (FLASH Programming manual page 15)
//https://www.st.com/resource/en/programming_manual/cd00233952.pdf
stlink_write_debug32(sl, FLASH_F4_OPT_KEYR, 0x08192A3B);
stlink_write_debug32(sl, FLASH_F4_OPT_KEYR, 0x4C5D6E7F);
stlink_read_debug32(sl, FLASH_F4_OPT_CR, &val);
if (val & FLASH_F4_OPT_LOCK_BIT) {
ELOG("Option flash unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
stlink_read_debug32(sl, FLASH_F4_OPT_CR, &val);
WLOG("option bytes CR = %x\n",val);
stlink_write_debug32(sl, FLASH_F4_OPT_CR, option_byte & 0x0FFFFFFC);
stlink_write_debug32(sl, FLASH_F4_OPT_CR, (option_byte & 0x0FFFFFFC)|0x00000002);
stlink_read_debug32(sl, FLASH_F4_SR, &val);
WLOG("wait BSY flag to be 0\n");
while (val & 0x00010000){
stlink_read_debug32(sl, FLASH_F4_SR, &val);
}
WLOG("BSY flag is 0\n");
stlink_read_debug32(sl, FLASH_F4_OPT_CR, &val);
WLOG("option bytes CR = %x\n",val);
WLOG("Option flash re-lock\n");
stlink_write_debug32(sl, FLASH_F4_OPT_CR, val | 0x00000001);
DLOG("STM32 F4 option bytes are written\n");
return 0;
}
/**
* Read option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_bytes_f2(stlink_t *sl, uint32_t* option_byte) {
uint32_t val;
stlink_read_debug32(sl, FLASH_F2_OPT_CR, &val);
if (val & FLASH_F2_OPT_LOCK_BIT) {
WLOG("Unlocking option flash\n");
//Unlock the FLASH_OPT_CR register (FLASH Programming manual page 15)
//https://www.st.com/resource/en/programming_manual/cd00233952.pdf
stlink_write_debug32(sl, FLASH_F2_OPT_KEYR, 0x08192A3B);
stlink_write_debug32(sl, FLASH_F2_OPT_KEYR, 0x4C5D6E7F);
stlink_read_debug32(sl, FLASH_F2_OPT_CR, &val);
if (val & FLASH_F2_OPT_LOCK_BIT) {
ELOG("Option flash unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
stlink_read_debug32(sl, FLASH_F2_OPT_CR, option_byte);
WLOG("option bytes CR = %x\n",option_byte);
WLOG("Option flash re-lock\n");
stlink_write_debug32(sl, FLASH_F2_OPT_CR, val | 0x00000001);
return 0;
}
/**
* Read option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_bytes_f4(stlink_t *sl, uint32_t* option_byte) {
uint32_t val;
stlink_read_debug32(sl, FLASH_F4_OPT_CR, &val);
if (val & FLASH_F4_OPT_LOCK_BIT) {
WLOG("Unlocking option flash\n");
//Unlock the FLASH_OPT_CR register (FLASH Programming manual page 15)
//https://www.st.com/resource/en/programming_manual/cd00233952.pdf
stlink_write_debug32(sl, FLASH_F4_OPT_KEYR, 0x08192A3B);
stlink_write_debug32(sl, FLASH_F4_OPT_KEYR, 0x4C5D6E7F);
stlink_read_debug32(sl, FLASH_F4_OPT_CR, &val);
if (val & FLASH_F4_OPT_LOCK_BIT) {
ELOG("Option flash unlock failed! System reset required to be able to unlock it again!\n");
return -1;
}
}
stlink_read_debug32(sl, FLASH_F4_OPT_CR, option_byte);
WLOG("option bytes CR = %x\n",option_byte);
WLOG("Option flash re-lock\n");
stlink_write_debug32(sl, FLASH_F4_OPT_CR, val | 0x00000001);
return 0;
}
/**
* Write option bytes
* @param sl
* @param addr of the memory mapped option bytes
* @param base option bytes to write
* @return 0 on success, -ve on failure.
*/
int stlink_write_option_bytes(stlink_t *sl, stm32_addr_t addr, uint8_t* base, uint32_t len) {
// Make sure we've loaded the context with the chip details
stlink_core_id(sl);
WLOG("Option bytes write chip_id 0x%08x addr 0x%08x\n",sl->chip_id,addr);
/* Check if chip is supported and for correct address */
if (((sl->chip_id == STLINK_CHIPID_STM32_G0_CAT1) ||
(sl->chip_id == STLINK_CHIPID_STM32_G0_CAT2)) && (addr == STM32_G0_OPTION_BYTES_BASE)) {
return stlink_write_option_bytes_g0x(sl, base, len);
}
else if ((sl->chip_id == STLINK_CHIPID_STM32_L0_CAT2) && (addr == STM32_L0_CAT2_OPTION_BYTES_BASE)) {
return stlink_write_option_bytes_l0_cat2(sl, base, len);
}
else if ((sl->chip_id == STLINK_CHIPID_STM32_L496X) && (addr == STM32_L496X_OPTION_BYTES_BASE)) {
return stlink_write_option_bytes_l496x(sl, base, len);
}
else if (((sl->chip_id == STLINK_CHIPID_STM32_L152_RE) || (sl->chip_id == STLINK_CHIPID_STM32_L1_HIGH) ) &&
((addr == STM32_L1_OPTION_BYTES_BASE) || (addr == STM32_L1_OPTION_BYTES_BASE+4))) {
return stlink_write_option_bytes_l1(sl, base, addr, len);
}
else {
ELOG("Option bytes writing is currently only supported for the STM32F2, STM32G0, STM32L496x/L4A6x, STM32L1 and STM32L0\n");
return -1;
}
}
/**
* Write the given binary file with option bytes
* @param sl
* @param path readable file path, should be binary image
* @param addr of the memory mapped option bytes
* @return 0 on success, -ve on failure.
*/
int stlink_fwrite_option_bytes(stlink_t *sl, const char* path, stm32_addr_t addr) {
/* write the file in flash at addr */
int err;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1) {
ELOG("map_file() == -1\n");
return -1;
}
printf("file %s ", path);
md5_calculate(&mf);
stlink_checksum(&mf);
err = stlink_write_option_bytes(sl, addr, mf.base, (uint32_t) mf.len);
stlink_fwrite_finalize(sl, addr);
unmap_file(&mf);
return err;
}
/**
* Write the given 32-bit value with option byte
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
int stlink_fwrite_option_bytes_32bit(stlink_t *sl, uint32_t val) {
if (sl->chip_id == STLINK_CHIPID_STM32_F2){
return stlink_write_option_bytes_f2(sl, val);
} else if (sl->chip_id == STLINK_CHIPID_STM32_F446){
return stlink_write_option_bytes_f4(sl, val);
}
else
{
ELOG("Option bytes writing is currently only supported for the STM32F2, STM32F4, STM32G0 and STM32L0\n");
return -1;
}
}