/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2018 F4EXB // // written by Edouard Griffiths // // // // Integer half-band FIR based interpolator and decimator // // This is the even/odd double buffer variant. Really useful only when SIMD is // // used // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef SDRBASE_DSP_INTHALFBANDFILTEREOF_H_ #define SDRBASE_DSP_INTHALFBANDFILTEREOF_H_ #include #include #include "dsp/dsptypes.h" #include "dsp/hbfiltertraits.h" #include "export.h" template class IntHalfbandFilterEOF { public: IntHalfbandFilterEOF(); bool workDecimateCenter(float *x, float *y) { // insert sample into ring-buffer storeSample(*x, *y); switch(m_state) { case 0: // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; default: // save result doFIR(x, y); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } void myDecimate(float x1, float y1, float *x2, float *y2) { storeSample(x1, y1); advancePointer(); storeSample(*x2, *y2); doFIR(x2, y2); advancePointer(); } /** Simple zero stuffing and filter */ void myInterpolateZeroStuffing(float *x1, float *y1, float *x2, float *y2) { storeSample(*x1, *y1); doFIR(x1, y1); advancePointer(); storeSample(0, 0); doFIR(x2, y2); advancePointer(); } /** Optimized upsampler by 2 not calculating FIR with inserted null samples */ void myInterpolate(float *x1, float *y1, float *x2, float *y2) { // insert sample into ring double buffer m_samples[m_ptr][0] = *x1; m_samples[m_ptr][1] = *y1; m_samples[m_ptr + HBFIRFilterTraits::hbOrder/2][0] = *x1; m_samples[m_ptr + HBFIRFilterTraits::hbOrder/2][1] = *y1; // advance pointer if (m_ptr < (HBFIRFilterTraits::hbOrder/2) - 1) { m_ptr++; } else { m_ptr = 0; } // first output sample calculated with the middle peak *x1 = m_samples[m_ptr + (HBFIRFilterTraits::hbOrder/4) - 1][0]; *y1 = m_samples[m_ptr + (HBFIRFilterTraits::hbOrder/4) - 1][1]; // second sample calculated with the filter doInterpolateFIR(x2, y2); } void myInterpolateInf(float *x1, float *y1, float *x2, float *y2, float *x3, float *y3, float *x4, float *y4) { myInterpolate(x1, y1, x2, y2); myInterpolate(x3, y3, x4, y4); // rotation qint32 x; x = *x1; *x1 = *y1; *y1 = -x; *x2 = -*x2; *y2 = -*y2; x = *x3; *x3 = -*y3; *y3 = x; } void myInterpolateSup(float *x1, float *y1, float *x2, float *y2, float *x3, float *y3, float *x4, float *y4) { myInterpolate(x1, y1, x2, y2); myInterpolate(x3, y3, x4, y4); // rotation qint32 x; x = *x1; *x1 = -*y1; *y1 = x; *x2 = -*x2; *y2 = -*y2; x = *x3; *x3 = *y3; *y3 = -x; } protected: float m_even[2][HBFIRFilterTraits::hbOrder]; // double buffer technique float m_odd[2][HBFIRFilterTraits::hbOrder]; // double buffer technique float m_samples[HBFIRFilterTraits::hbOrder][2]; // double buffer technique int m_ptr; int m_size; int m_state; void storeSample(float x, float y) { if ((m_ptr % 2) == 0) { m_even[0][m_ptr/2] = IQOrder ? x : y; m_even[1][m_ptr/2] = IQOrder ? y : x; m_even[0][m_ptr/2 + m_size] = IQOrder ? x : y; m_even[1][m_ptr/2 + m_size] = IQOrder ? y : x; } else { m_odd[0][m_ptr/2] = IQOrder ? x : y; m_odd[1][m_ptr/2] = IQOrder ? y : x; m_odd[0][m_ptr/2 + m_size] = IQOrder ? x : y; m_odd[1][m_ptr/2 + m_size] = IQOrder ? y : x; } } void advancePointer() { m_ptr = m_ptr + 1 < 2*m_size ? m_ptr + 1: 0; } void doFIR(float *x, float *y) { float iAcc = 0; float qAcc = 0; int a = m_ptr/2 + m_size; // tip pointer int b = m_ptr/2 + 1; // tail pointer for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { if ((m_ptr % 2) == 0) { iAcc += (m_even[0][a] + m_even[0][b]) * HBFIRFilterTraits::hbCoeffsF[i]; qAcc += (m_even[1][a] + m_even[1][b]) * HBFIRFilterTraits::hbCoeffsF[i]; } else { iAcc += (m_odd[0][a] + m_odd[0][b]) * HBFIRFilterTraits::hbCoeffsF[i]; qAcc += (m_odd[1][a] + m_odd[1][b]) * HBFIRFilterTraits::hbCoeffsF[i]; } a -= 1; b += 1; } if ((m_ptr % 2) == 0) { iAcc += m_odd[0][m_ptr/2 + m_size/2] * 0.5f; qAcc += m_odd[1][m_ptr/2 + m_size/2] * 0.5f; } else { iAcc += m_even[0][m_ptr/2 + m_size/2 + 1] * 0.5f; qAcc += m_even[1][m_ptr/2 + m_size/2 + 1] * 0.5f; } *x = iAcc; // HB_SHIFT incorrect do not loose the gained bit *y = qAcc; } void doInterpolateFIR(float *x, float *y) { qint32 iAcc = 0; qint32 qAcc = 0; qint16 a = m_ptr; qint16 b = m_ptr + (HBFIRFilterTraits::hbOrder / 2) - 1; // go through samples in buffer for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { iAcc += (m_samples[a][0] + m_samples[b][0]) * HBFIRFilterTraits::hbCoeffsF[i]; qAcc += (m_samples[a][1] + m_samples[b][1]) * HBFIRFilterTraits::hbCoeffsF[i]; a++; b--; } *x = iAcc * SDR_RX_SCALED; *y = qAcc * SDR_RX_SCALED; } }; template IntHalfbandFilterEOF::IntHalfbandFilterEOF() { m_size = HBFIRFilterTraits::hbOrder/2; for (int i = 0; i < 2*m_size; i++) { m_even[0][i] = 0.0f; m_even[1][i] = 0.0f; m_odd[0][i] = 0.0f; m_odd[1][i] = 0.0f; m_samples[i][0] = 0.0f; m_samples[i][1] = 0.0f; } m_ptr = 0; m_state = 0; } #endif /* SDRBASE_DSP_INTHALFBANDFILTEREOF_H_ */