sdrangel/plugins/samplesource/xtrxinput/xtrxinputthread.cpp

334 wiersze
9.8 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, 2018 Edouard Griffiths, F4EXB //
// Copyright (C) 2017 Sergey Kostanbaev, Fairwaves Inc. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <errno.h>
#include <chrono>
#include <thread>
#include "xtrx/devicextrx.h"
#include "xtrxinputsettings.h"
#include "xtrxinputthread.h"
XTRXInputThread::XTRXInputThread(struct xtrx_dev *dev, unsigned int nbChannels, unsigned int uniqueChannelIndex, QObject* parent) :
QThread(parent),
m_running(false),
m_dev(dev),
m_nbChannels(nbChannels),
m_uniqueChannelIndex(uniqueChannelIndex),
m_iqOrder(true)
{
qDebug("XTRXInputThread::XTRXInputThread: nbChannels: %u uniqueChannelIndex: %u", nbChannels, uniqueChannelIndex);
m_channels = new Channel[2];
for (unsigned int i = 0; i < 2; i++) {
m_channels[i].m_convertBuffer.resize(DeviceXTRX::blockSize, Sample{0,0});
}
}
XTRXInputThread::~XTRXInputThread()
{
qDebug("XTRXInputThread::~XTRXInputThread");
if (m_running) {
stopWork();
}
delete[] m_channels;
}
void XTRXInputThread::startWork()
{
if (m_running) {
return; // return if running already
}
m_startWaitMutex.lock();
start();
while (!m_running) {
m_startWaiter.wait(&m_startWaitMutex, 100);
}
m_startWaitMutex.unlock();
}
void XTRXInputThread::stopWork()
{
if (!m_running) {
return; // return if not running
}
m_running = false;
wait();
}
void XTRXInputThread::run()
{
int res;
m_running = true;
m_startWaiter.wakeAll();
unsigned int nbFifos = getNbFifos();
if ((m_nbChannels != 0) && (nbFifos != 0))
{
xtrx_run_params params;
xtrx_run_params_init(&params);
params.dir = XTRX_RX;
params.rx.chs = XTRX_CH_AB;
params.rx.wfmt = XTRX_WF_16;
params.rx.hfmt = XTRX_IQ_INT16;
params.rx_stream_start = 2*DeviceXTRX::blockSize; // was 2*8192
params.rx.paketsize = 2*DeviceXTRX::blockSize;
if (m_nbChannels == 1)
{
qDebug("XTRXInputThread::run: SI mode for channel #%u", m_uniqueChannelIndex);
params.rx.flags |= XTRX_RSP_SISO_MODE;
if (m_uniqueChannelIndex == 1) {
params.rx.flags |= XTRX_RSP_SWAP_AB;
}
}
res = xtrx_run_ex(m_dev, &params);
if (res != 0)
{
qCritical("XTRXInputThread::run: could not start stream err:%d", res);
m_running = false;
}
else
{
std::this_thread::sleep_for(std::chrono::milliseconds(50));
qDebug("XTRXInputThread::run: stream started");
}
const unsigned int elemSize = 4; // XTRX uses 4 byte I+Q samples
std::vector<std::vector<char>> buffMem(m_nbChannels, std::vector<char>(elemSize*DeviceXTRX::blockSize));
std::vector<void *> buffs(m_nbChannels);
for (std::size_t i = 0; i < m_nbChannels; i++) {
buffs[i] = buffMem[i].data();
}
xtrx_recv_ex_info_t nfo;
nfo.samples = DeviceXTRX::blockSize;
nfo.buffer_count = m_nbChannels;
nfo.buffers = (void* const*) buffs.data();
nfo.flags = RCVEX_DONT_INSER_ZEROS | RCVEX_DROP_OLD_ON_OVERFLOW;
while (m_running)
{
res = xtrx_recv_sync_ex(m_dev, &nfo);
if (res < 0)
{
qCritical("XTRXInputThread::run read error: %d", res);
qDebug("XTRXInputThread::run: out_samples: %u out_events: %u", nfo.out_samples, nfo.out_events);
break;
}
if (nfo.out_events & RCVEX_EVENT_OVERFLOW) {
qDebug("XTRXInputThread::run: overflow");
}
if (m_nbChannels > 1)
{
callbackMI((const qint16*) buffs[0], (const qint16*) buffs[1], 2 * nfo.out_samples);
}
else
{
if (m_iqOrder) {
callbackSIIQ((const qint16*) buffs[0], 2 * nfo.out_samples);
} else {
callbackSIQI((const qint16*) buffs[0], 2 * nfo.out_samples);
}
}
}
res = xtrx_stop(m_dev, XTRX_RX);
if (res != 0)
{
qCritical("XTRXInputThread::run: could not stop stream");
}
else
{
std::this_thread::sleep_for(std::chrono::milliseconds(50));
qDebug("XTRXInputThread::run: stream stopped");
}
}
else
{
qWarning("XTRXInputThread::run: no channels or FIFO allocated. Aborting");
}
m_running = false;
}
unsigned int XTRXInputThread::getNbFifos()
{
unsigned int fifoCount = 0;
for (unsigned int i = 0; i < 2; i++)
{
if (m_channels[i].m_sampleFifo) {
fifoCount++;
}
}
return fifoCount;
}
void XTRXInputThread::setLog2Decimation(unsigned int channel, unsigned int log2_decim)
{
if (channel < 2) {
m_channels[channel].m_log2Decim = log2_decim;
}
}
unsigned int XTRXInputThread::getLog2Decimation(unsigned int channel) const
{
if (channel < 2) {
return m_channels[channel].m_log2Decim;
} else {
return 0;
}
}
void XTRXInputThread::setFifo(unsigned int channel, SampleSinkFifo *sampleFifo)
{
if (channel < 2) {
m_channels[channel].m_sampleFifo = sampleFifo;
}
}
SampleSinkFifo *XTRXInputThread::getFifo(unsigned int channel)
{
if (channel < 2) {
return m_channels[channel].m_sampleFifo;
} else {
return 0;
}
}
void XTRXInputThread::callbackSIIQ(const qint16* buf, qint32 len)
{
SampleVector::iterator it = m_channels[m_uniqueChannelIndex].m_convertBuffer.begin();
if (m_channels[m_uniqueChannelIndex].m_log2Decim == 0)
{
m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate1(&it, buf, len);
}
else
{
switch (m_channels[m_uniqueChannelIndex].m_log2Decim)
{
case 1:
m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate2_cen(&it, buf, len);
break;
case 2:
m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate4_cen(&it, buf, len);
break;
case 3:
m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate8_cen(&it, buf, len);
break;
case 4:
m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate16_cen(&it, buf, len);
break;
case 5:
m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate32_cen(&it, buf, len);
break;
case 6:
m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate64_cen(&it, buf, len);
break;
default:
break;
}
}
m_channels[m_uniqueChannelIndex].m_sampleFifo->write(m_channels[m_uniqueChannelIndex].m_convertBuffer.begin(), it);
}
void XTRXInputThread::callbackSIQI(const qint16* buf, qint32 len)
{
SampleVector::iterator it = m_channels[m_uniqueChannelIndex].m_convertBuffer.begin();
if (m_channels[m_uniqueChannelIndex].m_log2Decim == 0)
{
m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate1(&it, buf, len);
}
else
{
switch (m_channels[m_uniqueChannelIndex].m_log2Decim)
{
case 1:
m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate2_cen(&it, buf, len);
break;
case 2:
m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate4_cen(&it, buf, len);
break;
case 3:
m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate8_cen(&it, buf, len);
break;
case 4:
m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate16_cen(&it, buf, len);
break;
case 5:
m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate32_cen(&it, buf, len);
break;
case 6:
m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate64_cen(&it, buf, len);
break;
default:
break;
}
}
m_channels[m_uniqueChannelIndex].m_sampleFifo->write(m_channels[m_uniqueChannelIndex].m_convertBuffer.begin(), it);
}
void XTRXInputThread::callbackMI(const qint16* buf0, const qint16* buf1, qint32 len)
{
unsigned int uniqueChannelIndex = m_uniqueChannelIndex;
// channel 0
m_uniqueChannelIndex = 0;
if (m_iqOrder) {
callbackSIIQ(buf0, len);
} else {
callbackSIQI(buf0, len);
}
// channel 1
m_uniqueChannelIndex = 1;
if (m_iqOrder) {
callbackSIIQ(buf1, len);
} else {
callbackSIQI(buf1, len);
}
m_uniqueChannelIndex = uniqueChannelIndex;
}