sdrangel/plugins/channeltx/udpsource/udpsourcesource.cpp

456 wiersze
16 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017-2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "dsp/dspcommands.h"
#include "dsp/basebandsamplesink.h"
#include "util/db.h"
#include "udpsourcesource.h"
#include "udpsourcemsg.h"
UDPSourceSource::UDPSourceSource() :
m_channelSampleRate(48000),
m_channelFrequencyOffset(0),
m_squelch(1e-6),
m_spectrumSink(nullptr),
m_spectrumChunkSize(2160),
m_spectrumChunkCounter(0),
m_magsq(1e-10),
m_movingAverage(16, 1e-10),
m_inMovingAverage(480, 1e-10),
m_sampleRateSum(0),
m_sampleRateAvgCounter(0),
m_levelCalcCount(0),
m_peakLevel(0.0f),
m_levelSum(0.0f),
m_levelNbSamples(480),
m_squelchOpen(false),
m_squelchOpenCount(0),
m_squelchCloseCount(0),
m_squelchThreshold(4800),
m_modPhasor(0.0f),
m_SSBFilterBufferIndex(0)
{
m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / m_settings.m_inputSampleRate, m_ssbFftLen);
m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size
m_magsq = 0.0;
m_udpHandler.start();
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
UDPSourceSource::~UDPSourceSource()
{
m_udpHandler.stop();
delete m_SSBFilter;
delete[] m_SSBFilterBuffer;
}
void UDPSourceSource::setUDPFeedbackMessageQueue(MessageQueue *messageQueue)
{
m_udpHandler.setFeedbackMessageQueue(messageQueue);
}
void UDPSourceSource::pull(SampleVector::iterator begin, unsigned int nbSamples)
{
std::for_each(
begin,
begin + nbSamples,
[this](Sample& s) {
pullOne(s);
}
);
}
void UDPSourceSource::pullOne(Sample& sample)
{
if (m_settings.m_channelMute)
{
sample.m_real = 0.0f;
sample.m_imag = 0.0f;
initSquelch(false);
return;
}
Complex ci;
if (m_interpolatorDistance > 1.0f) // decimate
{
modulateSample();
while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
else
{
if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
double magsq = ci.real() * ci.real() + ci.imag() * ci.imag();
magsq /= (SDR_TX_SCALED*SDR_TX_SCALED);
m_movingAverage.feed(magsq);
m_magsq = m_movingAverage.average();
sample.m_real = (FixReal) ci.real();
sample.m_imag = (FixReal) ci.imag();
}
void UDPSourceSource::modulateSample()
{
if (m_settings.m_sampleFormat == UDPSourceSettings::FormatSnLE) // Linear I/Q transponding
{
Sample s;
m_udpHandler.readSample(s);
uint64_t magsq = s.m_real * s.m_real + s.m_imag * s.m_imag;
m_inMovingAverage.feed(magsq/(SDR_TX_SCALED*SDR_TX_SCALED));
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
m_modSample.real(s.m_real * m_settings.m_gainOut);
m_modSample.imag(s.m_imag * m_settings.m_gainOut);
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else if (m_settings.m_sampleFormat == UDPSourceSettings::FormatNFM)
{
qint16 t;
readMonoSample(t);
m_inMovingAverage.feed((t*t)/1073741824.0);
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
m_modPhasor += (m_settings.m_fmDeviation / m_settings.m_inputSampleRate) * (t / SDR_TX_SCALEF) * M_PI * 2.0f;
m_modSample.real(cos(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut);
m_modSample.imag(sin(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut);
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else if (m_settings.m_sampleFormat == UDPSourceSettings::FormatAM)
{
qint16 t;
readMonoSample(t);
m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED));
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
m_modSample.real(((t / SDR_TX_SCALEF)*m_settings.m_amModFactor*m_settings.m_gainOut + 1.0f) * (SDR_TX_SCALEF/2)); // modulate and scale zero frequency carrier
m_modSample.imag(0.0f);
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else if ((m_settings.m_sampleFormat == UDPSourceSettings::FormatLSB) || (m_settings.m_sampleFormat == UDPSourceSettings::FormatUSB))
{
qint16 t;
Complex c, ci;
fftfilt::cmplx *filtered;
int n_out = 0;
readMonoSample(t);
m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED));
m_inMagsq = m_inMovingAverage.average();
calculateSquelch(m_inMagsq);
if (m_squelchOpen)
{
ci.real((t / SDR_TX_SCALEF) * m_settings.m_gainOut);
ci.imag(0.0f);
n_out = m_SSBFilter->runSSB(ci, &filtered, (m_settings.m_sampleFormat == UDPSourceSettings::FormatUSB));
if (n_out > 0)
{
memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
m_SSBFilterBufferIndex = 0;
}
c = m_SSBFilterBuffer[m_SSBFilterBufferIndex];
m_modSample.real(m_SSBFilterBuffer[m_SSBFilterBufferIndex].real() * SDR_TX_SCALEF);
m_modSample.imag(m_SSBFilterBuffer[m_SSBFilterBufferIndex].imag() * SDR_TX_SCALEF);
m_SSBFilterBufferIndex++;
calculateLevel(m_modSample);
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
}
}
else
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
initSquelch(false);
}
if (m_spectrumSink)
{
Sample s;
s.m_real = (FixReal) m_modSample.real();
s.m_imag = (FixReal) m_modSample.imag();
m_sampleBuffer.push_back(s);
m_spectrumChunkCounter++;
if (m_spectrumChunkCounter == m_spectrumChunkSize)
{
m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), false);
m_sampleBuffer.clear();
m_spectrumChunkCounter = 0;
}
}
}
void UDPSourceSource::calculateLevel(Real sample)
{
if (m_levelCalcCount < m_levelNbSamples)
{
m_peakLevel = std::max(std::fabs(m_peakLevel), sample);
m_levelSum += sample * sample;
m_levelCalcCount++;
}
else
{
m_rmsLevel = m_levelSum > 0.0 ? sqrt(m_levelSum / m_levelNbSamples) : 0.0;
m_peakLevelOut = m_peakLevel;
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_levelCalcCount = 0;
}
}
void UDPSourceSource::calculateLevel(Complex sample)
{
Real t = std::abs(sample);
if (m_levelCalcCount < m_levelNbSamples)
{
m_peakLevel = std::max(std::fabs(m_peakLevel), t);
m_levelSum += (t * t);
m_levelCalcCount++;
}
else
{
m_rmsLevel = m_levelSum > 0.0 ? sqrt((m_levelSum/(SDR_TX_SCALED*SDR_TX_SCALED)) / m_levelNbSamples) : 0.0;
m_peakLevelOut = m_peakLevel;
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_levelCalcCount = 0;
}
}
void UDPSourceSource::resetReadIndex()
{
m_udpHandler.resetReadIndex();
}
void UDPSourceSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "UDPSourceSource::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((channelFrequencyOffset != m_channelFrequencyOffset) ||
(channelSampleRate != m_channelSampleRate) || force)
{
m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate);
}
if (((channelSampleRate != m_channelSampleRate) && (!m_settings.m_autoRWBalance)) || force)
{
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) m_settings.m_inputSampleRate / (Real) channelSampleRate;
m_interpolator.create(48, m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / 2.2, 3.0);
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void UDPSourceSource::applySettings(const UDPSourceSettings& settings, bool force)
{
qDebug() << "UDPSourceSource::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_sampleFormat: " << settings.m_sampleFormat
<< " m_inputSampleRate: " << settings.m_inputSampleRate
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_lowCutoff: " << settings.m_lowCutoff
<< " m_fmDeviation: " << settings.m_fmDeviation
<< " m_amModFactor: " << settings.m_amModFactor
<< " m_udpAddressStr: " << settings.m_udpAddress
<< " m_udpPort: " << settings.m_udpPort
<< " m_multicastAddress: " << settings.m_multicastAddress
<< " m_multicastJoin: " << settings.m_multicastJoin
<< " m_channelMute: " << settings.m_channelMute
<< " m_gainIn: " << settings.m_gainIn
<< " m_gainOut: " << settings.m_gainOut
<< " m_squelchGate: " << settings.m_squelchGate
<< " m_squelch: " << settings.m_squelch << "dB"
<< " m_squelchEnabled: " << settings.m_squelchEnabled
<< " m_autoRWBalance: " << settings.m_autoRWBalance
<< " m_stereoInput: " << settings.m_stereoInput
<< " force: " << force;
if((settings.m_rfBandwidth != m_settings.m_rfBandwidth) ||
(settings.m_lowCutoff != m_settings.m_lowCutoff) ||
(settings.m_inputSampleRate != m_settings.m_inputSampleRate) || force)
{
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_channelSampleRate;
m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0);
m_actualInputSampleRate = settings.m_inputSampleRate;
m_udpHandler.resetReadIndex();
m_sampleRateSum = 0.0;
m_sampleRateAvgCounter = 0;
m_spectrumChunkSize = settings.m_inputSampleRate * 0.05; // 50 ms chunk
m_spectrumChunkCounter = 0;
m_levelNbSamples = settings.m_inputSampleRate * 0.01; // every 10 ms
m_levelCalcCount = 0;
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_udpHandler.resizeBuffer(settings.m_inputSampleRate);
m_inMovingAverage.resize(settings.m_inputSampleRate * 0.01, 1e-10); // 10 ms
m_squelchThreshold = settings.m_inputSampleRate * settings.m_squelchGate;
initSquelch(m_squelchOpen);
m_SSBFilter->create_filter(settings.m_lowCutoff / settings.m_inputSampleRate, settings.m_rfBandwidth / settings.m_inputSampleRate);
}
if ((settings.m_squelch != m_settings.m_squelch) || force)
{
m_squelch = CalcDb::powerFromdB(settings.m_squelch);
}
if ((settings.m_squelchGate != m_settings.m_squelchGate) || force)
{
m_squelchThreshold = m_channelSampleRate * settings.m_squelchGate;
initSquelch(m_squelchOpen);
}
if ((settings.m_udpAddress != m_settings.m_udpAddress) ||
(settings.m_udpPort != m_settings.m_udpPort) ||
(settings.m_multicastAddress != m_settings.m_multicastAddress) ||
(settings.m_multicastJoin != m_settings.m_multicastJoin) || force)
{
m_udpHandler.configureUDPLink(settings.m_udpAddress, settings.m_udpPort, settings.m_multicastAddress, settings.m_multicastJoin);
}
if ((settings.m_channelMute != m_settings.m_channelMute) || force)
{
if (!settings.m_channelMute) {
m_udpHandler.resetReadIndex();
}
}
if ((settings.m_autoRWBalance != m_settings.m_autoRWBalance) || force)
{
m_udpHandler.setAutoRWBalance(settings.m_autoRWBalance);
if (!settings.m_autoRWBalance)
{
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_channelSampleRate;
m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0);
m_actualInputSampleRate = settings.m_inputSampleRate;
m_udpHandler.resetReadIndex();
}
}
m_settings = settings;
}
void UDPSourceSource::sampleRateCorrection(float rawDeltaRatio, float correctionFactor)
{
float newSampleRate = m_actualInputSampleRate + correctionFactor * m_actualInputSampleRate;
// exclude values too way out nominal sample rate (20%)
if ((newSampleRate < m_settings.m_inputSampleRate * 1.2) && (newSampleRate > m_settings.m_inputSampleRate * 0.8))
{
m_actualInputSampleRate = newSampleRate;
if ((rawDeltaRatio > -0.05) && (rawDeltaRatio < 0.05))
{
if (m_sampleRateAvgCounter < m_sampleRateAverageItems)
{
m_sampleRateSum += m_actualInputSampleRate;
m_sampleRateAvgCounter++;
}
}
else
{
m_sampleRateSum = 0.0;
m_sampleRateAvgCounter = 0;
}
if (m_sampleRateAvgCounter == m_sampleRateAverageItems)
{
float avgRate = m_sampleRateSum / m_sampleRateAverageItems;
qDebug("UDPSourceSource::sampleRateCorrection: corr: %+.6f new rate: %.0f: avg rate: %.0f",
correctionFactor,
m_actualInputSampleRate,
avgRate);
m_actualInputSampleRate = avgRate;
m_sampleRateSum = 0.0;
m_sampleRateAvgCounter = 0;
}
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) m_actualInputSampleRate / (Real) m_channelSampleRate;
}
}