sdrangel/plugins/samplesink/bladerf2output/bladerf2output.cpp

1226 wiersze
46 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2018-2020, 2022 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <string.h>
#include <errno.h>
#include <QDebug>
#include <QNetworkReply>
#include <QBuffer>
#include "SWGDeviceState.h"
#include "SWGDeviceSettings.h"
#include "SWGDeviceReport.h"
#include "SWGBladeRF2OutputReport.h"
#include "dsp/dspcommands.h"
#include "device/deviceapi.h"
#include "bladerf2/devicebladerf2shared.h"
#include "bladerf2/devicebladerf2.h"
#include "bladerf2outputthread.h"
#include "bladerf2output.h"
MESSAGE_CLASS_DEFINITION(BladeRF2Output::MsgConfigureBladeRF2, Message)
MESSAGE_CLASS_DEFINITION(BladeRF2Output::MsgStartStop, Message)
MESSAGE_CLASS_DEFINITION(BladeRF2Output::MsgReportGainRange, Message)
BladeRF2Output::BladeRF2Output(DeviceAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_dev(nullptr),
m_thread(nullptr),
m_deviceDescription("BladeRF2Output"),
m_running(false)
{
openDevice();
m_deviceAPI->setNbSinkStreams(1);
m_networkManager = new QNetworkAccessManager();
QObject::connect(
m_networkManager,
&QNetworkAccessManager::finished,
this,
&BladeRF2Output::networkManagerFinished
);
}
BladeRF2Output::~BladeRF2Output()
{
QObject::disconnect(
m_networkManager,
&QNetworkAccessManager::finished,
this,
&BladeRF2Output::networkManagerFinished
);
delete m_networkManager;
if (m_running) {
stop();
}
closeDevice();
}
void BladeRF2Output::destroy()
{
delete this;
}
bool BladeRF2Output::openDevice()
{
m_sampleSourceFifo.resize(SampleSourceFifo::getSizePolicy(m_settings.m_devSampleRate));
// look for Tx buddies and get reference to the device object
if (m_deviceAPI->getSinkBuddies().size() > 0) // look sink sibling first
{
qDebug("BladeRF2Output::openDevice: look in Tx buddies");
DeviceAPI *sinkBuddy = m_deviceAPI->getSinkBuddies()[0];
DeviceBladeRF2Shared *deviceBladeRF2Shared = (DeviceBladeRF2Shared*) sinkBuddy->getBuddySharedPtr();
if (deviceBladeRF2Shared == 0)
{
qCritical("BladeRF2Output::openDevice: the sink buddy shared pointer is null");
return false;
}
DeviceBladeRF2 *device = deviceBladeRF2Shared->m_dev;
if (device == 0)
{
qCritical("BladeRF2Output::openDevice: cannot get device pointer from Tx buddy");
return false;
}
m_deviceShared.m_dev = device;
}
// look for Rx buddies and get reference to the device object
else if (m_deviceAPI->getSourceBuddies().size() > 0) // then source
{
qDebug("BladeRF2Output::openDevice: look in Rx buddies");
DeviceAPI *sourceBuddy = m_deviceAPI->getSourceBuddies()[0];
DeviceBladeRF2Shared *deviceBladeRF2Shared = (DeviceBladeRF2Shared*) sourceBuddy->getBuddySharedPtr();
if (deviceBladeRF2Shared == 0)
{
qCritical("BladeRF2Output::openDevice: the source buddy shared pointer is null");
return false;
}
DeviceBladeRF2 *device = deviceBladeRF2Shared->m_dev;
if (device == 0)
{
qCritical("BladeRF2Output::openDevice: cannot get device pointer from Rx buddy");
return false;
}
m_deviceShared.m_dev = device;
}
// There are no buddies then create the first BladeRF2 device
else
{
qDebug("BladeRF2Output::openDevice: open device here");
m_deviceShared.m_dev = new DeviceBladeRF2();
char serial[256];
strcpy(serial, qPrintable(m_deviceAPI->getSamplingDeviceSerial()));
if (!m_deviceShared.m_dev->open(serial))
{
qCritical("BladeRF2Output::openDevice: cannot open BladeRF2 device");
return false;
}
}
m_deviceShared.m_channel = m_deviceAPI->getDeviceItemIndex(); // publicly allocate channel
m_deviceShared.m_sink = this;
m_deviceAPI->setBuddySharedPtr(&m_deviceShared); // propagate common parameters to API
return true;
}
void BladeRF2Output::closeDevice()
{
if (m_deviceShared.m_dev == 0) { // was never open
return;
}
if (m_running) {
stop();
}
if (m_thread) { // stills own the thread => transfer to a buddy
moveThreadToBuddy();
}
m_deviceShared.m_channel = -1; // publicly release channel
m_deviceShared.m_sink = 0;
// No buddies so effectively close the device
if ((m_deviceAPI->getSinkBuddies().size() == 0) && (m_deviceAPI->getSourceBuddies().size() == 0))
{
m_deviceShared.m_dev->close();
delete m_deviceShared.m_dev;
m_deviceShared.m_dev = 0;
}
}
void BladeRF2Output::init()
{
applySettings(m_settings, QList<QString>(), true);
}
BladeRF2OutputThread *BladeRF2Output::findThread()
{
if (m_thread == 0) // this does not own the thread
{
BladeRF2OutputThread *bladeRF2OutputThread = 0;
// find a buddy that has allocated the thread
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator it = sinkBuddies.begin();
for (; it != sinkBuddies.end(); ++it)
{
BladeRF2Output *buddySink = ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_sink;
if (buddySink)
{
bladeRF2OutputThread = buddySink->getThread();
if (bladeRF2OutputThread) {
break;
}
}
}
return bladeRF2OutputThread;
}
else
{
return m_thread; // own thread
}
}
void BladeRF2Output::moveThreadToBuddy()
{
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator it = sinkBuddies.begin();
for (; it != sinkBuddies.end(); ++it)
{
BladeRF2Output *buddySink = ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_sink;
if (buddySink)
{
buddySink->setThread(m_thread);
m_thread = 0; // zero for others
}
}
}
bool BladeRF2Output::start()
{
// There is a single thread per physical device (Tx side). This thread is unique and referenced by a unique
// buddy in the group of sink buddies associated with this physical device.
//
// This start method is responsible for managing the thread and channel enabling when the streaming of a Tx channel is started
//
// It checks the following conditions
// - the thread is allocated or not (by itself or one of its buddies). If it is it grabs the thread pointer.
// - the requested channel is the first (0) or the following (just 1 in BladeRF 2 case)
//
// The BladeRF support library lets you work in two possible modes:
// - Single Output (SO) with only one channel streaming. This HAS to be channel 0.
// - Multiple Output (MO) with two channels streaming using interleaved samples. It MUST be in this configuration if channel 1
// is used. When we will run with only channel 1 streaming from the client perspective the channel 0 will actually be enabled
// and streaming but zero samples will be sent to it.
//
// It manages the transition form SO where only one channel (the first or channel 0) should be running to the
// Multiple Output (MO) if the requested channel is 1. More generally it checks if the requested channel is within the current
// channel range allocated in the thread or past it. To perform the transition it stops the thread, deletes it and creates a new one.
// It marks the thread as needing start.
//
// If the requested channel is within the thread channel range (this thread being already allocated) it simply removes its FIFO reference
// so that the samples are not taken from the FIFO anymore and leaves the thread unchanged (no stop, no delete/new)
//
// If there is no thread allocated it creates a new one with a number of channels that fits the requested channel. That is
// 1 if channel 0 is requested (SO mode) and 2 if channel 1 is requested (MO mode). It marks the thread as needing start.
//
// Eventually it registers the FIFO in the thread. If the thread has to be started it enables the channels up to the number of channels
// allocated in the thread and starts the thread.
if (!m_deviceShared.m_dev)
{
qDebug("BladeRF2Output::start: no device object");
return false;
}
int requestedChannel = m_deviceAPI->getDeviceItemIndex();
BladeRF2OutputThread *bladeRF2OutputThread = findThread();
bool needsStart = false;
if (bladeRF2OutputThread) // if thread is already allocated
{
qDebug("BladeRF2Output::start: thread is already allocated");
int nbOriginalChannels = bladeRF2OutputThread->getNbChannels();
if (requestedChannel+1 > nbOriginalChannels) // expansion by deleting and re-creating the thread
{
qDebug("BladeRF2Output::start: expand channels. Re-allocate thread and take ownership");
SampleSourceFifo **fifos = new SampleSourceFifo*[nbOriginalChannels];
unsigned int *log2Interps = new unsigned int[nbOriginalChannels];
for (int i = 0; i < nbOriginalChannels; i++) // save original FIFO references and data
{
fifos[i] = bladeRF2OutputThread->getFifo(i);
log2Interps[i] = bladeRF2OutputThread->getLog2Interpolation(i);
}
bladeRF2OutputThread->stopWork();
delete bladeRF2OutputThread;
bladeRF2OutputThread = new BladeRF2OutputThread(m_deviceShared.m_dev->getDev(), requestedChannel+1);
m_thread = bladeRF2OutputThread; // take ownership
for (int i = 0; i < nbOriginalChannels; i++) // restore original FIFO references
{
bladeRF2OutputThread->setFifo(i, fifos[i]);
bladeRF2OutputThread->setLog2Interpolation(i, log2Interps[i]);
}
// remove old thread address from buddies (reset in all buddies)
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator it = sinkBuddies.begin();
for (; it != sinkBuddies.end(); ++it) {
((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0);
}
// close all channels
for (int i = bladeRF2OutputThread->getNbChannels()-1; i >= 0; i--) {
m_deviceShared.m_dev->closeTx(i);
}
// was used as temporary storage:
delete[] fifos;
delete[] log2Interps;
needsStart = true;
}
else
{
qDebug("BladeRF2Output::start: keep buddy thread");
}
}
else // first allocation
{
qDebug("BladeRF2Output::start: allocate thread and take ownership");
bladeRF2OutputThread = new BladeRF2OutputThread(m_deviceShared.m_dev->getDev(), requestedChannel+1);
m_thread = bladeRF2OutputThread; // take ownership
needsStart = true;
}
bladeRF2OutputThread->setFifo(requestedChannel, &m_sampleSourceFifo);
bladeRF2OutputThread->setLog2Interpolation(requestedChannel, m_settings.m_log2Interp);
applySettings(m_settings, QList<QString>(), true); // re-apply forcibly to set sample rate with the new number of channels
if (needsStart)
{
qDebug("BladeRF2Output::start: enabling channel(s) and (re)starting the thread");
for (unsigned int i = 0; i < bladeRF2OutputThread->getNbChannels(); i++) // open all channels
{
if (!m_deviceShared.m_dev->openTx(i)) {
qCritical("BladeRF2Output::start: channel %u cannot be enabled", i);
}
}
bladeRF2OutputThread->startWork();
}
qDebug("BladeRF2Output::start: started");
m_running = true;
return true;
}
void BladeRF2Output::stop()
{
// This stop method is responsible for managing the thread and channel disabling when the streaming of
// a Tx channel is stopped
//
// If the thread is currently managing only one channel (SO mode). The thread can be just stopped and deleted.
// Then the channel is closed (disabled).
//
// If the thread is currently managing many channels (MO mode) and we are removing the last channel. The transition
// from MO to SO or reduction of MO size is handled by stopping the thread, deleting it and creating a new one
// with one channel less if (and only if) there is still a channel active.
//
// If the thread is currently managing many channels (MO mode) but the channel being stopped is not the last
// channel then the FIFO reference is simply removed from the thread so that this FIFO will not be used anymore.
// In this case the channel is not closed (disabled) so that other channels can continue with the
// same configuration. The device continues streaming on this channel but the samples are set to all zeros.
if (!m_running) {
return;
}
int requestedChannel = m_deviceAPI->getDeviceItemIndex();
BladeRF2OutputThread *bladeRF2OutputThread = findThread();
if (bladeRF2OutputThread == 0) { // no thread allocated
return;
}
int nbOriginalChannels = bladeRF2OutputThread->getNbChannels();
if (nbOriginalChannels == 1) // SO mode => just stop and delete the thread
{
qDebug("BladeRF2Output::stop: SO mode. Just stop and delete the thread");
bladeRF2OutputThread->stopWork();
delete bladeRF2OutputThread;
m_thread = 0;
// remove old thread address from buddies (reset in all buddies)
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator it = sinkBuddies.begin();
for (; it != sinkBuddies.end(); ++it) {
((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0);
}
m_deviceShared.m_dev->closeTx(0); // close the unique channel
}
else if (requestedChannel == nbOriginalChannels - 1) // remove last MO channel => reduce by deleting and re-creating the thread
{
qDebug("BladeRF2Output::stop: MO mode. Reduce by deleting and re-creating the thread");
bladeRF2OutputThread->stopWork();
SampleSourceFifo **fifos = new SampleSourceFifo*[nbOriginalChannels-1];
unsigned int *log2Interps = new unsigned int[nbOriginalChannels-1];
bool stillActiveFIFO = false;
for (int i = 0; i < nbOriginalChannels-1; i++) // save original FIFO references
{
fifos[i] = bladeRF2OutputThread->getFifo(i);
stillActiveFIFO = stillActiveFIFO || (bladeRF2OutputThread->getFifo(i) != 0);
log2Interps[i] = bladeRF2OutputThread->getLog2Interpolation(i);
}
delete bladeRF2OutputThread;
m_thread = 0;
if (stillActiveFIFO)
{
bladeRF2OutputThread = new BladeRF2OutputThread(m_deviceShared.m_dev->getDev(), nbOriginalChannels-1);
m_thread = bladeRF2OutputThread; // take ownership
for (int i = 0; i < nbOriginalChannels-1; i++) // restore original FIFO references
{
bladeRF2OutputThread->setFifo(i, fifos[i]);
bladeRF2OutputThread->setLog2Interpolation(i, log2Interps[i]);
}
}
else
{
qDebug("BladeRF2Output::stop: do not re-create thread as there are no more FIFOs active");
}
// remove old thread address from buddies (reset in all buddies)
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator it = sinkBuddies.begin();
for (; it != sinkBuddies.end(); ++it) {
((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0);
}
// close all channels
for (int i = nbOriginalChannels-1; i >= 0; i--) {
m_deviceShared.m_dev->closeTx(i);
}
if (stillActiveFIFO)
{
qDebug("BladeRF2Output::stop: enabling channel(s) and restarting the thread");
for (unsigned int i = 0; i < bladeRF2OutputThread->getNbChannels(); i++) // open all channels
{
if (!m_deviceShared.m_dev->openTx(i)) {
qCritical("BladeRF2Output::start: channel %u cannot be enabled", i);
}
}
bladeRF2OutputThread->startWork();
}
// was used as temporary storage:
delete[] fifos;
delete[] log2Interps;
}
else // remove channel from existing thread
{
qDebug("BladeRF2Output::stop: MO mode. Not changing MO configuration. Just remove FIFO reference");
bladeRF2OutputThread->setFifo(requestedChannel, 0); // remove FIFO
}
applySettings(m_settings, QList<QString>(), true); // re-apply forcibly to set sample rate with the new number of channels
m_running = false;
}
QByteArray BladeRF2Output::serialize() const
{
return m_settings.serialize();
}
bool BladeRF2Output::deserialize(const QByteArray& data)
{
bool success = true;
if (!m_settings.deserialize(data))
{
m_settings.resetToDefaults();
success = false;
}
MsgConfigureBladeRF2* message = MsgConfigureBladeRF2::create(m_settings, QList<QString>(), true);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureBladeRF2* messageToGUI = MsgConfigureBladeRF2::create(m_settings, QList<QString>(), true);
m_guiMessageQueue->push(messageToGUI);
}
return success;
}
const QString& BladeRF2Output::getDeviceDescription() const
{
return m_deviceDescription;
}
int BladeRF2Output::getSampleRate() const
{
int rate = m_settings.m_devSampleRate;
return (rate / (1<<m_settings.m_log2Interp));
}
quint64 BladeRF2Output::getCenterFrequency() const
{
return m_settings.m_centerFrequency;
}
void BladeRF2Output::setCenterFrequency(qint64 centerFrequency)
{
BladeRF2OutputSettings settings = m_settings;
settings.m_centerFrequency = centerFrequency;
MsgConfigureBladeRF2* message = MsgConfigureBladeRF2::create(settings, QList<QString>{"centerFrequency"}, false);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureBladeRF2* messageToGUI = MsgConfigureBladeRF2::create(settings, QList<QString>{"centerFrequency"}, false);
m_guiMessageQueue->push(messageToGUI);
}
}
bool BladeRF2Output::setDeviceCenterFrequency(struct bladerf *dev, int requestedChannel, quint64 freq_hz, int loPpmTenths)
{
qint64 df = ((qint64)freq_hz * loPpmTenths) / 10000000LL;
freq_hz += df;
int status = bladerf_set_frequency(dev, BLADERF_CHANNEL_TX(requestedChannel), freq_hz);
if (status < 0) {
qWarning("BladeRF2Output::setDeviceCenterFrequency: bladerf_set_frequency(%lld) failed: %s",
freq_hz, bladerf_strerror(status));
return false;
}
else
{
qDebug("BladeRF2Output::setDeviceCenterFrequency: bladerf_set_frequency(%lld)", freq_hz);
return true;
}
}
void BladeRF2Output::getFrequencyRange(uint64_t& min, uint64_t& max, int& step, float& scale)
{
if (m_deviceShared.m_dev) {
m_deviceShared.m_dev->getFrequencyRangeTx(min, max, step, scale);
}
}
void BladeRF2Output::getSampleRateRange(int& min, int& max, int& step, float& scale)
{
if (m_deviceShared.m_dev) {
m_deviceShared.m_dev->getSampleRateRangeTx(min, max, step, scale);
}
}
void BladeRF2Output::getBandwidthRange(int& min, int& max, int& step, float& scale)
{
if (m_deviceShared.m_dev) {
m_deviceShared.m_dev->getBandwidthRangeTx(min, max, step, scale);
}
}
void BladeRF2Output::getGlobalGainRange(int& min, int& max, int& step, float& scale)
{
if (m_deviceShared.m_dev) {
m_deviceShared.m_dev->getGlobalGainRangeTx(min, max, step, scale);
}
}
bool BladeRF2Output::handleMessage(const Message& message)
{
if (MsgConfigureBladeRF2::match(message))
{
MsgConfigureBladeRF2& conf = (MsgConfigureBladeRF2&) message;
qDebug() << "BladeRF2Output::handleMessage: MsgConfigureBladeRF2";
if (!applySettings(conf.getSettings(), conf.getSettingsKeys(), conf.getForce()))
{
qDebug("BladeRF2Output::handleMessage: MsgConfigureBladeRF2 config error");
}
return true;
}
else if (DeviceBladeRF2Shared::MsgReportBuddyChange::match(message))
{
DeviceBladeRF2Shared::MsgReportBuddyChange& report = (DeviceBladeRF2Shared::MsgReportBuddyChange&) message;
struct bladerf *dev = m_deviceShared.m_dev->getDev();
BladeRF2OutputSettings settings = m_settings;
int status;
unsigned int tmp_uint;
bool tmp_bool;
// evaluate changes that may have been introduced by changes in a buddy
if (dev) // The BladeRF device must have been open to do so
{
int requestedChannel = m_deviceAPI->getDeviceItemIndex();
QList<QString> settingsKeys;
if (report.getRxElseTx()) // Rx buddy change: check for sample rate change only
{
settings.m_devSampleRate = report.getDevSampleRate();
settingsKeys.append("devSampleRate");
// status = bladerf_get_sample_rate(dev, BLADERF_CHANNEL_TX(requestedChannel), &tmp_uint);
//
// if (status < 0) {
// qCritical("BladeRF2Output::handleMessage: MsgReportBuddyChange: bladerf_get_sample_rate error: %s", bladerf_strerror(status));
// } else {
// settings.m_devSampleRate = tmp_uint;
// }
}
else // Tx buddy change: check for: frequency, gain mode and value, bias tee, sample rate, bandwidth
{
settings.m_devSampleRate = report.getDevSampleRate();
settings.m_LOppmTenths = report.getLOppmTenths();
settings.m_centerFrequency = report.getCenterFrequency();
settingsKeys.append("devSampleRate");
settingsKeys.append("LOppmTenths");
settingsKeys.append("centerFrequency");
status = bladerf_get_bandwidth(dev, BLADERF_CHANNEL_TX(requestedChannel), &tmp_uint);
if (status < 0) {
qCritical("BladeRF2Output::handleMessage: MsgReportBuddyChange: bladerf_get_bandwidth error: %s", bladerf_strerror(status));
} else {
settings.m_bandwidth = tmp_uint;
settingsKeys.append("bandwidth");
}
status = bladerf_get_bias_tee(dev, BLADERF_CHANNEL_TX(requestedChannel), &tmp_bool);
if (status < 0) {
qCritical("BladeRF2Output::handleMessage: MsgReportBuddyChange: bladerf_get_bias_tee error: %s", bladerf_strerror(status));
} else {
settings.m_biasTee = tmp_bool;
settingsKeys.append("biasTee");
}
}
// change DSP settings if buddy change introduced a change in center frequency or base rate
if (settingsKeys.contains("centerFrequency") || settingsKeys.contains("devSampleRate"))
{
int sampleRate = settings.m_devSampleRate/(1<<settings.m_log2Interp);
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, settings.m_centerFrequency);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
}
m_settings.applySettings(settingsKeys, settings); // acknowledge the new settings
// propagate settings to GUI if any
if (getMessageQueueToGUI())
{
MsgConfigureBladeRF2 *reportToGUI = MsgConfigureBladeRF2::create(m_settings, settingsKeys, false);
getMessageQueueToGUI()->push(reportToGUI);
}
}
return true;
}
else if (MsgStartStop::match(message))
{
MsgStartStop& cmd = (MsgStartStop&) message;
qDebug() << "BladeRF2Input::handleMessage: MsgStartStop: " << (cmd.getStartStop() ? "start" : "stop");
if (cmd.getStartStop())
{
if (m_deviceAPI->initDeviceEngine()) {
m_deviceAPI->startDeviceEngine();
}
}
else
{
m_deviceAPI->stopDeviceEngine();
}
if (m_settings.m_useReverseAPI) {
webapiReverseSendStartStop(cmd.getStartStop());
}
return true;
}
else
{
return false;
}
}
bool BladeRF2Output::applySettings(const BladeRF2OutputSettings& settings, const QList<QString>& settingsKeys, bool force)
{
qDebug() << "BladeRF2Output::applySettings: force:" << force << settings.getDebugString(settingsKeys, force);
bool forwardChangeOwnDSP = false;
bool forwardChangeRxBuddies = false;
bool forwardChangeTxBuddies = false;
struct bladerf *dev = m_deviceShared.m_dev->getDev();
int requestedChannel = m_deviceAPI->getDeviceItemIndex();
qint64 deviceCenterFrequency = settings.m_centerFrequency;
deviceCenterFrequency -= settings.m_transverterMode ? settings.m_transverterDeltaFrequency : 0;
deviceCenterFrequency = deviceCenterFrequency < 0 ? 0 : deviceCenterFrequency;
// if ((m_settings.m_devSampleRate != settings.m_devSampleRate) ||
// (m_settings.m_log2Interp != settings.m_log2Interp) || force)
if (settingsKeys.contains("devSampleRate") ||
settingsKeys.contains("log2Interp") || force)
{
BladeRF2OutputThread *bladeRF2OutputThread = findThread();
SampleSourceFifo *fifo = nullptr;
if (bladeRF2OutputThread)
{
fifo = bladeRF2OutputThread->getFifo(requestedChannel);
bladeRF2OutputThread->setFifo(requestedChannel, 0);
}
#if defined(_MSC_VER)
unsigned int fifoRate = (unsigned int) settings.m_devSampleRate / (1<<settings.m_log2Interp);
fifoRate = fifoRate < 48000U ? 48000U : fifoRate;
#else
unsigned int fifoRate = std::max(
(unsigned int) settings.m_devSampleRate / (1<<settings.m_log2Interp),
DeviceBladeRF2Shared::m_sampleFifoMinRate);
#endif
m_sampleSourceFifo.resize(SampleSourceFifo::getSizePolicy(fifoRate));
if (fifo) {
bladeRF2OutputThread->setFifo(requestedChannel, &m_sampleSourceFifo);
}
}
if (settingsKeys.contains("devSampleRate") || force)
{
forwardChangeOwnDSP = true;
forwardChangeRxBuddies = true;
forwardChangeTxBuddies = true;
if (dev != 0)
{
unsigned int actualSamplerate;
int status = bladerf_set_sample_rate(dev, BLADERF_CHANNEL_TX(requestedChannel),
settings.m_devSampleRate,
&actualSamplerate);
if (status < 0)
{
qCritical("BladeRF2Output::applySettings: could not set sample rate: %d: %s",
settings.m_devSampleRate, bladerf_strerror(status));
}
else
{
qDebug() << "BladeRF2Output::applySettings: bladerf_set_sample_rate: actual sample rate is " << actualSamplerate;
}
}
}
if (settingsKeys.contains("bandwidth") || force)
{
forwardChangeTxBuddies = true;
if (dev != 0)
{
unsigned int actualBandwidth;
int status = bladerf_set_bandwidth(dev, BLADERF_CHANNEL_TX(requestedChannel), settings.m_bandwidth, &actualBandwidth);
if(status < 0)
{
qCritical("BladeRF2Output::applySettings: could not set bandwidth: %d: %s",
settings.m_bandwidth, bladerf_strerror(status));
}
else
{
qDebug() << "BladeRF2Output::applySettings: bladerf_set_bandwidth: actual bandwidth is " << actualBandwidth;
}
}
}
if (settingsKeys.contains("log2Interp") || force)
{
forwardChangeOwnDSP = true;
BladeRF2OutputThread *outputThread = findThread();
if (outputThread != 0)
{
outputThread->setLog2Interpolation(requestedChannel, settings.m_log2Interp);
qDebug() << "BladeRF2Output::applySettings: set interpolation to " << (1<<settings.m_log2Interp);
}
}
if (settingsKeys.contains("centerFrequency")
|| settingsKeys.contains("transverterMode")
|| settingsKeys.contains("transverterDeltaFrequency")
|| settingsKeys.contains("LOppmTenths")
|| settingsKeys.contains("devSampleRate") || force)
{
forwardChangeOwnDSP = true;
forwardChangeTxBuddies = true;
if (dev != 0)
{
if (setDeviceCenterFrequency(dev, requestedChannel, deviceCenterFrequency, settings.m_LOppmTenths))
{
if (getMessageQueueToGUI())
{
int min, max, step;
float scale;
getGlobalGainRange(min, max, step, scale);
MsgReportGainRange *msg = MsgReportGainRange::create(min, max, step, scale);
getMessageQueueToGUI()->push(msg);
}
}
}
}
if (settingsKeys.contains("biasTee") || force)
{
forwardChangeTxBuddies = true;
m_deviceShared.m_dev->setBiasTeeTx(settings.m_biasTee);
}
if (settingsKeys.contains("globalGain") || force)
{
forwardChangeTxBuddies = true;
if (dev)
{
// qDebug("BladeRF2Output::applySettings: channel: %d gain: %d", requestedChannel, settings.m_globalGain);
int status = bladerf_set_gain(dev, BLADERF_CHANNEL_TX(requestedChannel), settings.m_globalGain);
if (status < 0) {
qWarning("BladeRF2Output::applySettings: bladerf_set_gain(%d) failed: %s",
settings.m_globalGain, bladerf_strerror(status));
} else {
qDebug("BladeRF2Output::applySettings: bladerf_set_gain(%d)", settings.m_globalGain);
}
}
}
if (forwardChangeOwnDSP)
{
int sampleRate = settings.m_devSampleRate/(1<<settings.m_log2Interp);
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, settings.m_centerFrequency);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
}
if (forwardChangeRxBuddies)
{
// send to source buddies
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceBladeRF2Shared::MsgReportBuddyChange *report = DeviceBladeRF2Shared::MsgReportBuddyChange::create(
settings.m_centerFrequency,
settings.m_LOppmTenths,
2,
settings.m_devSampleRate, // need to forward actual rate to the Rx side
false);
(*itSource)->getSamplingDeviceInputMessageQueue()->push(report);
}
}
if (forwardChangeTxBuddies)
{
// send to sink buddies
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceBladeRF2Shared::MsgReportBuddyChange *report = DeviceBladeRF2Shared::MsgReportBuddyChange::create(
settings.m_centerFrequency,
settings.m_LOppmTenths,
2,
settings.m_devSampleRate,
false);
(*itSink)->getSamplingDeviceInputMessageQueue()->push(report);
}
}
if (settings.m_useReverseAPI)
{
bool fullUpdate = (settingsKeys.contains("useReverseAPI") && settings.m_useReverseAPI) ||
settingsKeys.contains("reverseAPIAddress") ||
settingsKeys.contains("reverseAPIPort") ||
settingsKeys.contains("reverseAPIDeviceIndex");
webapiReverseSendSettings(settingsKeys, settings, fullUpdate || force);
}
if (force) {
m_settings = settings;
} else {
m_settings.applySettings(settingsKeys, settings);
}
return true;
}
int BladeRF2Output::getNbChannels()
{
BladeRF2OutputThread *bladeRF2OutputThread = findThread();
if (bladeRF2OutputThread) {
return bladeRF2OutputThread->getNbChannels();
} else {
return 0;
}
}
int BladeRF2Output::webapiSettingsGet(
SWGSDRangel::SWGDeviceSettings& response,
QString& errorMessage)
{
(void) errorMessage;
response.setBladeRf2OutputSettings(new SWGSDRangel::SWGBladeRF2OutputSettings());
response.getBladeRf2OutputSettings()->init();
webapiFormatDeviceSettings(response, m_settings);
return 200;
}
int BladeRF2Output::webapiSettingsPutPatch(
bool force,
const QStringList& deviceSettingsKeys,
SWGSDRangel::SWGDeviceSettings& response, // query + response
QString& errorMessage)
{
(void) errorMessage;
BladeRF2OutputSettings settings = m_settings;
webapiUpdateDeviceSettings(settings, deviceSettingsKeys, response);
MsgConfigureBladeRF2 *msg = MsgConfigureBladeRF2::create(settings, deviceSettingsKeys, force);
m_inputMessageQueue.push(msg);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgConfigureBladeRF2 *msgToGUI = MsgConfigureBladeRF2::create(settings, deviceSettingsKeys, force);
m_guiMessageQueue->push(msgToGUI);
}
webapiFormatDeviceSettings(response, settings);
return 200;
}
void BladeRF2Output::webapiUpdateDeviceSettings(
BladeRF2OutputSettings& settings,
const QStringList& deviceSettingsKeys,
SWGSDRangel::SWGDeviceSettings& response)
{
if (deviceSettingsKeys.contains("centerFrequency")) {
settings.m_centerFrequency = response.getBladeRf2OutputSettings()->getCenterFrequency();
}
if (deviceSettingsKeys.contains("LOppmTenths")) {
settings.m_LOppmTenths = response.getBladeRf2OutputSettings()->getLOppmTenths();
}
if (deviceSettingsKeys.contains("devSampleRate")) {
settings.m_devSampleRate = response.getBladeRf2OutputSettings()->getDevSampleRate();
}
if (deviceSettingsKeys.contains("bandwidth")) {
settings.m_bandwidth = response.getBladeRf2OutputSettings()->getBandwidth();
}
if (deviceSettingsKeys.contains("log2Interp")) {
settings.m_log2Interp = response.getBladeRf2OutputSettings()->getLog2Interp();
}
if (deviceSettingsKeys.contains("biasTee")) {
settings.m_biasTee = response.getBladeRf2OutputSettings()->getBiasTee() != 0;
}
if (deviceSettingsKeys.contains("globalGain")) {
settings.m_globalGain = response.getBladeRf2OutputSettings()->getGlobalGain();
}
if (deviceSettingsKeys.contains("transverterDeltaFrequency")) {
settings.m_transverterDeltaFrequency = response.getBladeRf2OutputSettings()->getTransverterDeltaFrequency();
}
if (deviceSettingsKeys.contains("transverterMode")) {
settings.m_transverterMode = response.getBladeRf2OutputSettings()->getTransverterMode() != 0;
}
if (deviceSettingsKeys.contains("useReverseAPI")) {
settings.m_useReverseAPI = response.getBladeRf2OutputSettings()->getUseReverseApi() != 0;
}
if (deviceSettingsKeys.contains("reverseAPIAddress")) {
settings.m_reverseAPIAddress = *response.getBladeRf2OutputSettings()->getReverseApiAddress();
}
if (deviceSettingsKeys.contains("reverseAPIPort")) {
settings.m_reverseAPIPort = response.getBladeRf2OutputSettings()->getReverseApiPort();
}
if (deviceSettingsKeys.contains("reverseAPIDeviceIndex")) {
settings.m_reverseAPIDeviceIndex = response.getBladeRf2OutputSettings()->getReverseApiDeviceIndex();
}
}
int BladeRF2Output::webapiReportGet(SWGSDRangel::SWGDeviceReport& response, QString& errorMessage)
{
(void) errorMessage;
response.setBladeRf2OutputReport(new SWGSDRangel::SWGBladeRF2OutputReport());
response.getBladeRf2OutputReport()->init();
webapiFormatDeviceReport(response);
return 200;
}
void BladeRF2Output::webapiFormatDeviceSettings(SWGSDRangel::SWGDeviceSettings& response, const BladeRF2OutputSettings& settings)
{
response.getBladeRf2OutputSettings()->setCenterFrequency(settings.m_centerFrequency);
response.getBladeRf2OutputSettings()->setLOppmTenths(settings.m_LOppmTenths);
response.getBladeRf2OutputSettings()->setDevSampleRate(settings.m_devSampleRate);
response.getBladeRf2OutputSettings()->setBandwidth(settings.m_bandwidth);
response.getBladeRf2OutputSettings()->setLog2Interp(settings.m_log2Interp);
response.getBladeRf2OutputSettings()->setBiasTee(settings.m_biasTee ? 1 : 0);
response.getBladeRf2OutputSettings()->setGlobalGain(settings.m_globalGain);
response.getBladeRf2OutputSettings()->setTransverterDeltaFrequency(settings.m_transverterDeltaFrequency);
response.getBladeRf2OutputSettings()->setTransverterMode(settings.m_transverterMode ? 1 : 0);
response.getBladeRf2OutputSettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0);
if (response.getBladeRf2OutputSettings()->getReverseApiAddress()) {
*response.getBladeRf2OutputSettings()->getReverseApiAddress() = settings.m_reverseAPIAddress;
} else {
response.getBladeRf2OutputSettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress));
}
response.getBladeRf2OutputSettings()->setReverseApiPort(settings.m_reverseAPIPort);
response.getBladeRf2OutputSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex);
}
void BladeRF2Output::webapiFormatDeviceReport(SWGSDRangel::SWGDeviceReport& response)
{
DeviceBladeRF2 *device = m_deviceShared.m_dev;
if (device)
{
int min, max, step;
float scale;
uint64_t f_min, f_max;
device->getBandwidthRangeTx(min, max, step, scale);
response.getBladeRf2OutputReport()->setBandwidthRange(new SWGSDRangel::SWGRange);
response.getBladeRf2OutputReport()->getBandwidthRange()->setMin(min);
response.getBladeRf2OutputReport()->getBandwidthRange()->setMax(max);
response.getBladeRf2OutputReport()->getBandwidthRange()->setStep(step);
response.getBladeRf2OutputReport()->getBandwidthRange()->setScale(scale);
device->getFrequencyRangeTx(f_min, f_max, step, scale);
response.getBladeRf2OutputReport()->setFrequencyRange(new SWGSDRangel::SWGFrequencyRange);
response.getBladeRf2OutputReport()->getFrequencyRange()->setMin(f_min);
response.getBladeRf2OutputReport()->getFrequencyRange()->setMax(f_max);
response.getBladeRf2OutputReport()->getFrequencyRange()->setStep(step);
response.getBladeRf2OutputReport()->getBandwidthRange()->setScale(scale);
device->getGlobalGainRangeTx(min, max, step, scale);
response.getBladeRf2OutputReport()->setGlobalGainRange(new SWGSDRangel::SWGRange);
response.getBladeRf2OutputReport()->getGlobalGainRange()->setMin(min);
response.getBladeRf2OutputReport()->getGlobalGainRange()->setMax(max);
response.getBladeRf2OutputReport()->getGlobalGainRange()->setStep(step);
response.getBladeRf2OutputReport()->getBandwidthRange()->setScale(scale);
device->getSampleRateRangeTx(min, max, step, scale);
response.getBladeRf2OutputReport()->setSampleRateRange(new SWGSDRangel::SWGRange);
response.getBladeRf2OutputReport()->getSampleRateRange()->setMin(min);
response.getBladeRf2OutputReport()->getSampleRateRange()->setMax(max);
response.getBladeRf2OutputReport()->getSampleRateRange()->setStep(step);
response.getBladeRf2OutputReport()->getBandwidthRange()->setScale(scale);
}
}
int BladeRF2Output::webapiRunGet(
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
(void) errorMessage;
m_deviceAPI->getDeviceEngineStateStr(*response.getState());
return 200;
}
int BladeRF2Output::webapiRun(
bool run,
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
(void) errorMessage;
m_deviceAPI->getDeviceEngineStateStr(*response.getState());
MsgStartStop *message = MsgStartStop::create(run);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgStartStop *msgToGUI = MsgStartStop::create(run);
m_guiMessageQueue->push(msgToGUI);
}
return 200;
}
void BladeRF2Output::webapiReverseSendSettings(const QList<QString>& deviceSettingsKeys, const BladeRF2OutputSettings& settings, bool force)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(1); // single Tx
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("BladeRF2"));
swgDeviceSettings->setBladeRf2OutputSettings(new SWGSDRangel::SWGBladeRF2OutputSettings());
SWGSDRangel::SWGBladeRF2OutputSettings *swgBladeRF2OutputSettings = swgDeviceSettings->getBladeRf2OutputSettings();
// transfer data that has been modified. When force is on transfer all data except reverse API data
if (deviceSettingsKeys.contains("centerFrequency") || force) {
swgBladeRF2OutputSettings->setCenterFrequency(settings.m_centerFrequency);
}
if (deviceSettingsKeys.contains("LOppmTenths") || force) {
swgBladeRF2OutputSettings->setLOppmTenths(settings.m_LOppmTenths);
}
if (deviceSettingsKeys.contains("devSampleRate") || force) {
swgBladeRF2OutputSettings->setDevSampleRate(settings.m_devSampleRate);
}
if (deviceSettingsKeys.contains("bandwidth") || force) {
swgBladeRF2OutputSettings->setBandwidth(settings.m_bandwidth);
}
if (deviceSettingsKeys.contains("log2Interp") || force) {
swgBladeRF2OutputSettings->setLog2Interp(settings.m_log2Interp);
}
if (deviceSettingsKeys.contains("biasTee") || force) {
swgBladeRF2OutputSettings->setBiasTee(settings.m_biasTee ? 1 : 0);
}
if (deviceSettingsKeys.contains("globalGain") || force) {
swgBladeRF2OutputSettings->setGlobalGain(settings.m_globalGain);
}
if (deviceSettingsKeys.contains("transverterDeltaFrequency") || force) {
swgBladeRF2OutputSettings->setTransverterDeltaFrequency(settings.m_transverterDeltaFrequency);
}
if (deviceSettingsKeys.contains("transverterMode") || force) {
swgBladeRF2OutputSettings->setTransverterMode(settings.m_transverterMode ? 1 : 0);
}
QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/settings")
.arg(settings.m_reverseAPIAddress)
.arg(settings.m_reverseAPIPort)
.arg(settings.m_reverseAPIDeviceIndex);
m_networkRequest.setUrl(QUrl(deviceSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer = new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
// Always use PATCH to avoid passing reverse API settings
QNetworkReply *reply = m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer);
buffer->setParent(reply);
delete swgDeviceSettings;
}
void BladeRF2Output::webapiReverseSendStartStop(bool start)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(1); // single Tx
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("BladeRF2"));
QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/run")
.arg(m_settings.m_reverseAPIAddress)
.arg(m_settings.m_reverseAPIPort)
.arg(m_settings.m_reverseAPIDeviceIndex);
m_networkRequest.setUrl(QUrl(deviceSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer = new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
QNetworkReply *reply;
if (start) {
reply = m_networkManager->sendCustomRequest(m_networkRequest, "POST", buffer);
} else {
reply = m_networkManager->sendCustomRequest(m_networkRequest, "DELETE", buffer);
}
buffer->setParent(reply);
delete swgDeviceSettings;
}
void BladeRF2Output::networkManagerFinished(QNetworkReply *reply)
{
QNetworkReply::NetworkError replyError = reply->error();
if (replyError)
{
qWarning() << "BladeRF2Output::networkManagerFinished:"
<< " error(" << (int) replyError
<< "): " << replyError
<< ": " << reply->errorString();
}
else
{
QString answer = reply->readAll();
answer.chop(1); // remove last \n
qDebug("BladeRF2Output::networkManagerFinished: reply:\n%s", answer.toStdString().c_str());
}
}