/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include "plugin/pluginapi.h" #include "device/deviceapi.h" #include "device/deviceuiset.h" #include "gui/colormapper.h" #include "gui/glspectrum.h" #include "gui/basicdevicesettingsdialog.h" #include "dsp/dspengine.h" #include "dsp/dspdevicemimoengine.h" #include "dsp/dspcommands.h" #include "dsp/devicesamplestatic.h" #include "util/db.h" #include "mainwindow.h" #include "bladerf2mimo.h" #include "ui_bladerf2mimogui.h" #include "bladerf2mimogui.h" BladeRF2MIMOGui::BladeRF2MIMOGui(DeviceUISet *deviceUISet, QWidget* parent) : DeviceGUI(parent), ui(new Ui::BladeRF2MIMOGui), m_settings(), m_rxElseTx(true), m_streamIndex(0), m_spectrumRxElseTx(true), m_spectrumStreamIndex(0), m_gainLock(false), m_doApplySettings(true), m_forceSettings(true), m_sampleMIMO(nullptr), m_tickCount(0), m_rxBasebandSampleRate(3072000), m_txBasebandSampleRate(3072000), m_rxDeviceCenterFrequency(435000*1000), m_txDeviceCenterFrequency(435000*1000), m_lastRxEngineState(DeviceAPI::StNotStarted), m_lastTxEngineState(DeviceAPI::StNotStarted), m_sampleRateMode(true) { qDebug("BladeRF2MIMOGui::BladeRF2MIMOGui"); m_deviceUISet = deviceUISet; setAttribute(Qt::WA_DeleteOnClose, true); ui->setupUi(getContents()); sizeToContents(); getContents()->setStyleSheet("#BladeRF2MIMOGui { background-color: rgb(64, 64, 64); }"); m_helpURL = "plugins/samplemimo/bladerf2mimo/readme.md"; m_sampleMIMO = (BladeRF2MIMO*) m_deviceUISet->m_deviceAPI->getSampleMIMO(); m_sampleMIMO->getRxFrequencyRange(m_fMinRx, m_fMaxRx, m_fStepRx, m_fScaleRx); m_sampleMIMO->getTxFrequencyRange(m_fMinTx, m_fMaxTx, m_fStepTx, m_fScaleTx); m_sampleMIMO->getRxBandwidthRange(m_bwMinRx, m_bwMaxRx, m_bwStepRx, m_bwScaleRx); m_sampleMIMO->getTxBandwidthRange(m_bwMinTx, m_bwMaxTx, m_bwStepTx, m_bwScaleTx); ui->centerFrequency->setColorMapper(ColorMapper(ColorMapper::GrayGold)); ui->sampleRate->setColorMapper(ColorMapper(ColorMapper::GrayGreenYellow)); ui->bandwidth->setColorMapper(ColorMapper(ColorMapper::GrayYellow)); int minRx, maxRx, stepRx, minTx, maxTx, stepTx; m_sampleMIMO->getRxSampleRateRange(minRx, maxRx, stepRx, m_srScaleRx); m_sampleMIMO->getTxSampleRateRange(minTx, maxTx, stepTx, m_srScaleTx); m_srMin = std::max(minRx, minTx); m_srMax = std::min(maxRx, maxTx); m_sampleMIMO->getRxGlobalGainRange(m_gainMinRx, m_gainMaxRx, m_gainStepRx, m_gainScaleRx); m_sampleMIMO->getTxGlobalGainRange(m_gainMinTx, m_gainMaxTx, m_gainStepTx, m_gainScaleTx); displayGainModes(); displaySettings(); connect(&m_updateTimer, SIGNAL(timeout()), this, SLOT(updateHardware())); connect(&m_statusTimer, SIGNAL(timeout()), this, SLOT(updateStatus())); m_statusTimer.start(500); connect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()), Qt::QueuedConnection); m_sampleMIMO->setMessageQueueToGUI(&m_inputMessageQueue); connect(this, SIGNAL(customContextMenuRequested(const QPoint &)), this, SLOT(openDeviceSettingsDialog(const QPoint &))); sendSettings(); makeUIConnections(); } BladeRF2MIMOGui::~BladeRF2MIMOGui() { delete ui; } void BladeRF2MIMOGui::destroy() { delete this; } void BladeRF2MIMOGui::resetToDefaults() { m_settings.resetToDefaults(); displaySettings(); m_forceSettings = true; sendSettings(); } QByteArray BladeRF2MIMOGui::serialize() const { return m_settings.serialize(); } bool BladeRF2MIMOGui::deserialize(const QByteArray& data) { if (m_settings.deserialize(data)) { displaySettings(); m_forceSettings = true; sendSettings(); return true; } else { resetToDefaults(); return false; } } void BladeRF2MIMOGui::displaySettings() { updateFrequencyLimits(); if (m_rxElseTx) { ui->transverter->setDeltaFrequency(m_settings.m_rxTransverterDeltaFrequency); ui->transverter->setDeltaFrequencyActive(m_settings.m_rxTransverterMode); ui->transverter->setIQOrder(m_settings.m_iqOrder); ui->centerFrequency->setValueRange(7, m_fMinRx / 1000, m_fMaxRx / 1000); ui->centerFrequency->setValue(m_settings.m_rxCenterFrequency / 1000); ui->bandwidth->setValueRange(5, m_bwMinRx / 1000, m_bwMaxRx / 1000); ui->bandwidth->setValue(m_settings.m_rxBandwidth / 1000); uint32_t basebandSampleRate = m_settings.m_devSampleRate/(1<deviceRateText->setText(tr("%1k").arg(QString::number(basebandSampleRate / 1000.0f, 'g', 5))); ui->dcOffset->setEnabled(true); ui->dcOffset->setChecked(m_settings.m_dcBlock); ui->iqImbalance->setEnabled(true); ui->iqImbalance->setChecked(m_settings.m_iqCorrection); ui->biasTee->setChecked(m_settings.m_rxBiasTee); ui->decim->setCurrentIndex(m_settings.m_log2Decim); ui->label_decim->setText(QString("Dec")); ui->decim->setToolTip(QString("Decimation factor")); ui->gainMode->setEnabled(true); ui->fcPos->setCurrentIndex((int) m_settings.m_fcPosRx); if (m_streamIndex == 0) { ui->gainMode->setCurrentIndex(m_settings.m_rx0GainMode); } else if (m_streamIndex == 1) { ui->gainMode->setCurrentIndex(m_settings.m_rx1GainMode); } } else { ui->transverter->setDeltaFrequency(m_settings.m_txTransverterDeltaFrequency); ui->transverter->setDeltaFrequencyActive(m_settings.m_txTransverterMode); ui->transverter->setIQOrder(m_settings.m_iqOrder); ui->centerFrequency->setValueRange(7, m_fMinTx / 1000, m_fMaxTx / 1000); ui->centerFrequency->setValue(m_settings.m_txCenterFrequency / 1000); ui->bandwidth->setValueRange(5, m_bwMinTx / 1000, m_bwMaxTx / 1000); ui->bandwidth->setValue(m_settings.m_txBandwidth / 1000); uint32_t basebandSampleRate = m_settings.m_devSampleRate/(1<deviceRateText->setText(tr("%1k").arg(QString::number(basebandSampleRate / 1000.0f, 'g', 5))); ui->dcOffset->setEnabled(false); ui->iqImbalance->setEnabled(false); ui->biasTee->setChecked(m_settings.m_txBiasTee); ui->decim->setCurrentIndex(m_settings.m_log2Interp); ui->label_decim->setText(QString("Int")); ui->decim->setToolTip(QString("Interpolation factor")); ui->gainMode->setEnabled(false); ui->fcPos->setCurrentIndex((int) m_settings.m_fcPosTx); } displayGain(); ui->sampleRate->setValue(m_settings.m_devSampleRate); ui->LOppm->setValue(m_settings.m_LOppmTenths); ui->LOppmText->setText(QString("%1").arg(QString::number(m_settings.m_LOppmTenths/10.0, 'f', 1))); displaySampleRate(); } void BladeRF2MIMOGui::displaySampleRate() { ui->sampleRate->blockSignals(true); displayFcTooltip(); quint32 log2Factor = m_rxElseTx ? m_settings.m_log2Decim : m_settings.m_log2Interp; if (m_sampleRateMode) { ui->sampleRateMode->setStyleSheet("QToolButton { background:rgb(60,60,60); }"); ui->sampleRateMode->setText("SR"); // BladeRF can go as low as 80 kS/s but because of buffering in practice experience is not good below 330 kS/s ui->sampleRate->setValueRange(8, m_srMin, m_srMax); ui->sampleRate->setValue(m_settings.m_devSampleRate); ui->sampleRate->setToolTip("Device to host sample rate (S/s)"); ui->deviceRateText->setToolTip("Baseband sample rate (S/s)"); uint32_t basebandSampleRate = m_settings.m_devSampleRate/(1<deviceRateText->setText(tr("%1k").arg(QString::number(basebandSampleRate / 1000.0f, 'g', 5))); } else { ui->sampleRateMode->setStyleSheet("QToolButton { background:rgb(50,50,50); }"); ui->sampleRateMode->setText("BB"); // BladeRF can go as low as 80 kS/s but because of buffering in practice experience is not good below 330 kS/s ui->sampleRate->setValueRange(8, m_srMin/(1<sampleRate->setValue(m_settings.m_devSampleRate/(1<sampleRate->setToolTip("Baseband sample rate (S/s)"); ui->deviceRateText->setToolTip("Device to host sample rate (S/s)"); ui->deviceRateText->setText(tr("%1k").arg(QString::number(m_settings.m_devSampleRate / 1000.0f, 'g', 5))); } ui->sampleRate->blockSignals(false); } void BladeRF2MIMOGui::displayFcTooltip() { int32_t fShift; if (m_rxElseTx) { fShift = DeviceSampleStatic::calculateSourceFrequencyShift( m_settings.m_log2Decim, (DeviceSampleStatic::fcPos_t) m_settings.m_fcPosRx, m_settings.m_devSampleRate, DeviceSampleStatic::FrequencyShiftScheme::FSHIFT_STD ); } else { fShift = DeviceSampleStatic::calculateSinkFrequencyShift( m_settings.m_log2Interp, (DeviceSampleStatic::fcPos_t) m_settings.m_fcPosTx, m_settings.m_devSampleRate ); } ui->fcPos->setToolTip(tr("Relative position of device center frequency: %1 kHz").arg(QString::number(fShift / 1000.0f, 'g', 5))); } void BladeRF2MIMOGui::displayGainModes() { ui->gainMode->blockSignals(true); if (m_rxElseTx) { const std::vector& modes = m_sampleMIMO->getRxGainModes(); std::vector::const_iterator it = modes.begin(); for (; it != modes.end(); ++it) { ui->gainMode->addItem(it->m_name); } } else { ui->gainMode->clear(); ui->gainMode->addItem("automatic"); } ui->gainMode->blockSignals(false); } void BladeRF2MIMOGui::displayGain() { int min, max, step, gainDB; float scale; if (m_rxElseTx) { m_sampleMIMO->getRxGlobalGainRange(min, max, step, scale); if (m_streamIndex == 0) { gainDB = m_settings.m_rx0GlobalGain; } else { gainDB = m_settings.m_rx1GlobalGain; } } else { m_sampleMIMO->getTxGlobalGainRange(min, max, step, scale); if (m_streamIndex == 0) { gainDB = m_settings.m_tx0GlobalGain; } else { gainDB = m_settings.m_tx1GlobalGain; } } ui->gain->setMinimum(min/step); ui->gain->setMaximum(max/step); ui->gain->setSingleStep(1); ui->gain->setPageStep(1); ui->gain->setValue(getGainValue(gainDB, min, max, step, scale)); ui->gainText->setText(tr("%1 dB").arg(QString::number(gainDB, 'f', 2))); } bool BladeRF2MIMOGui::handleMessage(const Message& message) { if (DSPMIMOSignalNotification::match(message)) { const DSPMIMOSignalNotification& notif = (const DSPMIMOSignalNotification&) message; int istream = notif.getIndex(); bool sourceOrSink = notif.getSourceOrSink(); if (sourceOrSink) { m_rxBasebandSampleRate = notif.getSampleRate(); m_rxDeviceCenterFrequency = notif.getCenterFrequency(); } else { m_txBasebandSampleRate = notif.getSampleRate(); m_txDeviceCenterFrequency = notif.getCenterFrequency(); } qDebug("BladeRF2MIMOGui::handleInputMessages: DSPMIMOSignalNotification: %s stream: %d SampleRate:%d, CenterFrequency:%llu", sourceOrSink ? "source" : "sink", istream, notif.getSampleRate(), notif.getCenterFrequency()); updateSampleRateAndFrequency(); return true; } else if (BladeRF2MIMO::MsgConfigureBladeRF2MIMO::match(message)) { const BladeRF2MIMO::MsgConfigureBladeRF2MIMO& notif = (const BladeRF2MIMO::MsgConfigureBladeRF2MIMO&) message; if (notif.getForce()) { m_settings = notif.getSettings(); } else { m_settings.applySettings(notif.getSettingsKeys(), notif.getSettings()); } displaySettings(); return true; } return false; } void BladeRF2MIMOGui::handleInputMessages() { Message* message; while ((message = m_inputMessageQueue.pop()) != 0) { if (handleMessage(*message)) { delete message; } else { qDebug("BladeRF2MIMOGui::handleInputMessages: unhandled message: %s", message->getIdentifier()); } } } void BladeRF2MIMOGui::sendSettings() { if (!m_updateTimer.isActive()) { m_updateTimer.start(100); } } void BladeRF2MIMOGui::updateHardware() { if (m_doApplySettings) { BladeRF2MIMO::MsgConfigureBladeRF2MIMO* message = BladeRF2MIMO::MsgConfigureBladeRF2MIMO::create(m_settings, m_settingsKeys, m_forceSettings); m_sampleMIMO->getInputMessageQueue()->push(message); m_forceSettings = false; m_settingsKeys.clear(); m_updateTimer.stop(); } } void BladeRF2MIMOGui::updateSampleRateAndFrequency() { if (m_spectrumRxElseTx) { m_deviceUISet->getSpectrum()->setSampleRate(m_rxBasebandSampleRate); m_deviceUISet->getSpectrum()->setCenterFrequency(m_rxDeviceCenterFrequency); } else { m_deviceUISet->getSpectrum()->setSampleRate(m_txBasebandSampleRate); m_deviceUISet->getSpectrum()->setCenterFrequency(m_txDeviceCenterFrequency); } } void BladeRF2MIMOGui::on_streamSide_currentIndexChanged(int index) { m_rxElseTx = index == 0; displayGainModes(); displaySettings(); } void BladeRF2MIMOGui::on_streamIndex_currentIndexChanged(int index) { m_streamIndex = index < 0 ? 0 : index > 1 ? 1 : index; displaySettings(); } void BladeRF2MIMOGui::on_spectrumSide_currentIndexChanged(int index) { m_spectrumRxElseTx = (index == 0); m_deviceUISet->m_spectrum->setDisplayedStream(m_spectrumRxElseTx, m_spectrumStreamIndex); m_deviceUISet->m_deviceAPI->setSpectrumSinkInput(m_spectrumRxElseTx, m_spectrumStreamIndex); m_deviceUISet->setSpectrumScalingFactor(m_spectrumRxElseTx ? SDR_RX_SCALEF : SDR_TX_SCALEF); updateSampleRateAndFrequency(); } void BladeRF2MIMOGui::on_spectrumIndex_currentIndexChanged(int index) { m_spectrumStreamIndex = index < 0 ? 0 : index > 1 ? 1 : index; m_deviceUISet->m_spectrum->setDisplayedStream(m_spectrumRxElseTx, m_spectrumStreamIndex); m_deviceUISet->m_deviceAPI->setSpectrumSinkInput(m_spectrumRxElseTx, m_spectrumStreamIndex); updateSampleRateAndFrequency(); } void BladeRF2MIMOGui::on_startStopRx_toggled(bool checked) { if (m_doApplySettings) { BladeRF2MIMO::MsgStartStop *message = BladeRF2MIMO::MsgStartStop::create(checked, true); m_sampleMIMO->getInputMessageQueue()->push(message); } } void BladeRF2MIMOGui::on_startStopTx_toggled(bool checked) { if (m_doApplySettings) { BladeRF2MIMO::MsgStartStop *message = BladeRF2MIMO::MsgStartStop::create(checked, false); m_sampleMIMO->getInputMessageQueue()->push(message); } } void BladeRF2MIMOGui::on_centerFrequency_changed(quint64 value) { if (m_rxElseTx) { m_settings.m_rxCenterFrequency = value * 1000; m_settingsKeys.append("rxCenterFrequency"); } else { m_settings.m_txCenterFrequency = value * 1000; m_settingsKeys.append("txCenterFrequency"); } sendSettings(); } void BladeRF2MIMOGui::on_LOppm_valueChanged(int value) { ui->LOppmText->setText(QString("%1").arg(QString::number(value/10.0, 'f', 1))); m_settings.m_LOppmTenths = value; m_settingsKeys.append("LOppmTenths"); sendSettings(); } void BladeRF2MIMOGui::on_dcOffset_toggled(bool checked) { m_settings.m_dcBlock = checked; m_settingsKeys.append("dcBlock"); sendSettings(); } void BladeRF2MIMOGui::on_iqImbalance_toggled(bool checked) { m_settings.m_iqCorrection = checked; m_settingsKeys.append("iqCorrection"); sendSettings(); } void BladeRF2MIMOGui::on_bandwidth_changed(quint64 value) { if (m_rxElseTx) { m_settings.m_rxBandwidth = value * 1000; m_settingsKeys.append("rxBandwidth"); } else { m_settings.m_txBandwidth = value * 1000; m_settingsKeys.append("txBandwidth"); } sendSettings(); } void BladeRF2MIMOGui::on_sampleRate_changed(quint64 value) { if (m_sampleRateMode) { m_settings.m_devSampleRate = value; } else { if (m_rxElseTx) { m_settings.m_devSampleRate = value * (1 << m_settings.m_log2Decim); } else { m_settings.m_devSampleRate = value * (1 << m_settings.m_log2Interp); } } displaySampleRate(); displayFcTooltip(); m_settingsKeys.append("devSampleRate"); sendSettings(); } void BladeRF2MIMOGui::on_fcPos_currentIndexChanged(int index) { if (m_rxElseTx) { m_settings.m_fcPosRx = (BladeRF2MIMOSettings::fcPos_t) (index < 0 ? 0 : index > 2 ? 2 : index); m_settingsKeys.append("fcPosRx"); } else { m_settings.m_fcPosTx = (BladeRF2MIMOSettings::fcPos_t) (index < 0 ? 0 : index > 2 ? 2 : index); m_settingsKeys.append("fcPosTx"); } displayFcTooltip(); sendSettings(); } void BladeRF2MIMOGui::on_decim_currentIndexChanged(int index) { if ((index <0) || (index > 6)) { return; } if (m_rxElseTx) { m_settings.m_log2Decim = index; m_settingsKeys.append("log2Decim"); } else { m_settings.m_log2Interp = index; m_settingsKeys.append("log2Interp"); } displaySampleRate(); if (m_sampleRateMode) { m_settings.m_devSampleRate = ui->sampleRate->getValueNew(); } else { m_settings.m_devSampleRate = ui->sampleRate->getValueNew() * (1 << (m_rxElseTx ? m_settings.m_log2Decim : m_settings.m_log2Interp)); } m_settingsKeys.append("devSampleRate"); sendSettings(); } void BladeRF2MIMOGui::on_gainLock_toggled(bool checked) { if (!m_gainLock && checked) { m_settings.m_rx1GlobalGain = m_settings.m_rx0GlobalGain; m_settings.m_rx1GainMode = m_settings.m_rx0GainMode; m_settings.m_tx1GlobalGain = m_settings.m_tx0GlobalGain; m_settingsKeys.append("rx1GlobalGain"); m_settingsKeys.append("rx1GainMode"); m_settingsKeys.append("tx1GlobalGain"); sendSettings(); } m_gainLock = checked; } void BladeRF2MIMOGui::on_gainMode_currentIndexChanged(int index) { if (!m_rxElseTx) { // not for Tx return; } const std::vector& modes = m_sampleMIMO->getRxGainModes(); unsigned int uindex = index < 0 ? 0 : (unsigned int) index; if (uindex < modes.size()) { BladeRF2MIMO::GainMode mode = modes[index]; if (m_streamIndex == 0 || m_gainLock) { if (m_settings.m_rx0GainMode != mode.m_value) { if (mode.m_value == BLADERF_GAIN_MANUAL) { setGainFromValue(ui->gain->value()); ui->gain->setEnabled(true); } else { ui->gain->setEnabled(false); } } m_settings.m_rx0GainMode = mode.m_value; m_settingsKeys.append("rx0GainMode"); } if (m_streamIndex == 1 || m_gainLock) { if (m_settings.m_rx1GainMode != mode.m_value) { if (mode.m_value == BLADERF_GAIN_MANUAL) { setGainFromValue(ui->gain->value()); ui->gain->setEnabled(true); } else { ui->gain->setEnabled(false); } } m_settings.m_rx1GainMode = mode.m_value; m_settingsKeys.append("rx1GainMode"); } sendSettings(); } } void BladeRF2MIMOGui::on_gain_valueChanged(int value) { float gainDB = setGainFromValue(value); ui->gainText->setText(tr("%1 dB").arg(QString::number(gainDB, 'f', 2))); sendSettings(); } float BladeRF2MIMOGui::setGainFromValue(int value) { int min, max, step; float scale, gainDB; if (m_rxElseTx) { m_sampleMIMO->getRxGlobalGainRange(min, max, step, scale); gainDB = getGainDB(value, min, max, step, scale); if (m_streamIndex == 0 || m_gainLock) { m_settings.m_rx0GlobalGain = (int) gainDB; m_settingsKeys.append("rx0GlobalGain"); } if (m_streamIndex == 1 || m_gainLock) { m_settings.m_rx1GlobalGain = (int) gainDB; m_settingsKeys.append("rx1GlobalGain"); } } else { m_sampleMIMO->getTxGlobalGainRange(min, max, step, scale); gainDB = getGainDB(value, min, max, step, scale); if (m_streamIndex == 0 || m_gainLock) { m_settings.m_tx0GlobalGain = (int) gainDB; m_settingsKeys.append("tx0GlobalGain"); } if (m_streamIndex == 1 || m_gainLock) { m_settings.m_tx1GlobalGain = (int) gainDB; m_settingsKeys.append("tx1GlobalGain"); } } return gainDB; } void BladeRF2MIMOGui::on_biasTee_toggled(bool checked) { if (m_rxElseTx) { m_settings.m_rxBiasTee = checked; m_settingsKeys.append("rxBiasTee"); } else { m_settings.m_txBiasTee = checked; m_settingsKeys.append("txBiasTee"); } sendSettings(); } void BladeRF2MIMOGui::on_transverter_clicked() { if (m_rxElseTx) { m_settings.m_rxTransverterMode = ui->transverter->getDeltaFrequencyAcive(); m_settings.m_rxTransverterDeltaFrequency = ui->transverter->getDeltaFrequency(); m_settings.m_iqOrder = ui->transverter->getIQOrder(); m_settingsKeys.append("rxTransverterMode"); m_settingsKeys.append("rxTransverterDeltaFrequency"); m_settingsKeys.append("iqOrder"); m_settingsKeys.append("rxCenterFrequency"); qDebug("BladeRF2InputGui::on_transverter_clicked: Rx: %lld Hz %s", m_settings.m_rxTransverterDeltaFrequency, m_settings.m_rxTransverterMode ? "on" : "off"); } else { m_settings.m_txTransverterMode = ui->transverter->getDeltaFrequencyAcive(); m_settings.m_txTransverterDeltaFrequency = ui->transverter->getDeltaFrequency(); m_settingsKeys.append("txTransverterMode"); m_settingsKeys.append("txTransverterDeltaFrequency"); m_settingsKeys.append("txCenterFrequency"); qDebug("BladeRF2InputGui::on_transverter_clicked: Tx: %lld Hz %s", m_settings.m_txTransverterDeltaFrequency, m_settings.m_txTransverterMode ? "on" : "off"); } updateFrequencyLimits(); setCenterFrequencySetting(ui->centerFrequency->getValueNew()); sendSettings(); } void BladeRF2MIMOGui::updateFrequencyLimits() { // values in kHz uint64_t f_min, f_max; int step; float scale; if (m_rxElseTx) { qint64 deltaFrequency = m_settings.m_rxTransverterMode ? m_settings.m_rxTransverterDeltaFrequency/1000 : 0; m_sampleMIMO->getRxFrequencyRange(f_min, f_max, step, scale); qint64 minLimit = f_min/1000 + deltaFrequency; qint64 maxLimit = f_max/1000 + deltaFrequency; if (m_settings.m_txTransverterMode || m_settings.m_rxTransverterMode) { minLimit = minLimit < 0 ? 0 : minLimit > 999999999 ? 999999999 : minLimit; maxLimit = maxLimit < 0 ? 0 : maxLimit > 999999999 ? 999999999 : maxLimit; ui->centerFrequency->setValueRange(9, minLimit, maxLimit); } else { minLimit = minLimit < 0 ? 0 : minLimit > 9999999 ? 9999999 : minLimit; maxLimit = maxLimit < 0 ? 0 : maxLimit > 9999999 ? 9999999 : maxLimit; ui->centerFrequency->setValueRange(7, minLimit, maxLimit); } qDebug("BladeRF2MIMOGui::updateFrequencyLimits: Rx: delta: %lld min: %lld max: %lld", deltaFrequency, minLimit, maxLimit); } else { qint64 deltaFrequency = m_settings.m_txTransverterMode ? m_settings.m_txTransverterDeltaFrequency/1000 : 0; m_sampleMIMO->getRxFrequencyRange(f_min, f_max, step, scale); qint64 minLimit = f_min/1000 + deltaFrequency; qint64 maxLimit = f_max/1000 + deltaFrequency; if (m_settings.m_txTransverterMode || m_settings.m_rxTransverterMode) { minLimit = minLimit < 0 ? 0 : minLimit > 999999999 ? 999999999 : minLimit; maxLimit = maxLimit < 0 ? 0 : maxLimit > 999999999 ? 999999999 : maxLimit; ui->centerFrequency->setValueRange(9, minLimit, maxLimit); } else { minLimit = minLimit < 0 ? 0 : minLimit > 9999999 ? 9999999 : minLimit; maxLimit = maxLimit < 0 ? 0 : maxLimit > 9999999 ? 9999999 : maxLimit; ui->centerFrequency->setValueRange(7, minLimit, maxLimit); } qDebug("BladeRF2MIMOGui::updateFrequencyLimits: Rx: delta: %lld min: %lld max: %lld", deltaFrequency, minLimit, maxLimit); } } void BladeRF2MIMOGui::setCenterFrequencySetting(uint64_t kHzValue) { int64_t centerFrequency = kHzValue*1000; if (m_rxElseTx) { m_settings.m_rxCenterFrequency = centerFrequency < 0 ? 0 : (uint64_t) centerFrequency; m_settingsKeys.append("rxCenterFrequency"); } else { m_settings.m_txCenterFrequency = centerFrequency < 0 ? 0 : (uint64_t) centerFrequency; m_settingsKeys.append("txCenterFrequency"); } ui->centerFrequency->setToolTip(QString("Main center frequency in kHz (LO: %1 kHz)").arg(centerFrequency/1000)); } void BladeRF2MIMOGui::updateStatus() { int stateRx = m_deviceUISet->m_deviceAPI->state(0); int stateTx = m_deviceUISet->m_deviceAPI->state(1); if (m_lastRxEngineState != stateRx) { qDebug("BladeRF2MIMOGui::updateStatus: stateRx: %d", (int) stateRx); switch(stateRx) { case DeviceAPI::StNotStarted: ui->startStopRx->setStyleSheet("QToolButton { background:rgb(79,79,79); }"); break; case DeviceAPI::StIdle: ui->startStopRx->setStyleSheet("QToolButton { background-color : blue; }"); break; case DeviceAPI::StRunning: ui->startStopRx->setStyleSheet("QToolButton { background-color : green; }"); break; case DeviceAPI::StError: ui->startStopRx->setStyleSheet("QToolButton { background-color : red; }"); QMessageBox::information(this, tr("Message"), m_deviceUISet->m_deviceAPI->errorMessage(0)); break; default: break; } m_lastRxEngineState = stateRx; } if (m_lastTxEngineState != stateTx) { qDebug("BladeRF2MIMOGui::updateStatus: stateTx: %d", (int) stateTx); switch(stateTx) { case DeviceAPI::StNotStarted: ui->startStopTx->setStyleSheet("QToolButton { background:rgb(79,79,79); }"); break; case DeviceAPI::StIdle: ui->startStopTx->setStyleSheet("QToolButton { background-color : blue; }"); break; case DeviceAPI::StRunning: ui->startStopTx->setStyleSheet("QToolButton { background-color : green; }"); break; case DeviceAPI::StError: ui->startStopTx->setStyleSheet("QToolButton { background-color : red; }"); QMessageBox::information(this, tr("Message"), m_deviceUISet->m_deviceAPI->errorMessage(1)); break; default: break; } m_lastTxEngineState = stateTx; } } void BladeRF2MIMOGui::openDeviceSettingsDialog(const QPoint& p) { if (m_contextMenuType == ContextMenuDeviceSettings) { BasicDeviceSettingsDialog dialog(this); dialog.setUseReverseAPI(m_settings.m_useReverseAPI); dialog.setReverseAPIAddress(m_settings.m_reverseAPIAddress); dialog.setReverseAPIPort(m_settings.m_reverseAPIPort); dialog.setReverseAPIDeviceIndex(m_settings.m_reverseAPIDeviceIndex); dialog.move(p); dialog.exec(); m_settings.m_useReverseAPI = dialog.useReverseAPI(); m_settings.m_reverseAPIAddress = dialog.getReverseAPIAddress(); m_settings.m_reverseAPIPort = dialog.getReverseAPIPort(); m_settings.m_reverseAPIDeviceIndex = dialog.getReverseAPIDeviceIndex(); m_settingsKeys.append("useReverseAPI"); m_settingsKeys.append("reverseAPIAddress"); m_settingsKeys.append("reverseAPIPort"); m_settingsKeys.append("reverseAPIDeviceIndex"); sendSettings(); } resetContextMenuType(); } float BladeRF2MIMOGui::getGainDB(int gainValue, int gainMin, int gainMax, int gainStep, float gainScale) { float gain = gainValue * gainStep * gainScale; qDebug("BladeRF2MIMOGui::getGainDB: gainValue: %d gainMin: %d gainMax: %d gainStep: %d gainScale: %f gain: %f", gainValue, gainMin, gainMax, gainStep, gainScale, gain); return gain; } int BladeRF2MIMOGui::getGainValue(float gainDB, int gainMin, int gainMax, int gainStep, float gainScale) { int gain = (gainDB/gainScale) / gainStep; qDebug("BladeRF2MIMOGui::getGainValue: gainDB: %f m_gainMin: %d m_gainMax: %d m_gainStep: %d gainScale: %f gain: %d", gainDB, gainMin, gainMax, gainStep, gainScale, gain); return gain; } void BladeRF2MIMOGui::makeUIConnections() { QObject::connect(ui->streamSide, QOverload::of(&QComboBox::currentIndexChanged), this, &BladeRF2MIMOGui::on_streamSide_currentIndexChanged); QObject::connect(ui->streamIndex, QOverload::of(&QComboBox::currentIndexChanged), this, &BladeRF2MIMOGui::on_streamIndex_currentIndexChanged); QObject::connect(ui->spectrumSide, QOverload::of(&QComboBox::currentIndexChanged), this, &BladeRF2MIMOGui::on_spectrumSide_currentIndexChanged); QObject::connect(ui->spectrumIndex, QOverload::of(&QComboBox::currentIndexChanged), this, &BladeRF2MIMOGui::on_spectrumIndex_currentIndexChanged); QObject::connect(ui->startStopRx, &ButtonSwitch::toggled, this, &BladeRF2MIMOGui::on_startStopRx_toggled); QObject::connect(ui->startStopTx, &ButtonSwitch::toggled, this, &BladeRF2MIMOGui::on_startStopTx_toggled); QObject::connect(ui->centerFrequency, &ValueDial::changed, this, &BladeRF2MIMOGui::on_centerFrequency_changed); QObject::connect(ui->LOppm, &QSlider::valueChanged, this, &BladeRF2MIMOGui::on_LOppm_valueChanged); QObject::connect(ui->dcOffset, &ButtonSwitch::toggled, this, &BladeRF2MIMOGui::on_dcOffset_toggled); QObject::connect(ui->iqImbalance, &ButtonSwitch::toggled, this, &BladeRF2MIMOGui::on_iqImbalance_toggled); QObject::connect(ui->bandwidth, &ValueDial::changed, this, &BladeRF2MIMOGui::on_bandwidth_changed); QObject::connect(ui->sampleRate, &ValueDial::changed, this, &BladeRF2MIMOGui::on_sampleRate_changed); QObject::connect(ui->fcPos, QOverload::of(&QComboBox::currentIndexChanged), this, &BladeRF2MIMOGui::on_fcPos_currentIndexChanged); QObject::connect(ui->decim, QOverload::of(&QComboBox::currentIndexChanged), this, &BladeRF2MIMOGui::on_decim_currentIndexChanged); QObject::connect(ui->gainLock, &QToolButton::toggled, this, &BladeRF2MIMOGui::on_gainLock_toggled); QObject::connect(ui->gainMode, QOverload::of(&QComboBox::currentIndexChanged), this, &BladeRF2MIMOGui::on_gainMode_currentIndexChanged); QObject::connect(ui->gain, &QSlider::valueChanged, this, &BladeRF2MIMOGui::on_gain_valueChanged); QObject::connect(ui->biasTee, &ButtonSwitch::toggled, this, &BladeRF2MIMOGui::on_biasTee_toggled); QObject::connect(ui->transverter, &TransverterButton::clicked, this, &BladeRF2MIMOGui::on_transverter_clicked); }