sdrangel/sdrbase/dsp/spectrumsettings.cpp

655 wiersze
23 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QBuffer>
#include <QDataStream>
#include "SWGGLSpectrum.h"
#include "util/simpleserializer.h"
#include "spectrumsettings.h"
SpectrumSettings::SpectrumSettings()
{
resetToDefaults();
}
SpectrumSettings::~SpectrumSettings()
{}
void SpectrumSettings::resetToDefaults()
{
m_fftSize = 1024;
m_fftOverlap = 0;
m_fftWindow = FFTWindow::Hanning;
m_refLevel = 0;
m_powerRange = 100;
m_fpsPeriodMs = 50;
m_decay = 1;
m_decayDivisor = 1;
m_histogramStroke = 30;
m_displayGridIntensity = 5;
m_displayTraceIntensity = 50;
m_waterfallShare = 0.66;
m_displayCurrent = true;
m_displayWaterfall = true;
m_invertedWaterfall = true;
m_display3DSpectrogram = false;
m_displayMaxHold = false;
m_displayHistogram = false;
m_displayGrid = false;
m_truncateFreqScale = false;
m_averagingMode = AvgModeNone;
m_averagingIndex = 0;
m_averagingValue = 1;
m_linear = false;
m_ssb = false;
m_usb = true;
m_wsSpectrum = false;
m_wsSpectrumAddress = "127.0.0.1";
m_wsSpectrumPort = 8887;
m_markersDisplay = MarkersDisplayNone;
m_useCalibration = false;
m_calibrationInterpMode = CalibInterpLinear;
m_3DSpectrogramStyle = Outline;
m_colorMap = "Angel";
m_spectrumStyle = Line;
m_measurement = MeasurementNone;
m_measurementCenterFrequencyOffset = 0;
m_measurementBandwidth = 10000;
m_measurementChSpacing = 10000;
m_measurementAdjChBandwidth = 10000;
m_measurementHarmonics = 5;
m_measurementPeaks = 5;
m_measurementHighlight = true;
m_measurementsPosition = PositionBelow;
m_measurementPrecision = 1;
m_findHistogramPeaks = false;
}
QByteArray SpectrumSettings::serialize() const
{
SimpleSerializer s(1);
s.writeS32(1, m_fftSize);
s.writeS32(2, m_fftOverlap);
s.writeS32(3, (int) m_fftWindow);
s.writeReal(4, m_refLevel);
s.writeReal(5, m_powerRange);
s.writeBool(6, m_displayWaterfall);
s.writeBool(7, m_invertedWaterfall);
s.writeBool(8, m_displayMaxHold);
s.writeBool(9, m_displayHistogram);
s.writeS32(10, m_decay);
s.writeBool(11, m_displayGrid);
s.writeS32(13, m_displayGridIntensity);
s.writeS32(14, m_decayDivisor);
s.writeS32(15, m_histogramStroke);
s.writeBool(16, m_displayCurrent);
s.writeS32(17, m_displayTraceIntensity);
s.writeReal(18, m_waterfallShare);
s.writeS32(19, (int) m_averagingMode);
s.writeS32(20, (qint32) getAveragingValue(m_averagingIndex, m_averagingMode));
s.writeBool(21, m_linear);
s.writeString(22, m_wsSpectrumAddress);
s.writeU32(23, m_wsSpectrumPort);
s.writeBool(24, m_ssb);
s.writeBool(25, m_usb);
s.writeS32(26, m_fpsPeriodMs);
s.writeBool(27, m_wsSpectrum);
s.writeS32(28, (int) m_markersDisplay);
s.writeBool(29, m_useCalibration);
s.writeS32(30, (int) m_calibrationInterpMode);
s.writeBool(31, m_display3DSpectrogram);
s.writeS32(32, (int) m_3DSpectrogramStyle);
s.writeString(33, m_colorMap);
s.writeS32(34, (int) m_spectrumStyle);
s.writeS32(35, (int) m_measurement);
s.writeS32(36, m_measurementBandwidth);
s.writeS32(37, m_measurementChSpacing);
s.writeS32(38, m_measurementAdjChBandwidth);
s.writeS32(39, m_measurementHarmonics);
// 41, 42 used below
s.writeBool(42, m_measurementHighlight);
s.writeS32(43, m_measurementPeaks);
s.writeS32(44, (int)m_measurementsPosition);
s.writeS32(45, m_measurementPrecision);
s.writeS32(46, m_measurementCenterFrequencyOffset);
s.writeBool(47, m_findHistogramPeaks);
s.writeBool(48, m_truncateFreqScale);
s.writeS32(100, m_histogramMarkers.size());
for (int i = 0; i < m_histogramMarkers.size(); i++) {
s.writeBlob(101+i, m_histogramMarkers[i].serialize());
}
s.writeS32(110, m_waterfallMarkers.size());
for (int i = 0; i < m_waterfallMarkers.size(); i++) {
s.writeBlob(111+i, m_waterfallMarkers[i].serialize());
}
s.writeList(40, m_annoationMarkers);
s.writeList(41, m_calibrationPoints);
return s.final();
}
QDataStream& operator<<(QDataStream& out, const SpectrumAnnotationMarker& marker)
{
out << marker.m_startFrequency;
out << marker.m_bandwidth;
out << marker.m_markerColor;
out << (int) marker.m_show;
out << marker.m_text;
return out;
}
QDataStream& operator<<(QDataStream& out, const SpectrumCalibrationPoint& calibrationPoint)
{
out << calibrationPoint.m_frequency;
out << calibrationPoint.m_powerRelativeReference;
out << calibrationPoint.m_powerCalibratedReference;
return out;
}
bool SpectrumSettings::deserialize(const QByteArray& data)
{
SimpleDeserializer d(data);
if(!d.isValid()) {
resetToDefaults();
return false;
}
int tmp;
uint32_t utmp;
QByteArray bytetmp;
if (d.getVersion() == 1)
{
d.readS32(1, &m_fftSize, 1024);
d.readS32(2, &m_fftOverlap, 0);
d.readS32(3, &tmp, (int) FFTWindow::Hanning);
m_fftWindow = (FFTWindow::Function) tmp;
d.readReal(4, &m_refLevel, 0);
d.readReal(5, &m_powerRange, 100);
d.readBool(6, &m_displayWaterfall, true);
d.readBool(7, &m_invertedWaterfall, true);
d.readBool(8, &m_displayMaxHold, false);
d.readBool(9, &m_displayHistogram, false);
d.readS32(10, &m_decay, 1);
d.readBool(11, &m_displayGrid, false);
d.readS32(13, &m_displayGridIntensity, 5);
d.readS32(14, &m_decayDivisor, 1);
d.readS32(15, &m_histogramStroke, 30);
d.readBool(16, &m_displayCurrent, true);
d.readS32(17, &m_displayTraceIntensity, 50);
d.readReal(18, &m_waterfallShare, 0.66);
d.readS32(19, &tmp, 0);
m_averagingMode = tmp < 0 ? AvgModeNone : tmp > 3 ? AvgModeMax : (AveragingMode) tmp;
d.readS32(20, &tmp, 0);
m_averagingIndex = getAveragingIndex(tmp, m_averagingMode);
m_averagingValue = getAveragingValue(m_averagingIndex, m_averagingMode);
d.readBool(21, &m_linear, false);
d.readString(22, &m_wsSpectrumAddress, "127.0.0.1");
d.readU32(23, &utmp, 8887);
m_wsSpectrumPort = utmp < 1024 ? 1024 : utmp > 65535 ? 65535 : utmp;
d.readBool(24, &m_ssb, false);
d.readBool(25, &m_usb, true);
d.readS32(26, &tmp, 50);
m_fpsPeriodMs = tmp < 5 ? 5 : tmp > 500 ? 500 : tmp;
d.readBool(27, &m_wsSpectrum, false);
d.readS32(28, &tmp, 0);
m_markersDisplay = (MarkersDisplay) tmp;
d.readBool(29, &m_useCalibration, false);
d.readS32(30, &tmp, 0);
m_calibrationInterpMode = (CalibrationInterpolationMode) tmp;
d.readBool(31, &m_display3DSpectrogram, false);
d.readS32(32, (int*)&m_3DSpectrogramStyle, (int)Outline);
d.readString(33, &m_colorMap, "Angel");
d.readS32(34, (int*)&m_spectrumStyle, (int)Line);
d.readS32(35, (int*)&m_measurement, (int)MeasurementNone);
d.readS32(36, &m_measurementBandwidth, 10000);
d.readS32(37, &m_measurementChSpacing, 10000);
d.readS32(38, &m_measurementAdjChBandwidth, 10000);
d.readS32(39, &m_measurementHarmonics, 5);
d.readBool(42, &m_measurementHighlight, true);
d.readS32(43, &m_measurementPeaks, 5);
d.readS32(44, (int*)&m_measurementsPosition, (int)PositionBelow);
d.readS32(45, &m_measurementPrecision, 1);
d.readS32(46, &m_measurementCenterFrequencyOffset, 0);
d.readBool(47, &m_findHistogramPeaks, false);
d.readBool(48, &m_truncateFreqScale, false);
int histogramMarkersSize;
d.readS32(100, &histogramMarkersSize, 0);
histogramMarkersSize = histogramMarkersSize < 0 ? 0 :
histogramMarkersSize > SpectrumHistogramMarker::m_maxNbOfMarkers ?
SpectrumHistogramMarker::m_maxNbOfMarkers : histogramMarkersSize;
m_histogramMarkers.clear();
for (int i = 0; i < histogramMarkersSize; i++)
{
d.readBlob(101+i, &bytetmp);
m_histogramMarkers.push_back(SpectrumHistogramMarker());
m_histogramMarkers.back().deserialize(bytetmp);
}
int waterfallMarkersSize;
d.readS32(110, &waterfallMarkersSize, 0);
waterfallMarkersSize = waterfallMarkersSize < 0 ? 0 :
waterfallMarkersSize > SpectrumWaterfallMarker::m_maxNbOfMarkers ?
SpectrumWaterfallMarker::m_maxNbOfMarkers : waterfallMarkersSize;
m_waterfallMarkers.clear();
for (int i = 0; i < waterfallMarkersSize; i++)
{
d.readBlob(111+i, &bytetmp);
m_waterfallMarkers.push_back(SpectrumWaterfallMarker());
m_waterfallMarkers.back().deserialize(bytetmp);
}
d.readList(40, &m_annoationMarkers);
d.readList(41, &m_calibrationPoints);
return true;
}
else
{
resetToDefaults();
return false;
}
}
QDataStream& operator>>(QDataStream& in, SpectrumAnnotationMarker& marker)
{
int tmp;
in >> marker.m_startFrequency;
in >> marker.m_bandwidth;
in >> marker.m_markerColor;
in >> tmp;
in >> marker.m_text;
marker.m_show = (SpectrumAnnotationMarker::ShowState) tmp;
return in;
}
QDataStream& operator>>(QDataStream& in, SpectrumCalibrationPoint& calibrationPoint)
{
in >> calibrationPoint.m_frequency;
in >> calibrationPoint.m_powerRelativeReference;
in >> calibrationPoint.m_powerCalibratedReference;
return in;
}
void SpectrumSettings::formatTo(SWGSDRangel::SWGObject *swgObject) const
{
SWGSDRangel::SWGGLSpectrum *swgSpectrum = static_cast<SWGSDRangel::SWGGLSpectrum *>(swgObject);
swgSpectrum->setFftWindow((int) m_fftWindow);
swgSpectrum->setFftSize(m_fftSize);
swgSpectrum->setFftOverlap(m_fftOverlap);
swgSpectrum->setAveragingMode((int) m_averagingMode);
swgSpectrum->setAveragingValue(SpectrumSettings::getAveragingValue(m_averagingIndex, m_averagingMode));
swgSpectrum->setRefLevel(m_refLevel);
swgSpectrum->setPowerRange(m_powerRange);
swgSpectrum->setFpsPeriodMs(m_fpsPeriodMs);
swgSpectrum->setLinear(m_linear ? 1 : 0);
swgSpectrum->setWsSpectrum(m_wsSpectrum ? 1 : 0);
swgSpectrum->setWsSpectrumPort(m_wsSpectrumPort);
if (swgSpectrum->getWsSpectrumAddress()) {
*swgSpectrum->getWsSpectrumAddress() = m_wsSpectrumAddress;
} else {
swgSpectrum->setWsSpectrumAddress(new QString(m_wsSpectrumAddress));
}
swgSpectrum->setDisplayHistogram(m_displayHistogram ? 1 : 0);
swgSpectrum->setDecay(m_decay);
swgSpectrum->setDecayDivisor(m_decayDivisor);
swgSpectrum->setHistogramStroke(m_histogramStroke);
swgSpectrum->setDisplayMaxHold(m_displayMaxHold ? 1 : 0);
swgSpectrum->setDisplayCurrent(m_displayCurrent ? 1 : 0);
swgSpectrum->setDisplayTraceIntensity(m_displayTraceIntensity);
swgSpectrum->setInvertedWaterfall(m_invertedWaterfall ? 1 : 0);
swgSpectrum->setDisplayWaterfall(m_displayWaterfall ? 1 : 0);
swgSpectrum->setDisplayGrid(m_displayGrid ? 1 : 0);
swgSpectrum->setDisplayGridIntensity(m_displayGridIntensity);
swgSpectrum->setSsb(m_ssb ? 1 : 0);
swgSpectrum->setUsb(m_usb ? 1 : 0);
swgSpectrum->setWaterfallShare(m_waterfallShare);
swgSpectrum->setMarkersDisplay((int) m_markersDisplay);
swgSpectrum->setUseCalibration(m_useCalibration ? 1 : 0);
swgSpectrum->setCalibrationInterpMode((int) m_calibrationInterpMode);
if (m_histogramMarkers.size() > 0)
{
swgSpectrum->setHistogramMarkers(new QList<SWGSDRangel::SWGSpectrumHistogramMarker *>);
for (const auto &marker : m_histogramMarkers)
{
swgSpectrum->getHistogramMarkers()->append(new SWGSDRangel::SWGSpectrumHistogramMarker);
swgSpectrum->getHistogramMarkers()->back()->setFrequency(marker.m_frequency);
swgSpectrum->getHistogramMarkers()->back()->setPower(marker.m_power);
swgSpectrum->getHistogramMarkers()->back()->setMarkerType((int) marker.m_markerType);
swgSpectrum->getHistogramMarkers()->back()->setMarkerColor(qColorToInt(marker.m_markerColor));
swgSpectrum->getHistogramMarkers()->back()->setShow(marker.m_show ? 1 : 0);
}
}
if (m_waterfallMarkers.size() > 0)
{
swgSpectrum->setWaterfallMarkers(new QList<SWGSDRangel::SWGSpectrumWaterfallMarker *>);
for (const auto &marker : m_waterfallMarkers)
{
swgSpectrum->getWaterfallMarkers()->append(new SWGSDRangel::SWGSpectrumWaterfallMarker);
swgSpectrum->getWaterfallMarkers()->back()->setFrequency(marker.m_frequency);
swgSpectrum->getWaterfallMarkers()->back()->setTime(marker.m_time);
swgSpectrum->getWaterfallMarkers()->back()->setMarkerColor(qColorToInt(marker.m_markerColor));
swgSpectrum->getWaterfallMarkers()->back()->setShow(marker.m_show ? 1 : 0);
}
}
if (m_annoationMarkers.size() > 0)
{
swgSpectrum->setAnnotationMarkers(new QList<SWGSDRangel::SWGSpectrumAnnotationMarker *>);
for (const auto &marker : m_annoationMarkers)
{
swgSpectrum->getAnnotationMarkers()->append(new SWGSDRangel::SWGSpectrumAnnotationMarker);
swgSpectrum->getAnnotationMarkers()->back()->setStartFrequency(marker.m_startFrequency);
swgSpectrum->getAnnotationMarkers()->back()->setBandwidth(marker.m_bandwidth);
swgSpectrum->getAnnotationMarkers()->back()->setMarkerColor(qColorToInt(marker.m_markerColor));
swgSpectrum->getAnnotationMarkers()->back()->setShow((int) marker.m_show);
}
}
if (m_calibrationPoints.size() > 0)
{
swgSpectrum->setCalibrationPoints(new QList<SWGSDRangel::SWGSpectrumCalibrationPoint *>);
for (const auto &calibrationPoint : m_calibrationPoints)
{
swgSpectrum->getCalibrationPoints()->append(new SWGSDRangel::SWGSpectrumCalibrationPoint);
swgSpectrum->getCalibrationPoints()->back()->setFrequency(calibrationPoint.m_frequency);
swgSpectrum->getCalibrationPoints()->back()->setPowerRelativeReference(calibrationPoint.m_powerRelativeReference);
swgSpectrum->getCalibrationPoints()->back()->setPowerAbsoluteReference(calibrationPoint.m_powerCalibratedReference);
}
}
}
void SpectrumSettings::updateFrom(const QStringList& keys, const SWGSDRangel::SWGObject *swgObject)
{
SWGSDRangel::SWGGLSpectrum *swgSpectrum =
static_cast<SWGSDRangel::SWGGLSpectrum *>(const_cast<SWGSDRangel::SWGObject *>(swgObject));
if (keys.contains("spectrumConfig.fftWindow")) {
m_fftWindow = (FFTWindow::Function) swgSpectrum->getFftWindow();
}
if (keys.contains("spectrumConfig.fftSize")) {
m_fftSize = swgSpectrum->getFftSize();
}
if (keys.contains("spectrumConfig.fftOverlap")) {
m_fftOverlap = swgSpectrum->getFftOverlap();
}
if (keys.contains("spectrumConfig.averagingMode")) {
m_averagingMode = (SpectrumSettings::AveragingMode) swgSpectrum->getAveragingMode();
}
if (keys.contains("spectrumConfig.averagingValue"))
{
m_averagingValue = swgSpectrum->getAveragingValue();
m_averagingIndex = SpectrumSettings::getAveragingIndex(m_averagingValue, m_averagingMode);
}
if (keys.contains("spectrumConfig.refLevel")) {
m_refLevel = swgSpectrum->getRefLevel();
}
if (keys.contains("spectrumConfig.powerRange")) {
m_powerRange = swgSpectrum->getPowerRange();
}
if (keys.contains("spectrumConfig.fpsPeriodMs")) {
m_fpsPeriodMs = swgSpectrum->getFpsPeriodMs();
}
if (keys.contains("spectrumConfig.linear")) {
m_linear = swgSpectrum->getLinear() != 0;
}
if (keys.contains("spectrumConfig.wsSpectrum")) {
m_wsSpectrum = swgSpectrum->getWsSpectrum() != 0;
}
if (keys.contains("spectrumConfig.wsSpectrum")) {
m_wsSpectrum = swgSpectrum->getWsSpectrum() != 0;
}
if (keys.contains("spectrumConfig.wsSpectrumAddress")) {
m_wsSpectrumAddress = *swgSpectrum->getWsSpectrumAddress();
}
if (keys.contains("spectrumConfig.wsSpectrumPort")) {
m_wsSpectrumPort = swgSpectrum->getWsSpectrumPort();
}
if (keys.contains("spectrumConfig.displayHistogram")) {
m_displayHistogram = swgSpectrum->getDisplayHistogram() != 0;
}
if (keys.contains("spectrumConfig.decay")) {
m_decay = swgSpectrum->getDecay();
}
if (keys.contains("spectrumConfig.decayDivisor")) {
m_decayDivisor = swgSpectrum->getDecayDivisor();
}
if (keys.contains("spectrumConfig.histogramStroke")) {
m_histogramStroke = swgSpectrum->getHistogramStroke();
}
if (keys.contains("spectrumConfig.displayMaxHold")) {
m_displayMaxHold = swgSpectrum->getDisplayMaxHold() != 0;
}
if (keys.contains("spectrumConfig.displayCurrent")) {
m_displayCurrent = swgSpectrum->getDisplayCurrent() != 0;
}
if (keys.contains("spectrumConfig.displayTraceIntensity")) {
m_displayTraceIntensity = swgSpectrum->getDisplayTraceIntensity();
}
if (keys.contains("spectrumConfig.invertedWaterfall")) {
m_invertedWaterfall = swgSpectrum->getInvertedWaterfall() != 0;
}
if (keys.contains("spectrumConfig.displayWaterfall")) {
m_displayWaterfall = swgSpectrum->getDisplayWaterfall() != 0;
}
if (keys.contains("spectrumConfig.displayGrid")) {
m_displayGrid = swgSpectrum->getDisplayGrid() != 0;
}
if (keys.contains("spectrumConfig.displayGridIntensity")) {
m_displayGridIntensity = swgSpectrum->getDisplayGridIntensity();
}
if (keys.contains("spectrumConfig.ssb")) {
m_ssb = swgSpectrum->getSsb() != 0;
}
if (keys.contains("spectrumConfig.usb")) {
m_usb = swgSpectrum->getUsb() != 0;
}
if (keys.contains("spectrumConfig.waterfallShare")) {
m_waterfallShare = swgSpectrum->getWaterfallShare();
}
if (keys.contains("spectrumConfig.markersDisplay")) {
m_markersDisplay = (SpectrumSettings::MarkersDisplay) swgSpectrum->getMarkersDisplay();
}
if (keys.contains("spectrumConfig.useCalibration")) {
m_useCalibration = swgSpectrum->getUseCalibration() != 0;
}
if (keys.contains("spectrumConfig.calibrationInterpMode")) {
m_calibrationInterpMode = (CalibrationInterpolationMode) swgSpectrum->getCalibrationInterpMode();
}
if (keys.contains("spectrumConfig.histogramMarkers"))
{
QList<SWGSDRangel::SWGSpectrumHistogramMarker *> *swgHistogramMarkers = swgSpectrum->getHistogramMarkers();
m_histogramMarkers.clear();
int i = 0;
for (const auto &swgHistogramMarker : *swgHistogramMarkers)
{
m_histogramMarkers.push_back(SpectrumHistogramMarker());
m_histogramMarkers.back().m_frequency = swgHistogramMarker->getFrequency();
m_histogramMarkers.back().m_power = swgHistogramMarker->getPower();
m_histogramMarkers.back().m_markerType = (SpectrumHistogramMarker::SpectrumMarkerType) swgHistogramMarker->getMarkerType();
m_histogramMarkers.back().m_markerColor = intToQColor(swgHistogramMarker->getMarkerColor());
m_histogramMarkers.back().m_show = swgHistogramMarker->getShow() != 0;
if (i++ == 10) { // no more than 10 markers
break;
}
}
}
if (keys.contains("spectrumConfig.waterfallMarkers"))
{
QList<SWGSDRangel::SWGSpectrumWaterfallMarker *> *swgWaterfallMarkers = swgSpectrum->getWaterfallMarkers();
m_waterfallMarkers.clear();
int i = 0;
for (const auto &swgWaterfallMarker : *swgWaterfallMarkers)
{
m_waterfallMarkers.push_back(SpectrumWaterfallMarker());
m_waterfallMarkers.back().m_frequency = swgWaterfallMarker->getFrequency();
m_waterfallMarkers.back().m_time = swgWaterfallMarker->getTime();
m_waterfallMarkers.back().m_markerColor = intToQColor(swgWaterfallMarker->getMarkerColor());
m_waterfallMarkers.back().m_show = swgWaterfallMarker->getShow() != 0;
if (i++ == 10) { // no more than 10 markers
break;
}
}
}
if (keys.contains("spectrumConfig.annotationMarkers"))
{
QList<SWGSDRangel::SWGSpectrumAnnotationMarker *> *swgAnnotationMarkers = swgSpectrum->getAnnotationMarkers();
m_waterfallMarkers.clear();
for (const auto &swgAnnotationMarker : *swgAnnotationMarkers)
{
m_annoationMarkers.push_back(SpectrumAnnotationMarker());
m_annoationMarkers.back().m_startFrequency = swgAnnotationMarker->getStartFrequency();
m_annoationMarkers.back().m_bandwidth = swgAnnotationMarker->getBandwidth() < 0 ? 0 : swgAnnotationMarker->getBandwidth();
m_annoationMarkers.back().m_markerColor = intToQColor(swgAnnotationMarker->getMarkerColor());
m_annoationMarkers.back().m_show = (SpectrumAnnotationMarker::ShowState) swgAnnotationMarker->getShow();
}
}
if (keys.contains("spectrumConfig.calibrationPoints"))
{
QList<SWGSDRangel::SWGSpectrumCalibrationPoint *> *swgCalibrationPoints = swgSpectrum->getCalibrationPoints();
m_calibrationPoints.clear();
for (const auto &swgCalibrationPoint : *swgCalibrationPoints)
{
m_calibrationPoints.push_back(SpectrumCalibrationPoint());
m_calibrationPoints.back().m_frequency = swgCalibrationPoint->getFrequency();
m_calibrationPoints.back().m_powerRelativeReference = swgCalibrationPoint->getPowerRelativeReference();
m_calibrationPoints.back().m_powerCalibratedReference = swgCalibrationPoint->getPowerAbsoluteReference();
}
}
}
int SpectrumSettings::getAveragingMaxScale(AveragingMode averagingMode)
{
if (averagingMode == AvgModeMoving) {
return 3; // max 10k
} else {
return 5; // max 1M
}
}
int SpectrumSettings::getAveragingValue(int averagingIndex, AveragingMode averagingMode)
{
if (averagingIndex <= 0) {
return 1;
}
int v = averagingIndex - 1;
int m = pow(10.0, v/3 > getAveragingMaxScale(averagingMode) ? getAveragingMaxScale(averagingMode) : v/3);
int x = 1;
if (v % 3 == 0) {
x = 2;
} else if (v % 3 == 1) {
x = 5;
} else if (v % 3 == 2) {
x = 10;
}
return x * m;
}
int SpectrumSettings::getAveragingIndex(int averagingValue, AveragingMode averagingMode)
{
if (averagingValue <= 1) {
return 0;
}
int v = averagingValue;
int j = 0;
for (int i = 0; i <= getAveragingMaxScale(averagingMode); i++)
{
if (v < 20)
{
if (v < 2) {
j = 0;
} else if (v < 5) {
j = 1;
} else if (v < 10) {
j = 2;
} else {
j = 3;
}
return 3*i + j;
}
v /= 10;
}
return 3*getAveragingMaxScale(averagingMode) + 3;
}
uint64_t SpectrumSettings::getMaxAveragingValue(int fftSize, AveragingMode averagingMode)
{
if (averagingMode == AvgModeMoving)
{
uint64_t limit = (1UL<<28) / (sizeof(double)*fftSize); // 256 MB max
return limit > (1<<14) ? (1<<14) : limit; // limit to 16 kS anyway
}
else
{
return (1<<20); // fixed 1 MS
}
}
int SpectrumSettings::qColorToInt(const QColor& color)
{
return 256*256*color.blue() + 256*color.green() + color.red();
}
QColor SpectrumSettings::intToQColor(int intColor)
{
int r = intColor % 256;
int bg = intColor / 256;
int g = bg % 256;
int b = bg / 256;
return QColor(r, g, b);
}