solo1/targets/stm32l432/src/device.c

900 wiersze
21 KiB
C

// Copyright 2019 SoloKeys Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#include "device.h"
#include "usbd_def.h"
#include "stm32l4xx.h"
#include "stm32l4xx_ll_gpio.h"
#include "stm32l4xx_ll_tim.h"
#include "stm32l4xx_ll_usart.h"
#include "stm32l4xx_ll_pwr.h"
#include "usbd_hid.h"
#include APP_CONFIG
#include "flash.h"
#include "rng.h"
#include "led.h"
#include "device.h"
#include "util.h"
#include "fifo.h"
#include "log.h"
#include "ctaphid.h"
#include "ctap.h"
#include "crypto.h"
#include "memory_layout.h"
#include "stm32l4xx_ll_iwdg.h"
#include "usbd_cdc_if.h"
#include "nfc.h"
#include "init.h"
#include "sense.h"
#define LOW_FREQUENCY 1
#define HIGH_FREQUENCY 0
#define SOLO_FLAG_LOCKED 0x2
void wait_for_usb_tether(void);
uint32_t __90_ms = 0;
uint32_t __last_button_press_time = 0;
uint32_t __last_button_bounce_time = 0;
uint32_t __device_status = 0;
uint32_t __last_update = 0;
extern PCD_HandleTypeDef hpcd;
static int _NFC_status = 0;
static bool isLowFreq = 0;
static bool _up_disabled = false;
// #define IS_BUTTON_PRESSED() (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN))
static int is_physical_button_pressed(void)
{
return (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN));
}
static int is_touch_button_pressed(void)
{
int is_pressed = (tsc_read_button(0) || tsc_read_button(1));
#ifndef IS_BOOTLOADER
if (is_pressed)
{
// delay for debounce, and longer than polling timer period.
delay(95);
return (tsc_read_button(0) || tsc_read_button(1));
}
#endif
return is_pressed;
}
int (*IS_BUTTON_PRESSED)() = is_physical_button_pressed;
static void edge_detect_touch_button(void)
{
static uint8_t last_touch = 0;
uint8_t current_touch = 0;
if (is_touch_button_pressed == IS_BUTTON_PRESSED)
{
current_touch = (tsc_read_button(0) || tsc_read_button(1));
// 1 sample per 25 ms
if ((millis() - __last_button_bounce_time) > 25)
{
// Detect "touch / rising edge"
if (!last_touch && current_touch)
{
__last_button_press_time = millis();
}
__last_button_bounce_time = millis();
last_touch = current_touch;
}
}
}
void device_disable_up(bool disable)
{
_up_disabled = disable;
}
// Timer6 overflow handler. happens every ~90ms.
void TIM6_DAC_IRQHandler(void)
{
// timer is only 16 bits, so roll it over here
TIM6->SR = 0;
__90_ms += 1;
if ((millis() - __last_update) > 90)
{
if (__device_status != CTAPHID_STATUS_IDLE)
{
ctaphid_update_status(__device_status);
}
}
edge_detect_touch_button();
#ifndef IS_BOOTLOADER
// NFC sending WTX if needs
if (device_is_nfc() == NFC_IS_ACTIVE)
{
WTX_timer_exec();
}
#endif
}
// Interrupt on rising edge of button (button released)
void EXTI0_IRQHandler(void)
{
EXTI->PR1 = EXTI->PR1;
if (is_physical_button_pressed == IS_BUTTON_PRESSED)
{
// Only allow 1 press per 25 ms.
if ((millis() - __last_button_bounce_time) > 25)
{
__last_button_press_time = millis();
}
__last_button_bounce_time = millis();
}
}
// Global USB interrupt handler
void USB_IRQHandler(void)
{
HAL_PCD_IRQHandler(&hpcd);
}
uint32_t millis(void)
{
return (((uint32_t)TIM6->CNT) + (__90_ms * 90));
}
void device_set_status(uint32_t status)
{
__disable_irq();
__last_update = millis();
__enable_irq();
if (status != CTAPHID_STATUS_IDLE && __device_status != status)
{
ctaphid_update_status(status);
}
__device_status = status;
}
int device_is_button_pressed(void)
{
return IS_BUTTON_PRESSED();
}
void delay(uint32_t ms)
{
uint32_t time = millis();
while ((millis() - time) < ms)
;
}
void device_reboot(void)
{
NVIC_SystemReset();
}
void device_init_button(void)
{
if (tsc_sensor_exists())
{
tsc_init();
IS_BUTTON_PRESSED = is_touch_button_pressed;
}
else
{
IS_BUTTON_PRESSED = is_physical_button_pressed;
}
}
int solo_is_locked(){
uint64_t device_settings = ((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->device_settings;
uint32_t tag = (uint32_t)(device_settings >> 32ull);
return tag == ATTESTATION_CONFIGURED_TAG && (device_settings & SOLO_FLAG_LOCKED) != 0;
}
// Locks solo flash from debugging. Locks on next reboot.
// This should be removed in next Solo release.
void solo_lock_if_not_already() {
uint8_t buf[2048];
memmove(buf, (uint8_t*)ATTESTATION_PAGE_ADDR, 2048);
((flash_attestation_page *)buf)->device_settings |= SOLO_FLAG_LOCKED;
flash_erase_page(ATTESTATION_PAGE);
flash_write(ATTESTATION_PAGE_ADDR, buf, 2048);
}
/** device_migrate
* Depending on version of device, migrates:
* * Moves attestation certificate to data segment.
* * Creates locked variable and stores in data segment.
*
* Once in place, this allows all devices to accept same firmware,
* rather than using "hacker" and "secure" builds.
*/
static void device_migrate(){
extern const uint16_t attestation_solo_cert_der_size;
extern const uint16_t attestation_hacker_cert_der_size;
extern uint8_t attestation_solo_cert_der[];
extern uint8_t attestation_hacker_cert_der[];
uint64_t device_settings = ((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->device_settings;
uint32_t configure_tag = (uint32_t)(device_settings >> 32);
if (configure_tag != ATTESTATION_CONFIGURED_TAG)
{
printf1(TAG_RED,"Migrating certificate and lock information to data segment.\r\n");
device_settings = ATTESTATION_CONFIGURED_TAG;
device_settings <<= 32;
// Read current device lock level.
uint32_t optr = FLASH->OPTR;
if ((optr & 0xff) != 0xAA){
device_settings |= SOLO_FLAG_LOCKED;
}
uint8_t tmp_attestation_key[32];
memmove(tmp_attestation_key,
((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_key,
32);
flash_erase_page(ATTESTATION_PAGE);
flash_write(
(uint32_t)((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_key,
tmp_attestation_key,
32
);
// Check if this is Solo Hacker attestation (not confidential)
// then write solo or hacker attestation cert to flash page.
uint8_t solo_hacker_attestation_key[32] = "\x1b\x26\x26\xec\xc8\xf6\x9b\x0f\x69\xe3\x4f"
"\xb2\x36\xd7\x64\x66\xba\x12\xac\x16\xc3\xab"
"\x57\x50\xba\x06\x4e\x8b\x90\xe0\x24\x48";
if (memcmp(solo_hacker_attestation_key,
tmp_attestation_key,
32) == 0)
{
printf1(TAG_GREEN,"Updating solo hacker cert\r\n");
flash_write_dword(
(uint32_t)&((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert_size,
(uint64_t)attestation_hacker_cert_der_size
);
flash_write(
(uint32_t)((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert,
attestation_hacker_cert_der,
attestation_hacker_cert_der_size
);
}
else
{
printf1(TAG_GREEN,"Updating solo secure cert\r\n");
flash_write_dword(
(uint32_t)&((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert_size,
(uint64_t)attestation_solo_cert_der_size
);
flash_write(
(uint32_t)((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert,
attestation_solo_cert_der,
attestation_solo_cert_der_size
);
}
// Save / done.
flash_write_dword(
(uint32_t) & ((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->device_settings,
(uint64_t)device_settings);
}
}
void device_init()
{
hw_init(LOW_FREQUENCY);
if (! tsc_sensor_exists())
{
_NFC_status = nfc_init();
}
if (_NFC_status == NFC_IS_ACTIVE)
{
printf1(TAG_NFC, "Have NFC\r\n");
isLowFreq = 1;
IS_BUTTON_PRESSED = is_physical_button_pressed;
}
else
{
printf1(TAG_NFC, "Have NO NFC\r\n");
hw_init(HIGH_FREQUENCY);
isLowFreq = 0;
device_init_button();
}
device_migrate();
#if BOOT_TO_DFU
flash_option_bytes_init(1);
#else
flash_option_bytes_init(0);
#endif
usbhid_init();
ctaphid_init();
ctap_init();
}
int device_is_nfc(void)
{
return _NFC_status;
}
void wait_for_usb_tether(void)
{
while (USBD_OK != CDC_Transmit_FS((uint8_t*)"tethered\r\n", 10) )
;
while (USBD_OK != CDC_Transmit_FS((uint8_t*)"tethered\r\n", 10) )
;
delay(10);
while (USBD_OK != CDC_Transmit_FS((uint8_t*)"tethered\r\n", 10) )
;
}
void usbhid_init(void)
{
if (!isLowFreq)
{
init_usb();
#if DEBUG_LEVEL>1
wait_for_usb_tether();
#endif
}
else
{
}
}
int usbhid_recv(uint8_t * msg)
{
if (fifo_hidmsg_size())
{
fifo_hidmsg_take(msg);
printf1(TAG_DUMP2,">> ");
dump_hex1(TAG_DUMP2,msg, HID_PACKET_SIZE);
return HID_PACKET_SIZE;
}
return 0;
}
void usbhid_send(uint8_t * msg)
{
printf1(TAG_DUMP2,"<< ");
dump_hex1(TAG_DUMP2, msg, HID_PACKET_SIZE);
while (PCD_GET_EP_TX_STATUS(USB, HID_EPIN_ADDR & 0x0f) == USB_EP_TX_VALID)
;
USBD_LL_Transmit(&Solo_USBD_Device, HID_EPIN_ADDR, msg, HID_PACKET_SIZE);
}
void ctaphid_write_block(uint8_t * data)
{
usbhid_send(data);
}
void usbhid_close(void)
{
}
void main_loop_delay(void)
{
}
static int wink_time = 0;
static uint32_t winkt1 = 0;
#ifdef LED_WINK_VALUE
static uint32_t winkt2 = 0;
#endif
void device_wink(void)
{
wink_time = 10;
winkt1 = 0;
}
void heartbeat(void)
{
static int state = 0;
static uint32_t val = (LED_MAX_SCALER - LED_MIN_SCALER)/2;
uint8_t r = (LED_INIT_VALUE >> 16) & 0xff;
uint8_t g = (LED_INIT_VALUE >> 8) & 0xff;
uint8_t b = (LED_INIT_VALUE >> 0) & 0xff;
int but = IS_BUTTON_PRESSED();
if (state)
{
val--;
}
else
{
val++;
}
if (val >= LED_MAX_SCALER || val <= LED_MIN_SCALER)
{
state = !state;
if (val > LED_MAX_SCALER)
val = LED_MAX_SCALER;
if (val < LED_MIN_SCALER)
val = LED_MIN_SCALER;
}
#ifdef LED_WINK_VALUE
if (wink_time)
{
if (millis() - winkt1 > 120)
{
winkt1 = millis();
if (winkt2++ & 1)
{
led_rgb(LED_WINK_VALUE * (LED_MAX_SCALER - LED_MIN_SCALER)/2);
}
else
{
led_rgb(0);
}
wink_time--;
}
}
else
#endif
{
if (but)
led_rgb(((val * r)<<8) | ((val*b) << 16) | (val*g));
else
led_rgb(((val * g)<<8) | ((val*r) << 16) | (val*b));
}
}
static int authenticator_is_backup_initialized(void)
{
uint8_t header[16];
uint32_t * ptr = (uint32_t *)flash_addr(STATE2_PAGE);
memmove(header,ptr,16);
AuthenticatorState * state = (AuthenticatorState*)header;
return state->is_initialized == INITIALIZED_MARKER;
}
int authenticator_read_state(AuthenticatorState * a)
{
uint32_t * ptr = (uint32_t *) flash_addr(STATE1_PAGE);
memmove(a, ptr, sizeof(AuthenticatorState));
if (a->is_initialized != INITIALIZED_MARKER){
if (authenticator_is_backup_initialized()){
printf1(TAG_ERR,"Warning: memory corruption detected. restoring from backup..\n");
ptr = (uint32_t *) flash_addr(STATE2_PAGE);
memmove(a, ptr, sizeof(AuthenticatorState));
authenticator_write_state(a);
return 1;
}
return 0;
}
return 1;
}
void authenticator_write_state(AuthenticatorState * a)
{
flash_erase_page(STATE1_PAGE);
flash_write(flash_addr(STATE1_PAGE), (uint8_t*)a, sizeof(AuthenticatorState));
flash_erase_page(STATE2_PAGE);
flash_write(flash_addr(STATE2_PAGE), (uint8_t*)a, sizeof(AuthenticatorState));
}
#if !defined(IS_BOOTLOADER)
uint32_t ctap_atomic_count(uint32_t amount)
{
int offset = 0;
uint32_t * ptr = (uint32_t *)flash_addr(COUNTER1_PAGE);
uint32_t erases = *(uint32_t *)flash_addr(COUNTER2_PAGE);
static uint32_t sc = 0;
if (erases == 0xffffffff)
{
erases = 1;
flash_erase_page(COUNTER2_PAGE);
flash_write(flash_addr(COUNTER2_PAGE), (uint8_t*)&erases, 4);
}
uint32_t lastc = 0;
if (amount == 0)
{
// Use a random count [1-16].
uint8_t rng[1];
ctap_generate_rng(rng, 1);
amount = (rng[0] & 0x0f) + 1;
}
for (offset = 0; offset < PAGE_SIZE/4; offset += 2) // wear-level the flash
{
if (ptr[offset] != 0xffffffff)
{
if (ptr[offset] < lastc)
{
printf2(TAG_ERR,"Error, count went down!\r\n");
}
lastc = ptr[offset];
}
else
{
break;
}
}
if (!lastc) // Happens on initialization as well.
{
printf2(TAG_ERR,"warning, power interrupted during previous count. Restoring. lastc==%lu, erases=%lu, offset=%d\r\n", lastc,erases,offset);
// there are 32 counts per page
lastc = erases * 256 + 1;
flash_erase_page(COUNTER1_PAGE);
flash_write(flash_addr(COUNTER1_PAGE), (uint8_t*)&lastc, 4);
erases++;
flash_erase_page(COUNTER2_PAGE);
flash_write(flash_addr(COUNTER2_PAGE), (uint8_t*)&erases, 4);
return lastc;
}
if (amount > 256){
lastc = amount;
} else {
lastc += amount;
}
if (lastc/256 > erases)
{
printf2(TAG_ERR,"warning, power interrupted, erases mark, restoring. lastc==%lu, erases=%lu\r\n", lastc,erases);
erases = lastc/256;
flash_erase_page(COUNTER2_PAGE);
flash_write(flash_addr(COUNTER2_PAGE), (uint8_t*)&erases, 4);
}
if (offset == PAGE_SIZE/4)
{
if (lastc/256 > erases)
{
printf2(TAG_ERR,"warning, power interrupted, erases mark, restoring lastc==%lu, erases=%lu\r\n", lastc,erases);
}
erases = lastc/256 + 1;
flash_erase_page(COUNTER2_PAGE);
flash_write(flash_addr(COUNTER2_PAGE), (uint8_t*)&erases, 4);
flash_erase_page(COUNTER1_PAGE);
offset = 0;
}
flash_write(flash_addr(COUNTER1_PAGE) + offset * 4, (uint8_t*)&lastc, 4);
if (lastc == sc)
{
printf1(TAG_RED,"no count detected: lastc==%lu, erases=%lu, offset=%d\r\n", lastc,erases,offset);
while(1)
;
}
sc = lastc;
return lastc;
}
#endif
void device_manage(void)
{
#if NON_BLOCK_PRINTING
int i = 10;
uint8_t c;
while (i--)
{
if (fifo_debug_size())
{
fifo_debug_take(&c);
while (! LL_USART_IsActiveFlag_TXE(DEBUG_UART))
;
LL_USART_TransmitData8(DEBUG_UART,c);
}
else
{
break;
}
}
#endif
#ifndef IS_BOOTLOADER
if(device_is_nfc())
nfc_loop();
#endif
}
static int handle_packets(void)
{
static uint8_t hidmsg[HID_PACKET_SIZE];
memset(hidmsg,0, sizeof(hidmsg));
if (usbhid_recv(hidmsg) > 0)
{
if ( ctaphid_handle_packet(hidmsg) == CTAPHID_CANCEL)
{
printf1(TAG_GREEN, "CANCEL!\r\n");
return -1;
}
else
{
return 0;
}
}
return 0;
}
static int wait_for_button_activate(uint32_t wait)
{
int ret;
uint32_t start = millis();
do
{
if ((start + wait) < millis())
{
return 0;
}
delay(1);
ret = handle_packets();
if (ret)
return ret;
} while (!IS_BUTTON_PRESSED());
return 0;
}
static int wait_for_button_release(uint32_t wait)
{
int ret;
uint32_t start = millis();
do
{
if ((start + wait) < millis())
{
return 0;
}
delay(1);
ret = handle_packets();
if (ret)
return ret;
} while (IS_BUTTON_PRESSED());
return 0;
}
int ctap_user_presence_test(uint32_t up_delay)
{
int ret;
if (device_is_nfc() == NFC_IS_ACTIVE)
{
return 1;
}
if (_up_disabled)
{
return 2;
}
#if SKIP_BUTTON_CHECK_WITH_DELAY
int i=500;
while(i--)
{
delay(1);
ret = handle_packets();
if (ret) return ret;
}
goto done;
#elif SKIP_BUTTON_CHECK_FAST
delay(2);
ret = handle_packets();
if (ret)
return ret;
goto done;
#endif
// If button was pressed within last [2] seconds, succeed.
if (__last_button_press_time && (millis() - __last_button_press_time < 2000))
{
goto done;
}
// Set LED status and wait.
led_rgb(0xff3520);
// Block and wait for some time.
ret = wait_for_button_activate(up_delay);
if (ret) return ret;
ret = wait_for_button_release(up_delay);
if (ret) return ret;
// If button was pressed within last [2] seconds, succeed.
if (__last_button_press_time && (millis() - __last_button_press_time < 2000))
{
goto done;
}
return 0;
done:
ret = wait_for_button_release(up_delay);
__last_button_press_time = 0;
return 1;
}
int ctap_generate_rng(uint8_t * dst, size_t num)
{
rng_get_bytes(dst, num);
return 1;
}
void ctap_reset_rk(void)
{
int i;
printf1(TAG_GREEN, "resetting RK \r\n");
for(i = 0; i < RK_NUM_PAGES; i++)
{
flash_erase_page(RK_START_PAGE + i);
}
}
uint32_t ctap_rk_size(void)
{
return RK_NUM_PAGES * (PAGE_SIZE / sizeof(CTAP_residentKey));
}
void ctap_store_rk(int index,CTAP_residentKey * rk)
{
ctap_overwrite_rk(index, rk);
}
void ctap_delete_rk(int index)
{
CTAP_residentKey rk;
memset(&rk, 0xff, sizeof(CTAP_residentKey));
ctap_overwrite_rk(index, &rk);
}
void ctap_load_rk(int index,CTAP_residentKey * rk)
{
int byte_offset_into_page = (sizeof(CTAP_residentKey) * (index % (PAGE_SIZE/sizeof(CTAP_residentKey))));
int page_offset = (index)/(PAGE_SIZE/sizeof(CTAP_residentKey));
uint32_t addr = flash_addr(page_offset + RK_START_PAGE) + byte_offset_into_page;
printf1(TAG_GREEN, "reading RK %d @ %04x\r\n", index, addr);
if (page_offset < RK_NUM_PAGES)
{
uint32_t * ptr = (uint32_t *)addr;
memmove((uint8_t*)rk,ptr,sizeof(CTAP_residentKey));
}
else
{
printf2(TAG_ERR,"Out of bounds reading index %d for rk\n", index);
}
}
void ctap_overwrite_rk(int index,CTAP_residentKey * rk)
{
uint8_t tmppage[PAGE_SIZE];
int byte_offset_into_page = (sizeof(CTAP_residentKey) * (index % (PAGE_SIZE/sizeof(CTAP_residentKey))));
int page_offset = (index)/(PAGE_SIZE/sizeof(CTAP_residentKey));
printf1(TAG_GREEN, "overwriting RK %d @ page %d @ addr 0x%08x-0x%08x\r\n",
index, RK_START_PAGE + page_offset,
flash_addr(RK_START_PAGE + page_offset) + byte_offset_into_page,
flash_addr(RK_START_PAGE + page_offset) + byte_offset_into_page + sizeof(CTAP_residentKey)
);
if (page_offset < RK_NUM_PAGES)
{
memmove(tmppage, (uint8_t*)flash_addr(RK_START_PAGE + page_offset), PAGE_SIZE);
memmove(tmppage + byte_offset_into_page, rk, sizeof(CTAP_residentKey));
flash_erase_page(RK_START_PAGE + page_offset);
flash_write(flash_addr(RK_START_PAGE + page_offset), tmppage, PAGE_SIZE);
}
else
{
printf2(TAG_ERR,"Out of bounds reading index %d for rk\n", index);
}
printf1(TAG_GREEN, "4\r\n");
}
void boot_st_bootloader(void)
{
__disable_irq();
__set_MSP(*((uint32_t *)0x1fff0000));
((void (*)(void)) (*((uint32_t *)0x1fff0004)))();
while(1)
;
}
void boot_solo_bootloader(void)
{
LL_IWDG_Enable(IWDG);
LL_IWDG_EnableWriteAccess(IWDG);
LL_IWDG_SetPrescaler(IWDG, LL_IWDG_PRESCALER_4);
LL_IWDG_SetWindow(IWDG, 4095);
LL_IWDG_SetReloadCounter(IWDG, 2000); // ~0.25s
while (LL_IWDG_IsReady(IWDG) != 1)
{
}
LL_IWDG_ReloadCounter(IWDG);
}
void device_read_aaguid(uint8_t * dst){
uint8_t * aaguid = (uint8_t *)"\x88\x76\x63\x1b\xd4\xa0\x42\x7f\x57\x73\x0e\xc7\x1c\x9e\x02\x79";
memmove(dst, aaguid, 16);
if (device_is_nfc()){
dst[0] = 0x89;
}
else if (tsc_sensor_exists()){
dst[0] = 0x98;
}
dump_hex1(TAG_GREEN,dst, 16);
}
void _Error_Handler(char *file, int line)
{
printf2(TAG_ERR,"Error: %s: %d\r\n", file, line);
while(1)
{
}
}