sdrangel/sdrgui/gui/glspectrumgui.cpp

1094 wiersze
37 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016-2020 F4EXB //
// written by Edouard Griffiths //
// //
// OpenGL interface modernization. //
// See: http://doc.qt.io/qt-5/qopenglshaderprogram.html //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QLineEdit>
#include <QToolTip>
#include <QFileDialog>
#include <QMessageBox>
#include <QScreen>
#include "gui/glspectrumgui.h"
#include "dsp/fftwindow.h"
#include "dsp/spectrumvis.h"
#include "gui/glspectrum.h"
#include "gui/glspectrumview.h"
#include "gui/crightclickenabler.h"
#include "gui/wsspectrumsettingsdialog.h"
#include "gui/spectrummarkersdialog.h"
#include "gui/spectrumcalibrationpointsdialog.h"
#include "gui/spectrummeasurementsdialog.h"
#include "gui/spectrummeasurements.h"
#include "gui/flowlayout.h"
#include "util/colormap.h"
#include "util/simpleserializer.h"
#include "util/db.h"
#include "ui_glspectrumgui.h"
const int GLSpectrumGUI::m_fpsMs[] = {500, 200, 100, 50, 20, 10, 5};
GLSpectrumGUI::GLSpectrumGUI(QWidget* parent) :
QWidget(parent),
ui(new Ui::GLSpectrumGUI),
m_spectrumVis(nullptr),
m_glSpectrum(nullptr),
m_doApplySettings(true),
m_calibrationShiftdB(0.0),
m_markersDialog(nullptr)
{
ui->setupUi(this);
// Use the custom flow layout for the 3 main horizontal layouts (lines)
ui->verticalLayout->removeItem(ui->Line6Layout);
ui->verticalLayout->removeItem(ui->Line5Layout);
ui->verticalLayout->removeItem(ui->Line4Layout);
ui->verticalLayout->removeItem(ui->Line3Layout);
ui->verticalLayout->removeItem(ui->Line2Layout);
ui->verticalLayout->removeItem(ui->Line1Layout);
FlowLayout *flowLayout = new FlowLayout(nullptr, 1, 1, 1);
flowLayout->addItem(ui->Line1Layout);
flowLayout->addItem(ui->Line2Layout);
flowLayout->addItem(ui->Line3Layout);
flowLayout->addItem(ui->Line4Layout);
flowLayout->addItem(ui->Line5Layout);
flowLayout->addItem(ui->Line6Layout);
ui->verticalLayout->addItem(flowLayout);
on_linscale_toggled(false);
//displayMeasurementGUI();
QString levelStyle = QString(
"QSpinBox {background-color: rgb(79, 79, 79);}"
"QLineEdit {color: white; background-color: rgb(79, 79, 79); border: 1px solid gray; border-radius: 4px;}"
"QTooltip {color: white; background-color: balck;}"
);
ui->refLevel->setStyleSheet(levelStyle);
ui->levelRange->setStyleSheet(levelStyle);
ui->fftOverlap->setStyleSheet(levelStyle);
ui->colorMap->addItems(ColorMap::getColorMapNames());
ui->colorMap->setCurrentText("Angel");
connect(&m_messageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()));
CRightClickEnabler *wsSpectrumRightClickEnabler = new CRightClickEnabler(ui->wsSpectrum);
connect(wsSpectrumRightClickEnabler, SIGNAL(rightClick(const QPoint &)), this, SLOT(openWebsocketSpectrumSettingsDialog(const QPoint &)));
CRightClickEnabler *calibrationPointsRightClickEnabler = new CRightClickEnabler(ui->calibration);
connect(calibrationPointsRightClickEnabler, SIGNAL(rightClick(const QPoint &)), this, SLOT(openCalibrationPointsDialog(const QPoint &)));
displaySettings();
setAveragingCombo();
applySettings();
}
GLSpectrumGUI::~GLSpectrumGUI()
{
if (m_markersDialog) {
delete m_markersDialog;
}
delete ui;
}
void GLSpectrumGUI::setBuddies(SpectrumVis* spectrumVis, GLSpectrum* glSpectrum)
{
m_spectrumVis = spectrumVis;
m_glSpectrum = glSpectrum;
m_glSpectrum->setSpectrumVis(spectrumVis);
m_glSpectrum->setMessageQueueToGUI(&m_messageQueue);
m_spectrumVis->setMessageQueueToGUI(&m_messageQueue);
}
void GLSpectrumGUI::resetToDefaults()
{
m_settings.resetToDefaults();
displaySettings();
applySettings();
}
QByteArray GLSpectrumGUI::serialize() const
{
const_cast<GLSpectrumGUI*>(this)->m_settings.getHistogramMarkers() = m_glSpectrum->getHistogramMarkers();
const_cast<GLSpectrumGUI*>(this)->m_settings.getWaterfallMarkers() = m_glSpectrum->getWaterfallMarkers();
return m_settings.serialize();
}
bool GLSpectrumGUI::deserialize(const QByteArray& data)
{
if (m_settings.deserialize(data))
{
m_glSpectrum->setHistogramMarkers(m_settings.getHistogramMarkers());
m_glSpectrum->setWaterfallMarkers(m_settings.getWaterfallMarkers());
setAveragingCombo();
displaySettings(); // ends with blockApplySettings(false)
applySettings();
return true;
}
else
{
resetToDefaults();
return false;
}
}
void GLSpectrumGUI::formatTo(SWGSDRangel::SWGObject *swgObject) const
{
m_settings.formatTo(swgObject);
}
void GLSpectrumGUI::updateFrom(const QStringList& keys, const SWGSDRangel::SWGObject *swgObject)
{
m_settings.updateFrom(keys, swgObject);
}
void GLSpectrumGUI::updateSettings()
{
displaySettings();
applySettings();
}
void GLSpectrumGUI::displaySettings()
{
blockApplySettings(true);
ui->refLevel->setValue(m_settings.m_refLevel + m_calibrationShiftdB);
ui->levelRange->setValue(m_settings.m_powerRange);
ui->decay->setSliderPosition(m_settings.m_decay);
ui->decayDivisor->setSliderPosition(m_settings.m_decayDivisor);
ui->stroke->setSliderPosition(m_settings.m_histogramStroke);
ui->waterfall->setChecked(m_settings.m_displayWaterfall);
ui->spectrogram->setChecked(m_settings.m_display3DSpectrogram);
ui->spectrogramStyle->setCurrentIndex((int) m_settings.m_3DSpectrogramStyle);
ui->spectrogramStyle->setVisible(m_settings.m_display3DSpectrogram);
ui->colorMap->setCurrentText(m_settings.m_colorMap);
ui->currentLine->blockSignals(true);
ui->currentFill->blockSignals(true);
ui->currentGradient->blockSignals(true);
ui->currentLine->setChecked(m_settings.m_displayCurrent && (m_settings.m_spectrumStyle == SpectrumSettings::SpectrumStyle::Line));
ui->currentFill->setChecked(m_settings.m_displayCurrent && (m_settings.m_spectrumStyle == SpectrumSettings::SpectrumStyle::Fill));
ui->currentGradient->setChecked(m_settings.m_displayCurrent && (m_settings.m_spectrumStyle == SpectrumSettings::SpectrumStyle::Gradient));
ui->currentLine->blockSignals(false);
ui->currentFill->blockSignals(false);
ui->currentGradient->blockSignals(false);
ui->maxHold->setChecked(m_settings.m_displayMaxHold);
ui->histogram->setChecked(m_settings.m_displayHistogram);
ui->invertWaterfall->setChecked(m_settings.m_invertedWaterfall);
ui->grid->setChecked(m_settings.m_displayGrid);
ui->gridIntensity->setSliderPosition(m_settings.m_displayGridIntensity);
ui->truncateScale->setChecked(m_settings.m_truncateFreqScale);
ui->decay->setToolTip(QString("Decay: %1").arg(m_settings.m_decay));
ui->decayDivisor->setToolTip(QString("Decay divisor: %1").arg(m_settings.m_decayDivisor));
ui->stroke->setToolTip(QString("Stroke: %1").arg(m_settings.m_histogramStroke));
ui->gridIntensity->setToolTip(QString("Grid intensity: %1").arg(m_settings.m_displayGridIntensity));
ui->traceIntensity->setToolTip(QString("Trace intensity: %1").arg(m_settings.m_displayTraceIntensity));
ui->fftWindow->blockSignals(true);
ui->averaging->blockSignals(true);
ui->averagingMode->blockSignals(true);
ui->linscale->blockSignals(true);
ui->fftWindow->setCurrentIndex(m_settings.m_fftWindow);
for (int i = SpectrumSettings::m_log2FFTSizeMin; i <= SpectrumSettings::m_log2FFTSizeMax; i++)
{
if (m_settings.m_fftSize == (1 << i))
{
ui->fftSize->setCurrentIndex(i - SpectrumSettings::m_log2FFTSizeMin);
break;
}
}
setFFTSizeToolitp();
unsigned int i = 0;
for (; i < sizeof(m_fpsMs)/sizeof(m_fpsMs[0]); i++)
{
if (m_settings.m_fpsPeriodMs >= m_fpsMs[i]) {
break;
}
}
ui->fps->setCurrentIndex(i);
ui->fftOverlap->setValue(m_settings.m_fftOverlap);
setMaximumOverlap();
ui->averaging->setCurrentIndex(m_settings.m_averagingIndex);
ui->averagingMode->setCurrentIndex((int) m_settings.m_averagingMode);
ui->linscale->setChecked(m_settings.m_linear);
setAveragingToolitp();
ui->calibration->setChecked(m_settings.m_useCalibration);
displayGotoMarkers();
ui->fftWindow->blockSignals(false);
ui->averaging->blockSignals(false);
ui->averagingMode->blockSignals(false);
ui->linscale->blockSignals(false);
blockApplySettings(false);
updateMeasurements();
}
void GLSpectrumGUI::displayGotoMarkers()
{
ui->gotoMarker->clear();
ui->gotoMarker->addItem("Go to...");
for (auto marker : m_settings.m_annoationMarkers)
{
if (marker.m_show != SpectrumAnnotationMarker::Hidden)
{
qint64 freq = marker.m_startFrequency + marker.m_bandwidth/2;
QString freqString = displayScaled(freq, 'f', 3, true);
ui->gotoMarker->addItem(QString("%1 - %2").arg(marker.m_text).arg(freqString));
}
}
ui->gotoMarker->setVisible(m_glSpectrum && m_glSpectrum->isDeviceSpectrum() && (ui->gotoMarker->count() > 1));
}
QString GLSpectrumGUI::displayScaled(int64_t value, char type, int precision, bool showMult)
{
int64_t posValue = (value < 0) ? -value : value;
if (posValue < 1000) {
return tr("%1").arg(QString::number(value, type, precision));
} else if (posValue < 1000000) {
return tr("%1%2").arg(QString::number(value / 1000.0, type, precision)).arg(showMult ? "k" : "");
} else if (posValue < 1000000000) {
return tr("%1%2").arg(QString::number(value / 1000000.0, type, precision)).arg(showMult ? "M" : "");
} else if (posValue < 1000000000000) {
return tr("%1%2").arg(QString::number(value / 1000000000.0, type, precision)).arg(showMult ? "G" : "");
} else {
return tr("%1").arg(QString::number(value, 'e', precision));
}
}
void GLSpectrumGUI::blockApplySettings(bool block)
{
m_doApplySettings = !block;
}
void GLSpectrumGUI::applySettings()
{
if (!m_doApplySettings) {
return;
}
if (m_glSpectrum) {
applySpectrumSettings();
}
if (m_spectrumVis)
{
SpectrumVis::MsgConfigureSpectrumVis *msg = SpectrumVis::MsgConfigureSpectrumVis::create(m_settings, false);
m_spectrumVis->getInputMessageQueue()->push(msg);
}
}
void GLSpectrumGUI::applySpectrumSettings()
{
m_glSpectrum->setDisplayWaterfall(m_settings.m_displayWaterfall);
m_glSpectrum->setDisplay3DSpectrogram(m_settings.m_display3DSpectrogram);
m_glSpectrum->set3DSpectrogramStyle(m_settings.m_3DSpectrogramStyle);
m_glSpectrum->setColorMapName(m_settings.m_colorMap);
m_glSpectrum->setSpectrumStyle(m_settings.m_spectrumStyle);
m_glSpectrum->setInvertedWaterfall(m_settings.m_invertedWaterfall);
m_glSpectrum->setDisplayMaxHold(m_settings.m_displayMaxHold);
m_glSpectrum->setDisplayCurrent(m_settings.m_displayCurrent);
m_glSpectrum->setDisplayHistogram(m_settings.m_displayHistogram);
m_glSpectrum->setDecay(m_settings.m_decay);
m_glSpectrum->setDecayDivisor(m_settings.m_decayDivisor);
m_glSpectrum->setHistoStroke(m_settings.m_histogramStroke);
m_glSpectrum->setDisplayGrid(m_settings.m_displayGrid);
m_glSpectrum->setDisplayGridIntensity(m_settings.m_displayGridIntensity);
m_glSpectrum->setDisplayTraceIntensity(m_settings.m_displayTraceIntensity);
m_glSpectrum->setWaterfallShare(m_settings.m_waterfallShare);
if ((m_settings.m_averagingMode == SpectrumSettings::AvgModeFixed) || (m_settings.m_averagingMode == SpectrumSettings::AvgModeMax)) {
m_glSpectrum->setTimingRate(SpectrumSettings::getAveragingValue(m_settings.m_averagingIndex, m_settings.m_averagingMode) == 0 ?
1 :
SpectrumSettings::getAveragingValue(m_settings.m_averagingIndex, m_settings.m_averagingMode));
} else {
m_glSpectrum->setTimingRate(1);
}
Real refLevel = m_settings.m_linear ? pow(10.0, m_settings.m_refLevel/10.0) : m_settings.m_refLevel;
Real powerRange = m_settings.m_linear ? pow(10.0, m_settings.m_refLevel/10.0) : m_settings.m_powerRange;
qDebug("GLSpectrumGUI::applySettings: refLevel: %e powerRange: %e", refLevel, powerRange);
m_glSpectrum->setReferenceLevel(refLevel);
m_glSpectrum->setPowerRange(powerRange);
m_glSpectrum->setFPSPeriodMs(m_settings.m_fpsPeriodMs);
m_glSpectrum->setFreqScaleTruncationMode(m_settings.m_truncateFreqScale);
m_glSpectrum->setLinear(m_settings.m_linear);
m_glSpectrum->setUseCalibration(m_settings.m_useCalibration);
m_glSpectrum->setHistogramMarkers(m_settings.m_histogramMarkers);
m_glSpectrum->setWaterfallMarkers(m_settings.m_waterfallMarkers);
m_glSpectrum->setAnnotationMarkers(m_settings.m_annoationMarkers);
m_glSpectrum->setMarkersDisplay(m_settings.m_markersDisplay);
m_glSpectrum->setCalibrationPoints(m_settings.m_calibrationPoints);
m_glSpectrum->setCalibrationInterpMode(m_settings.m_calibrationInterpMode);
}
void GLSpectrumGUI::on_fftWindow_currentIndexChanged(int index)
{
qDebug("GLSpectrumGUI::on_fftWindow_currentIndexChanged: %d", index);
m_settings.m_fftWindow = (FFTWindow::Function) index;
applySettings();
}
void GLSpectrumGUI::on_fftSize_currentIndexChanged(int index)
{
qDebug("GLSpectrumGUI::on_fftSize_currentIndexChanged: %d", index);
m_settings.m_fftSize = 1 << (SpectrumSettings::m_log2FFTSizeMin + index);
setAveragingCombo();
setMaximumOverlap();
applySettings();
setAveragingToolitp();
setFFTSizeToolitp();
}
void GLSpectrumGUI::on_fftOverlap_valueChanged(int value)
{
qDebug("GLSpectrumGUI::on_fftOverlap_valueChanged: %d", value);
m_settings.m_fftOverlap = value;
setMaximumOverlap();
applySettings();
setAveragingToolitp();
}
void GLSpectrumGUI::on_autoscale_clicked(bool checked)
{
(void) checked;
if (!m_spectrumVis) {
return;
}
std::vector<Real> psd;
m_spectrumVis->getZoomedPSDCopy(psd);
int avgRange = m_settings.m_fftSize / 32;
if (psd.size() < (unsigned int) avgRange) {
return;
}
std::sort(psd.begin(), psd.end());
float max = psd[psd.size() - 1];
float minSum = 0.0f;
for (int i = 0; i < avgRange; i++) {
minSum += psd[i];
}
float minAvg = minSum / avgRange;
int minLvl = CalcDb::dbPower(minAvg*2);
int maxLvl = CalcDb::dbPower(max*10);
m_settings.m_refLevel = maxLvl;
m_settings.m_powerRange = maxLvl - minLvl;
ui->refLevel->setValue(m_settings.m_refLevel + m_calibrationShiftdB);
ui->levelRange->setValue(m_settings.m_powerRange);
// qDebug("GLSpectrumGUI::on_autoscale_clicked: max: %d min %d max: %e min: %e",
// maxLvl, minLvl, maxAvg, minAvg);
applySettings();
}
void GLSpectrumGUI::on_averagingMode_currentIndexChanged(int index)
{
qDebug("GLSpectrumGUI::on_averagingMode_currentIndexChanged: %d", index);
m_settings.m_averagingMode = index < 0 ?
SpectrumSettings::AvgModeNone :
index > 3 ?
SpectrumSettings::AvgModeMax :
(SpectrumSettings::AveragingMode) index;
setAveragingCombo();
applySettings();
setAveragingToolitp();
}
void GLSpectrumGUI::on_averaging_currentIndexChanged(int index)
{
qDebug("GLSpectrumGUI::on_averaging_currentIndexChanged: %d", index);
m_settings.m_averagingIndex = index;
applySettings();
setAveragingToolitp();
}
void GLSpectrumGUI::on_linscale_toggled(bool checked)
{
qDebug("GLSpectrumGUI::on_averaging_currentIndexChanged: %s", checked ? "lin" : "log");
m_settings.m_linear = checked;
applySettings();
}
void GLSpectrumGUI::on_wsSpectrum_toggled(bool checked)
{
if (m_spectrumVis)
{
SpectrumVis::MsgConfigureWSpectrumOpenClose *msg = SpectrumVis::MsgConfigureWSpectrumOpenClose::create(checked);
m_spectrumVis->getInputMessageQueue()->push(msg);
}
}
void GLSpectrumGUI::on_markers_clicked(bool checked)
{
(void) checked;
if (!m_glSpectrum || m_markersDialog) {
return;
}
m_markersDialog = new SpectrumMarkersDialog(
m_glSpectrum->getHistogramMarkers(),
m_glSpectrum->getWaterfallMarkers(),
m_glSpectrum->getAnnotationMarkers(),
m_glSpectrum->getMarkersDisplay(),
m_glSpectrum->getHistogramFindPeaks(),
m_calibrationShiftdB,
this
);
m_markersDialog->setCenterFrequency(m_glSpectrum->getCenterFrequency());
m_markersDialog->setPower(m_glSpectrum->getPowerMax() / 2.0f);
m_markersDialog->setTime(m_glSpectrum->getTimeMax() / 2.0f);
connect(m_markersDialog, SIGNAL(updateHistogram()), this, SLOT(updateHistogramMarkers()));
connect(m_markersDialog, SIGNAL(updateWaterfall()), this, SLOT(updateWaterfallMarkers()));
connect(m_markersDialog, SIGNAL(updateAnnotations()), this, SLOT(updateAnnotationMarkers()));
connect(m_markersDialog, SIGNAL(updateMarkersDisplay()), this, SLOT(updateMarkersDisplay()));
connect(m_markersDialog, SIGNAL(finished(int)), this, SLOT(closeMarkersDialog()));
QPoint globalCursorPos = QCursor::pos();
QScreen *screen = QGuiApplication::screenAt(globalCursorPos);
QRect mouseScreenGeometry = screen->geometry();
QPoint localCursorPos = globalCursorPos - mouseScreenGeometry.topLeft();
m_markersDialog->move(localCursorPos);
m_markersDialog->show();
}
void GLSpectrumGUI::closeMarkersDialog()
{
m_settings.m_histogramMarkers = m_glSpectrum->getHistogramMarkers();
m_settings.m_waterfallMarkers = m_glSpectrum->getWaterfallMarkers();
m_settings.m_annoationMarkers = m_glSpectrum->getAnnotationMarkers();
m_settings.m_markersDisplay = m_glSpectrum->getMarkersDisplay();
displayGotoMarkers();
applySettings();
delete m_markersDialog;
m_markersDialog = nullptr;
}
// Save spectrum data to a CSV file
void GLSpectrumGUI::on_save_clicked(bool checked)
{
(void) checked;
// Get filename to write
QFileDialog fileDialog(nullptr, "Select file to save data to", "", "*.csv");
fileDialog.setAcceptMode(QFileDialog::AcceptSave);
if (fileDialog.exec())
{
QStringList fileNames = fileDialog.selectedFiles();
if (fileNames.size() > 0)
{
// Get spectrum data (This vector can be larger than fftSize)
std::vector<Real> spectrum;
m_spectrumVis->getPowerSpectrumCopy(spectrum);
// Write to text file
QFile file(fileNames[0]);
if (file.open(QIODevice::WriteOnly))
{
QTextStream out(&file);
float frequency = m_glSpectrum->getCenterFrequency() - (m_glSpectrum->getSampleRate() / 2.0f);
float rbw = m_glSpectrum->getSampleRate() / (float)m_settings.m_fftSize;
out << "\"Frequency\",\"Power\"\n";
for (int i = 0; i < m_settings.m_fftSize; i++)
{
out << frequency << "," << spectrum[i] << "\n";
frequency += rbw;
}
file.close();
}
else
{
QMessageBox::critical(this, "Spectrum", QString("Failed to open file %1").arg(fileNames[0]));
}
}
}
}
void GLSpectrumGUI::on_refLevel_valueChanged(int value)
{
m_settings.m_refLevel = value - m_calibrationShiftdB;
applySettings();
}
void GLSpectrumGUI::on_levelRange_valueChanged(int value)
{
m_settings.m_powerRange = value;
applySettings();
}
void GLSpectrumGUI::on_fps_currentIndexChanged(int index)
{
m_settings.m_fpsPeriodMs = m_fpsMs[index];
qDebug("GLSpectrumGUI::on_fps_currentIndexChanged: %d ms", m_settings.m_fpsPeriodMs);
applySettings();
}
void GLSpectrumGUI::on_decay_valueChanged(int index)
{
m_settings.m_decay = index;
ui->decay->setToolTip(QString("Decay: %1").arg(m_settings.m_decay));
applySettings();
}
void GLSpectrumGUI::on_decayDivisor_valueChanged(int index)
{
m_settings.m_decayDivisor = index;
ui->decayDivisor->setToolTip(QString("Decay divisor: %1").arg(m_settings.m_decayDivisor));
applySettings();
}
void GLSpectrumGUI::on_stroke_valueChanged(int index)
{
m_settings.m_histogramStroke = index;
ui->stroke->setToolTip(QString("Stroke: %1").arg(m_settings.m_histogramStroke));
applySettings();
}
void GLSpectrumGUI::on_spectrogramStyle_currentIndexChanged(int index)
{
m_settings.m_3DSpectrogramStyle = (SpectrumSettings::SpectrogramStyle)index;
applySettings();
}
void GLSpectrumGUI::on_colorMap_currentIndexChanged(int index)
{
(void) index;
m_settings.m_colorMap = ui->colorMap->currentText();
applySettings();
}
void GLSpectrumGUI::on_waterfall_toggled(bool checked)
{
m_settings.m_displayWaterfall = checked;
if (checked)
{
blockApplySettings(true);
ui->spectrogram->setChecked(false);
blockApplySettings(false);
}
applySettings();
}
void GLSpectrumGUI::on_spectrogram_toggled(bool checked)
{
m_settings.m_display3DSpectrogram = checked;
if (checked)
{
blockApplySettings(true);
ui->waterfall->setChecked(false);
blockApplySettings(false);
}
ui->spectrogramStyle->setVisible(m_settings.m_display3DSpectrogram);
applySettings();
}
void GLSpectrumGUI::on_histogram_toggled(bool checked)
{
m_settings.m_displayHistogram = checked;
applySettings();
}
void GLSpectrumGUI::on_maxHold_toggled(bool checked)
{
m_settings.m_displayMaxHold = checked;
applySettings();
}
void GLSpectrumGUI::on_currentLine_toggled(bool checked)
{
ui->currentFill->blockSignals(true);
ui->currentGradient->blockSignals(true);
ui->currentFill->setChecked(false);
ui->currentGradient->setChecked(false);
ui->currentFill->blockSignals(false);
ui->currentGradient->blockSignals(false);
m_settings.m_spectrumStyle = SpectrumSettings::SpectrumStyle::Line;
m_settings.m_displayCurrent = checked;
applySettings();
}
void GLSpectrumGUI::on_currentFill_toggled(bool checked)
{
ui->currentLine->blockSignals(true);
ui->currentGradient->blockSignals(true);
ui->currentLine->setChecked(false);
ui->currentGradient->setChecked(false);
ui->currentLine->blockSignals(false);
ui->currentGradient->blockSignals(false);
m_settings.m_spectrumStyle = SpectrumSettings::SpectrumStyle::Fill;
m_settings.m_displayCurrent = checked;
applySettings();
}
void GLSpectrumGUI::on_currentGradient_toggled(bool checked)
{
ui->currentLine->blockSignals(true);
ui->currentFill->blockSignals(true);
ui->currentLine->setChecked(false);
ui->currentFill->setChecked(false);
ui->currentLine->blockSignals(false);
ui->currentFill->blockSignals(false);
m_settings.m_spectrumStyle = SpectrumSettings::SpectrumStyle::Gradient;
m_settings.m_displayCurrent = checked;
applySettings();
}
void GLSpectrumGUI::on_invertWaterfall_toggled(bool checked)
{
m_settings.m_invertedWaterfall = checked;
applySettings();
}
void GLSpectrumGUI::on_grid_toggled(bool checked)
{
m_settings.m_displayGrid = checked;
applySettings();
}
void GLSpectrumGUI::on_gridIntensity_valueChanged(int index)
{
m_settings.m_displayGridIntensity = index;
ui->gridIntensity->setToolTip(QString("Grid intensity: %1").arg(m_settings.m_displayGridIntensity));
applySettings();
}
void GLSpectrumGUI::on_truncateScale_toggled(bool checked)
{
m_settings.m_truncateFreqScale = checked;
qDebug("GLSpectrumGUI::on_truncateScale_toggled: m_truncateFreqScale: %s", (m_settings.m_truncateFreqScale ? "on" : "off"));
applySettings();
}
void GLSpectrumGUI::on_traceIntensity_valueChanged(int index)
{
m_settings.m_displayTraceIntensity = index;
ui->traceIntensity->setToolTip(QString("Trace intensity: %1").arg(m_settings.m_displayTraceIntensity));
applySettings();
}
void GLSpectrumGUI::on_clearSpectrum_clicked(bool checked)
{
(void) checked;
if (m_glSpectrum) {
m_glSpectrum->clearSpectrumHistogram();
}
}
void GLSpectrumGUI::on_freeze_toggled(bool checked)
{
SpectrumVis::MsgStartStop *msg = SpectrumVis::MsgStartStop::create(!checked);
m_spectrumVis->getInputMessageQueue()->push(msg);
}
void GLSpectrumGUI::on_calibration_toggled(bool checked)
{
m_settings.m_useCalibration = checked;
applySettings();
}
void GLSpectrumGUI::on_gotoMarker_currentIndexChanged(int index)
{
if (index <= 0) {
return;
}
int i = 1;
for (auto marker : m_settings.m_annoationMarkers)
{
if (marker.m_show != SpectrumAnnotationMarker::Hidden)
{
if (i == index)
{
emit requestCenterFrequency(marker.m_startFrequency + marker.m_bandwidth/2);
break;
}
i++;
}
}
ui->gotoMarker->setCurrentIndex(0); // Redisplay "Goto..."
}
void GLSpectrumGUI::setAveragingCombo()
{
int index = ui->averaging->currentIndex();
ui->averaging->blockSignals(true);
ui->averaging->clear();
ui->averaging->addItem(QString("1"));
uint64_t maxAveraging = SpectrumSettings::getMaxAveragingValue(m_settings.m_fftSize, m_settings.m_averagingMode);
for (int i = 0; i <= SpectrumSettings::getAveragingMaxScale(m_settings.m_averagingMode); i++)
{
QString s;
int m = pow(10.0, i);
uint64_t x = 2*m;
if (x > maxAveraging) {
break;
}
setNumberStr(x, s);
ui->averaging->addItem(s);
x = 5*m;
if (x > maxAveraging) {
break;
}
setNumberStr(x, s);
ui->averaging->addItem(s);
x = 10*m;
if (x > maxAveraging) {
break;
}
setNumberStr(x, s);
ui->averaging->addItem(s);
}
ui->averaging->setCurrentIndex(index >= ui->averaging->count() ? ui->averaging->count() - 1 : index);
ui->averaging->blockSignals(false);
}
void GLSpectrumGUI::setNumberStr(int n, QString& s)
{
if (n < 1000) {
s = tr("%1").arg(n);
} else if (n < 100000) {
s = tr("%1k").arg(n/1000);
} else if (n < 1000000) {
s = tr("%1e5").arg(n/100000);
} else if (n < 1000000000) {
s = tr("%1M").arg(n/1000000);
} else {
s = tr("%1G").arg(n/1000000000);
}
}
void GLSpectrumGUI::setNumberStr(float v, int decimalPlaces, QString& s)
{
if (v < 1e-6) {
s = tr("%1n").arg(v*1e9, 0, 'f', decimalPlaces);
} else if (v < 1e-3) {
s = tr("%1µ").arg(v*1e6, 0, 'f', decimalPlaces);
} else if (v < 1.0) {
s = tr("%1m").arg(v*1e3, 0, 'f', decimalPlaces);
} else if (v < 1e3) {
s = tr("%1").arg(v, 0, 'f', decimalPlaces);
} else if (v < 1e6) {
s = tr("%1k").arg(v*1e-3, 0, 'f', decimalPlaces);
} else if (v < 1e9) {
s = tr("%1M").arg(v*1e-6, 0, 'f', decimalPlaces);
} else {
s = tr("%1G").arg(v*1e-9, 0, 'f', decimalPlaces);
}
}
void GLSpectrumGUI::setAveragingToolitp()
{
if (m_glSpectrum)
{
QString s;
int averagingIndex = m_settings.m_averagingMode == SpectrumSettings::AvgModeNone ? 0 : m_settings.m_averagingIndex;
float halfSize = m_settings.m_fftSize / 2;
float overlapFactor = (halfSize - m_settings.m_fftOverlap) / halfSize;
float averagingTime = (m_settings.m_fftSize * (SpectrumSettings::getAveragingValue(averagingIndex, m_settings.m_averagingMode) == 0 ?
1 :
SpectrumSettings::getAveragingValue(averagingIndex, m_settings.m_averagingMode))) / (float) m_glSpectrum->getSampleRate();
setNumberStr(averagingTime*overlapFactor, 2, s);
ui->averaging->setToolTip(QString("Number of averaging samples (avg time: %1s)").arg(s));
}
else
{
ui->averaging->setToolTip(QString("Number of averaging samples"));
}
}
void GLSpectrumGUI::setFFTSizeToolitp()
{
if (m_glSpectrum)
{
QString s;
setNumberStr((float) m_glSpectrum->getSampleRate() / m_settings.m_fftSize, 2, s);
ui->fftSize->setToolTip(QString("FFT size (resolution: %1Hz)").arg(s));
}
else
{
ui->fftSize->setToolTip(QString("FFT size"));
}
}
void GLSpectrumGUI::setFFTSize(int log2FFTSize)
{
ui->fftSize->setCurrentIndex(
log2FFTSize < SpectrumSettings::m_log2FFTSizeMin ?
0
: log2FFTSize > SpectrumSettings::m_log2FFTSizeMax ?
SpectrumSettings::m_log2FFTSizeMax - SpectrumSettings::m_log2FFTSizeMin
: log2FFTSize - SpectrumSettings::m_log2FFTSizeMin
);
}
void GLSpectrumGUI::setMaximumOverlap()
{
int halfSize = m_settings.m_fftSize/2;
ui->fftOverlap->setMaximum((halfSize)-1);
int value = ui->fftOverlap->value();
ui->fftOverlap->setValue(value);
ui->fftOverlap->setToolTip(tr("FFT overlap %1 %").arg((value/(float)halfSize)*100.0f));
if (m_glSpectrum) {
m_glSpectrum->setFFTOverlap(value);
}
}
bool GLSpectrumGUI::handleMessage(const Message& message)
{
if (GLSpectrumView::MsgReportSampleRate::match(message))
{
setAveragingToolitp();
setFFTSizeToolitp();
return true;
}
else if (SpectrumVis::MsgConfigureSpectrumVis::match(message))
{
SpectrumVis::MsgConfigureSpectrumVis& cfg = (SpectrumVis::MsgConfigureSpectrumVis&) message;
m_settings = cfg.getSettings();
displaySettings();
if (m_glSpectrum) {
applySpectrumSettings();
}
return true;
}
else if (SpectrumVis::MsgConfigureWSpectrumOpenClose::match(message))
{
SpectrumVis::MsgConfigureWSpectrumOpenClose& notif = (SpectrumVis::MsgConfigureWSpectrumOpenClose&) message;
ui->wsSpectrum->blockSignals(true);
ui->wsSpectrum->doToggle(notif.getOpenClose());
ui->wsSpectrum->blockSignals(false);
return true;
}
else if (GLSpectrumView::MsgReportWaterfallShare::match(message))
{
const GLSpectrumView::MsgReportWaterfallShare& report = (const GLSpectrumView::MsgReportWaterfallShare&) message;
m_settings.m_waterfallShare = report.getWaterfallShare();
return true;
}
else if (GLSpectrumView::MsgReportFFTOverlap::match(message))
{
const GLSpectrumView::MsgReportFFTOverlap& report = (const GLSpectrumView::MsgReportFFTOverlap&) message;
m_settings.m_fftOverlap = report.getOverlap();
ui->fftOverlap->blockSignals(true);
ui->fftOverlap->setValue(m_settings.m_fftOverlap);
ui->fftOverlap->blockSignals(false);
return true;
}
else if (GLSpectrumView::MsgReportPowerScale::match(message))
{
const GLSpectrumView::MsgReportPowerScale& report = (const GLSpectrumView::MsgReportPowerScale&) message;
m_settings.m_refLevel = report.getRefLevel();
m_settings.m_powerRange = report.getRange();
ui->refLevel->blockSignals(true);
ui->levelRange->blockSignals(true);
ui->refLevel->setValue(m_settings.m_refLevel + m_calibrationShiftdB);
ui->levelRange->setValue(m_settings.m_powerRange);
ui->levelRange->blockSignals(false);
ui->refLevel->blockSignals(false);
return true;
}
else if (GLSpectrumView::MsgReportCalibrationShift::match(message))
{
const GLSpectrumView::MsgReportCalibrationShift& report = (GLSpectrumView::MsgReportCalibrationShift&) message;
m_calibrationShiftdB = report.getCalibrationShiftdB();
ui->refLevel->blockSignals(true);
ui->refLevel->setValue(m_settings.m_refLevel + m_calibrationShiftdB);
ui->refLevel->blockSignals(false);
return true;
}
else if (GLSpectrumView::MsgReportHistogramMarkersChange::match(message))
{
if (m_markersDialog) {
m_markersDialog->updateHistogramMarkersDisplay();
}
return true;
}
else if (GLSpectrumView::MsgReportWaterfallMarkersChange::match(message))
{
if (m_markersDialog) {
m_markersDialog->updateWaterfallMarkersDisplay();
}
return true;
}
else if (SpectrumVis::MsgStartStop::match(message))
{
const SpectrumVis::MsgStartStop& msg = (SpectrumVis::MsgStartStop&) message;
ui->freeze->blockSignals(true);
ui->freeze->doToggle(!msg.getStartStop()); // this is a freeze so stop is true
ui->freeze->blockSignals(false);
return true;
}
return false;
}
void GLSpectrumGUI::handleInputMessages()
{
Message* message;
while ((message = m_messageQueue.pop()) != 0)
{
qDebug("GLSpectrumGUI::handleInputMessages: message: %s", message->getIdentifier());
if (handleMessage(*message))
{
delete message;
}
}
}
void GLSpectrumGUI::openWebsocketSpectrumSettingsDialog(const QPoint& p)
{
WebsocketSpectrumSettingsDialog dialog(this);
dialog.setAddress(m_settings.m_wsSpectrumAddress);
dialog.setPort(m_settings.m_wsSpectrumPort);
dialog.move(p);
dialog.exec();
if (dialog.hasChanged())
{
m_settings.m_wsSpectrumAddress = dialog.getAddress();
m_settings.m_wsSpectrumPort = dialog.getPort();
applySettings();
}
}
void GLSpectrumGUI::openCalibrationPointsDialog(const QPoint& p)
{
SpectrumCalibrationPointsDialog dialog(
m_glSpectrum->getCalibrationPoints(),
m_glSpectrum->getCalibrationInterpMode(),
m_glSpectrum->getHistogramMarkers().size() > 0 ? &m_glSpectrum->getHistogramMarkers()[0] : nullptr,
this
);
dialog.setCenterFrequency(m_glSpectrum->getCenterFrequency());
connect(&dialog, SIGNAL(updateCalibrationPoints()), this, SLOT(updateCalibrationPoints()));
dialog.move(p);
dialog.exec();
m_settings.m_histogramMarkers = m_glSpectrum->getHistogramMarkers();
m_settings.m_waterfallMarkers = m_glSpectrum->getWaterfallMarkers();
m_settings.m_annoationMarkers = m_glSpectrum->getAnnotationMarkers();
m_settings.m_markersDisplay = m_glSpectrum->getMarkersDisplay();
m_settings.m_calibrationPoints = m_glSpectrum->getCalibrationPoints();
m_settings.m_calibrationInterpMode = m_glSpectrum->getCalibrationInterpMode();
applySettings();
}
void GLSpectrumGUI::updateHistogramMarkers()
{
if (m_glSpectrum) {
m_glSpectrum->updateHistogramMarkers();
}
}
void GLSpectrumGUI::updateWaterfallMarkers()
{
if (m_glSpectrum) {
m_glSpectrum->updateWaterfallMarkers();
}
}
void GLSpectrumGUI::updateAnnotationMarkers()
{
if (m_glSpectrum) {
m_glSpectrum->updateAnnotationMarkers();
}
}
void GLSpectrumGUI::updateMarkersDisplay()
{
if (m_glSpectrum) {
m_glSpectrum->updateMarkersDisplay();
}
}
void GLSpectrumGUI::updateCalibrationPoints()
{
if (m_glSpectrum) {
m_glSpectrum->updateCalibrationPoints();
}
}
void GLSpectrumGUI::on_measure_clicked(bool checked)
{
(void) checked;
SpectrumMeasurementsDialog measurementsDialog(
m_glSpectrum,
&m_settings,
this
);
connect(&measurementsDialog, &SpectrumMeasurementsDialog::updateMeasurements, this, &GLSpectrumGUI::updateMeasurements);
measurementsDialog.exec();
}
void GLSpectrumGUI::updateMeasurements()
{
if (m_glSpectrum)
{
m_glSpectrum->setMeasurementsVisible(m_settings.m_measurement != SpectrumSettings::MeasurementNone);
m_glSpectrum->setMeasurementsPosition(m_settings.m_measurementsPosition);
m_glSpectrum->setMeasurementParams(
m_settings.m_measurement,
m_settings.m_measurementCenterFrequencyOffset,
m_settings.m_measurementBandwidth,
m_settings.m_measurementChSpacing,
m_settings.m_measurementAdjChBandwidth,
m_settings.m_measurementHarmonics,
m_settings.m_measurementPeaks,
m_settings.m_measurementHighlight,
m_settings.m_measurementPrecision
);
}
}