solo1/targets/stm32l432/bootloader/bootloader.c

238 wiersze
6.5 KiB
C

// Copyright 2019 SoloKeys Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#include <stdint.h>
#include <stdlib.h>
#include APP_CONFIG
#include "uECC.h"
#include "u2f.h"
#include "device.h"
#include "flash.h"
#include "crypto.h"
#include "led.h"
#include "memory_layout.h"
#include "ctap_errors.h"
#include "log.h"
extern uint8_t REBOOT_FLAG;
typedef enum
{
BootWrite = 0x40,
BootDone = 0x41,
BootCheck = 0x42,
BootErase = 0x43,
BootVersion = 0x44,
BootReboot = 0x45,
BootBootloader = 0x46,
BootDisable = 0x47,
} BootOperation;
typedef struct {
uint8_t op;
uint8_t addr[3];
uint8_t tag[4];
uint8_t lenh;
uint8_t lenl;
uint8_t payload[255 - 10];
} __attribute__((packed)) BootloaderReq;
static void erase_application()
{
int page;
for(page = APPLICATION_START_PAGE; page < APPLICATION_END_PAGE; page++)
{
flash_erase_page(page);
}
}
#define LAST_ADDR (APPLICATION_END_ADDR-2048 + 8)
#define LAST_PAGE (APPLICATION_END_PAGE-1)
static void disable_bootloader()
{
uint8_t page[PAGE_SIZE];
memmove(page, (uint8_t*)LAST_ADDR, PAGE_SIZE);
memset(page+PAGE_SIZE -4, 0, 4);
flash_erase_page(LAST_PAGE);
flash_write(LAST_ADDR, page, PAGE_SIZE);
}
static void authorize_application()
{
// uint32_t zero = 0;
// uint32_t * ptr;
// ptr = (uint32_t *)AUTH_WORD_ADDR;
// flash_write((uint32_t)ptr, (uint8_t *)&zero, 4);
uint8_t page[PAGE_SIZE];
if (is_authorized_to_boot())
return;
memmove(page, (uint8_t*)LAST_ADDR, PAGE_SIZE);
memset(page+PAGE_SIZE -8, 0, 4);
flash_erase_page(LAST_PAGE);
flash_write(LAST_ADDR, page, PAGE_SIZE);
}
int is_authorized_to_boot()
{
uint32_t * auth = (uint32_t *)AUTH_WORD_ADDR;
return *auth == 0;
}
int is_bootloader_disabled()
{
uint32_t * auth = (uint32_t *)(AUTH_WORD_ADDR+4);
return *auth == 0;
}
int bootloader_bridge(int klen, uint8_t * keyh)
{
static int has_erased = 0;
int i;
BootloaderReq * req = (BootloaderReq * )keyh;
uint8_t hash[32];
uint8_t version = 1;
uint16_t len = (req->lenh << 8) | (req->lenl);
if (len > klen-10)
{
printf1(TAG_BOOT,"Invalid length %d / %d\r\n", len, klen-9);
return CTAP1_ERR_INVALID_LENGTH;
}
uint8_t * pubkey = (uint8_t*)"\xd2\xa4\x2f\x8f\xb2\x31\x1c\xc1\xf7\x0c\x7e\x64\x32\xfb\xbb\xb4\xa3\xdd\x32\x20\x0f\x1b\x88\x9c\xda\x62\xc2\x83\x25\x93\xdd\xb8\x75\x9d\xf9\x86\xee\x03\x6c\xce\x34\x47\x71\x36\xb3\xb2\xad\x6d\x12\xb7\xbe\x49\x3e\x20\xa4\x61\xac\xc7\x71\xc7\x1f\xa8\x14\xf2";
const struct uECC_Curve_t * curve = NULL;
uint32_t addr = ((*((uint32_t*)req->addr)) & 0xffffff) | 0x8000000;
uint32_t * ptr = (uint32_t *)addr;
switch(req->op){
case BootWrite:
printf1(TAG_BOOT, "BootWrite: %08lx\r\n",(uint32_t)ptr);
if ((uint32_t)ptr < APPLICATION_START_ADDR || (uint32_t)ptr >= APPLICATION_END_ADDR
|| ((uint32_t)ptr+len) > APPLICATION_END_ADDR)
{
printf1(TAG_BOOT,"Bound exceeded [%08lx, %08lx]\r\n",APPLICATION_START_ADDR,APPLICATION_END_ADDR);
return CTAP2_ERR_NOT_ALLOWED;
}
if (!has_erased || is_authorized_to_boot())
{
erase_application();
has_erased = 1;
}
if (is_authorized_to_boot())
{
printf2(TAG_ERR, "Error, boot check bypassed\n");
exit(1);
}
flash_write((uint32_t)ptr,req->payload, len);
break;
case BootDone:
printf1(TAG_BOOT, "BootDone: ");
#ifndef SOLO_HACKER
if (len != 64)
{
printf1(TAG_BOOT,"Invalid length for signature\r\n");
return CTAP1_ERR_INVALID_LENGTH;
}
dump_hex1(TAG_BOOT, req->payload, 32);
ptr = (uint32_t *)APPLICATION_START_ADDR;
crypto_sha256_init();
crypto_sha256_update((uint8_t*)ptr, APPLICATION_END_ADDR-APPLICATION_START_ADDR);
crypto_sha256_final(hash);
curve = uECC_secp256r1();
if (! uECC_verify(pubkey,
hash,
32,
req->payload,
curve))
{
return CTAP2_ERR_OPERATION_DENIED;
}
#endif
authorize_application();
REBOOT_FLAG = 1;
break;
case BootCheck:
return 0;
break;
case BootErase:
printf1(TAG_BOOT, "BootErase.\r\n");
erase_application();
return 0;
break;
case BootVersion:
has_erased = 0;
printf1(TAG_BOOT, "BootVersion.\r\n");
u2f_response_writeback(&version,1);
return 0;
break;
case BootReboot:
printf1(TAG_BOOT, "BootReboot.\r\n");
REBOOT_FLAG = 1;
break;
case BootDisable:
printf1(TAG_BOOT, "BootDisable %08lx.\r\n", *(uint32_t *)(AUTH_WORD_ADDR+4));
if (req->payload[0] == 0xcd && req->payload[1] == 0xde
&& req->payload[2] == 0xba && req->payload[3] == 0xaa)
{
disable_bootloader();
version = 0;
u2f_response_writeback(&version,1);
}
else
{
version = CTAP2_ERR_OPERATION_DENIED;
u2f_response_writeback(&version,1);
}
break;
#ifdef SOLO_HACKER
case BootBootloader:
printf1(TAG_BOOT, "BootBootloader.\r\n");
flash_option_bytes_init(1);
boot_st_bootloader();
break;
#endif
default:
return CTAP1_ERR_INVALID_COMMAND;
}
return 0;
}
void bootloader_heartbeat()
{
static int state = 0;
static uint32_t val = (LED_MAX_SCALER - LED_MIN_SCALER)/2;
uint8_t r = (LED_INIT_VALUE >> 16) & 0xff;
uint8_t g = (LED_INIT_VALUE >> 8) & 0xff;
uint8_t b = (LED_INIT_VALUE >> 0) & 0xff;
if (state)
{
val--;
}
else
{
val++;
}
if (val > LED_MAX_SCALER || val < LED_MIN_SCALER)
{
state = !state;
}
led_rgb(((val * g)<<8) | ((val*r) << 16) | (val*b));
}