sdrangel/plugins/channeltx/modchirpchat/chirpchatmodsource.cpp

412 wiersze
13 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2020 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "chirpchatmodsource.h"
const int ChirpChatModSource::m_levelNbSamples = 480; // every 10ms
ChirpChatModSource::ChirpChatModSource() :
m_channelSampleRate(48000),
m_channelFrequencyOffset(0),
m_phaseIncrements(nullptr),
m_repeatCount(0),
m_active(false),
m_modPhasor(0.0f),
m_levelCalcCount(0),
m_peakLevel(0.0f),
m_levelSum(0.0f)
{
m_magsq = 0.0;
initSF(m_settings.m_spreadFactor);
initTest(m_settings.m_spreadFactor, m_settings.m_deBits);
reset();
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
ChirpChatModSource::~ChirpChatModSource()
{
delete[] m_phaseIncrements;
}
void ChirpChatModSource::initSF(unsigned int sf)
{
m_fftLength = 1 << sf;
m_state = ChirpChatStateIdle;
m_quarterSamples = (m_fftLength/4)*ChirpChatModSettings::oversampling;
float halfAngle = M_PI/ChirpChatModSettings::oversampling;
float phase = -halfAngle;
double accumulator = 0;
if (m_phaseIncrements) {
delete[] m_phaseIncrements;
}
m_phaseIncrements = new double[2*m_fftLength*ChirpChatModSettings::oversampling];
phase = -halfAngle;
for (int i = 0; i < m_fftLength*ChirpChatModSettings::oversampling; i++)
{
m_phaseIncrements[i] = phase;
phase += (2*halfAngle) / (m_fftLength*ChirpChatModSettings::oversampling);
}
std::copy(
m_phaseIncrements,
m_phaseIncrements+m_fftLength*ChirpChatModSettings::oversampling,
m_phaseIncrements+m_fftLength*ChirpChatModSettings::oversampling
);
}
void ChirpChatModSource::initTest(unsigned int sf, unsigned int deBits)
{
unsigned int fftLength = 1<<sf;
unsigned int symbolRange = fftLength/(1<<deBits);
m_symbols.clear();
for (unsigned int seq = 0; seq < 1; seq++)
{
for (unsigned int symbol = 0; symbol < symbolRange; symbol += symbolRange/4)
{
m_symbols.push_back(symbol);
m_symbols.push_back(symbol+1);
}
}
}
void ChirpChatModSource::reset()
{
m_chirp = 0;
m_chirp0 = 0;
m_sampleCounter = 0;
m_fftCounter = 0;
m_chirpCount = 0;
}
void ChirpChatModSource::pull(SampleVector::iterator begin, unsigned int nbSamples)
{
std::for_each(
begin,
begin + nbSamples,
[this](Sample& s) {
pullOne(s);
}
);
}
void ChirpChatModSource::pullOne(Sample& sample)
{
if (m_settings.m_channelMute)
{
sample.m_real = 0.0f;
sample.m_imag = 0.0f;
m_magsq = 0.0;
return;
}
Complex ci;
if (m_interpolatorDistance > 1.0f) // decimate
{
modulateSample();
while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
else
{
if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
if (!(m_state == ChirpChatStateIdle))
{
double magsq = std::norm(ci);
magsq /= (SDR_TX_SCALED*SDR_TX_SCALED);
m_movingAverage(magsq);
m_magsq = m_movingAverage.asDouble();
}
sample.m_real = (FixReal) ci.real();
sample.m_imag = (FixReal) ci.imag();
}
void ChirpChatModSource::modulateSample()
{
if (m_state == ChirpChatStateIdle)
{
m_modSample = Complex{0.0, 0.0};
m_sampleCounter++;
if (m_sampleCounter == m_quietSamples*ChirpChatModSettings::oversampling) // done with quiet time
{
m_chirp0 = 0;
m_chirp = m_fftLength*ChirpChatModSettings::oversampling - 1;
if (m_symbols.size() != 0) // some payload to transmit
{
if (m_settings.m_messageRepeat == 0) // infinite
{
m_state = ChirpChatStatePreamble;
m_active = true;
}
else
{
if (m_repeatCount != 0)
{
m_repeatCount--;
m_state = ChirpChatStatePreamble;
m_active = true;
}
else
{
m_active = false;
}
}
}
else
{
m_active = false;
}
}
}
else if (m_state == ChirpChatStatePreamble)
{
m_modPhasor += m_phaseIncrements[m_chirp]; // up chirps
m_modSample = Complex(std::polar(0.891235351562 * SDR_TX_SCALED, m_modPhasor));
m_fftCounter++;
if (m_fftCounter == m_fftLength*ChirpChatModSettings::oversampling)
{
m_chirpCount++;
m_fftCounter = 0;
if (m_chirpCount == m_settings.m_preambleChirps)
{
m_chirpCount = 0;
if (m_settings.hasSyncWord())
{
m_chirp0 = ((m_settings.m_syncWord >> ((1-m_chirpCount)*4)) & 0xf)*8;
m_chirp = (m_chirp0 + m_fftLength)*ChirpChatModSettings::oversampling - 1;
m_state = ChirpChatStateSyncWord;
}
else
{
m_sampleCounter = 0;
m_chirp0 = 0;
m_chirp = m_fftLength*ChirpChatModSettings::oversampling - 1;
m_state = ChirpChatStateSFD;
}
}
}
}
else if (m_state == ChirpChatStateSyncWord)
{
m_modPhasor += m_phaseIncrements[m_chirp]; // up chirps
m_modSample = Complex(std::polar(0.891235351562 * SDR_TX_SCALED, m_modPhasor));
m_fftCounter++;
if (m_fftCounter == m_fftLength*ChirpChatModSettings::oversampling)
{
m_chirpCount++;
m_chirp0 = ((m_settings.m_syncWord >> ((1-m_chirpCount)*4)) & 0xf)*8;
m_chirp = (m_chirp0 + m_fftLength)*ChirpChatModSettings::oversampling - 1;
m_fftCounter = 0;
if (m_chirpCount == 2)
{
m_sampleCounter = 0;
m_chirpCount = 0;
m_chirp0 = 0;
m_chirp = m_fftLength*ChirpChatModSettings::oversampling - 1;
m_state = ChirpChatStateSFD;
}
}
}
else if (m_state == ChirpChatStateSFD)
{
m_modPhasor -= m_phaseIncrements[m_chirp]; // down chirps
m_modSample = Complex(std::polar(0.891235351562 * SDR_TX_SCALED, m_modPhasor));
m_fftCounter++;
m_sampleCounter++;
if (m_fftCounter == m_fftLength*ChirpChatModSettings::oversampling)
{
m_chirp0 = 0;
m_chirp = m_fftLength*ChirpChatModSettings::oversampling - 1;
m_fftCounter = 0;
}
if (m_sampleCounter == m_quarterSamples)
{
m_chirpCount++;
m_sampleCounter = 0;
}
if (m_chirpCount == m_settings.getNbSFDFourths())
{
m_fftCounter = 0;
m_chirpCount = 0;
m_chirp0 = encodeSymbol(m_symbols[m_chirpCount]);
m_chirp = (m_chirp0 + m_fftLength)*ChirpChatModSettings::oversampling - 1;
m_state = ChirpChatStatePayload;
}
}
else if (m_state == ChirpChatStatePayload)
{
m_modPhasor += m_phaseIncrements[m_chirp]; // up chirps
m_modSample = Complex(std::polar(0.891235351562 * SDR_TX_SCALED, m_modPhasor));
m_fftCounter++;
if (m_fftCounter == m_fftLength*ChirpChatModSettings::oversampling)
{
m_chirpCount++;
if (m_chirpCount == m_symbols.size())
{
reset();
m_state = ChirpChatStateIdle;
}
else
{
m_chirp0 = encodeSymbol(m_symbols[m_chirpCount]);
m_chirp = (m_chirp0 + m_fftLength)*ChirpChatModSettings::oversampling - 1;
m_fftCounter = 0;
}
}
}
// limit phasor range to ]-pi,pi]
if (m_modPhasor > M_PI) {
m_modPhasor -= (2.0f * M_PI);
}
m_chirp++;
if (m_chirp >= (m_chirp0 + m_fftLength)*ChirpChatModSettings::oversampling) {
m_chirp = m_chirp0*ChirpChatModSettings::oversampling;
}
}
unsigned short ChirpChatModSource::encodeSymbol(unsigned short symbol)
{
if (m_settings.m_deBits == 0) {
return symbol;
}
unsigned int deWidth = 1<<m_settings.m_deBits;
unsigned int baseSymbol = symbol % (m_fftLength/deWidth); // symbols range control
return deWidth*baseSymbol;
// return deWidth*baseSymbol + (deWidth/2) - 1;
}
void ChirpChatModSource::calculateLevel(Real& sample)
{
if (m_levelCalcCount < m_levelNbSamples)
{
m_peakLevel = std::max(std::fabs(m_peakLevel), sample);
m_levelSum += sample * sample;
m_levelCalcCount++;
}
else
{
m_rmsLevel = sqrt(m_levelSum / m_levelNbSamples);
m_peakLevelOut = m_peakLevel;
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_levelCalcCount = 0;
}
}
void ChirpChatModSource::applySettings(const ChirpChatModSettings& settings, bool force)
{
if ((settings.m_spreadFactor != m_settings.m_spreadFactor)
|| (settings.m_deBits != m_settings.m_deBits)
|| (settings.m_preambleChirps != m_settings.m_preambleChirps)|| force)
{
initSF(settings.m_spreadFactor);
initTest(settings.m_spreadFactor, settings.m_deBits);
reset();
}
if ((settings.m_quietMillis != m_settings.m_quietMillis) || force)
{
m_quietSamples = (m_bandwidth*settings.m_quietMillis) / 1000;
reset();
}
if ((settings.m_messageRepeat != m_settings.m_messageRepeat) || force) {
m_repeatCount = settings.m_messageRepeat;
}
m_settings = settings;
}
void ChirpChatModSource::applyChannelSettings(int channelSampleRate, int bandwidth, int channelFrequencyOffset, bool force)
{
qDebug() << "ChirpChatModSource::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset
<< " bandwidth: " << bandwidth
<< " SR: " << bandwidth * ChirpChatModSettings::oversampling;
if ((channelFrequencyOffset != m_channelFrequencyOffset)
|| (channelSampleRate != m_channelSampleRate) || force)
{
m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate);
}
if ((channelSampleRate != m_channelSampleRate)
|| (bandwidth != m_bandwidth) || force)
{
m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) (bandwidth*ChirpChatModSettings::oversampling) / (Real) channelSampleRate;
m_interpolator.create(16, bandwidth, bandwidth / 2.2);
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
m_bandwidth = bandwidth;
m_quietSamples = (bandwidth*m_settings.m_quietMillis) / 1000;
m_state = ChirpChatStateIdle;
reset();
}
void ChirpChatModSource::setSymbols(const std::vector<unsigned short>& symbols)
{
m_symbols = symbols;
qDebug("ChirpChatModSource::setSymbols: m_symbols: %lu", m_symbols.size());
m_repeatCount = m_settings.m_messageRepeat;
m_state = ChirpChatStateIdle; // first reset to idle
reset();
m_sampleCounter = m_quietSamples*ChirpChatModSettings::oversampling - 1; // start immediately
}