/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019-2022 Edouard Griffiths, F4EXB // // Copyright (C) 2022 Jiří Pinkava // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "dsp/spectrumvis.h" #include "dsp/misc.h" #include "dsp/datafifo.h" #include "util/messagequeue.h" #include "maincore.h" #include "ssbmodsource.h" const int SSBModSource::m_ssbFftLen = 1024; const int SSBModSource::m_levelNbSamples = 480; // every 10ms SSBModSource::SSBModSource() : m_channelSampleRate(48000), m_channelFrequencyOffset(0), m_spectrumSink(nullptr), m_audioSampleRate(48000), m_audioFifo(12000), m_feedbackAudioFifo(12000), m_levelCalcCount(0), m_peakLevel(0.0f), m_levelSum(0.0f), m_ifstream(nullptr) { m_audioFifo.setLabel("SSBModSource.m_audioFifo"); m_feedbackAudioFifo.setLabel("SSBModSource.m_feedbackAudioFifo"); m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_audioSampleRate, m_settings.m_bandwidth / m_audioSampleRate, m_ssbFftLen); m_DSBFilter = new fftfilt((2.0f * m_settings.m_bandwidth) / m_audioSampleRate, 2 * m_ssbFftLen); m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size m_DSBFilterBuffer = new Complex[m_ssbFftLen]; std::fill(m_SSBFilterBuffer, m_SSBFilterBuffer+(m_ssbFftLen>>1), Complex{0,0}); std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer+m_ssbFftLen, Complex{0,0}); m_audioBuffer.resize(24000); m_audioBufferFill = 0; m_audioReadBuffer.resize(24000); m_audioReadBufferFill = 0; m_feedbackAudioBuffer.resize(4800); m_feedbackAudioBufferFill = 0; m_demodBuffer.resize(1<<12); m_demodBufferFill = 0; m_sum.real(0.0f); m_sum.imag(0.0f); m_undersampleCount = 0; m_sumCount = 0; m_magsq = 0.0; m_toneNco.setFreq(1000.0, m_audioSampleRate); m_cwKeyer.setSampleRate(m_audioSampleRate); m_cwKeyer.reset(); m_audioCompressor.initSimple( m_audioSampleRate, m_settings.m_cmpPreGainDB, // pregain (dB) m_settings.m_cmpThresholdDB, // threshold (dB) 20, // knee (dB) 12, // ratio (dB) 0.003, // attack (s) 0.25 // release (s) ); applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } SSBModSource::~SSBModSource() { delete m_SSBFilter; delete m_DSBFilter; delete[] m_SSBFilterBuffer; delete[] m_DSBFilterBuffer; } void SSBModSource::pull(SampleVector::iterator begin, unsigned int nbSamples) { std::for_each( begin, begin + nbSamples, [this](Sample& s) { pullOne(s); } ); } void SSBModSource::pullOne(Sample& sample) { Complex ci; if (m_interpolatorDistance > 1.0f) // decimate { modulateSample(); while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } else { if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } m_interpolatorDistanceRemain += m_interpolatorDistance; ci *= m_carrierNco.nextIQ(); // shift to carrier frequency ci *= 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot double magsq = ci.real() * ci.real() + ci.imag() * ci.imag(); magsq /= (SDR_TX_SCALED*SDR_TX_SCALED); m_movingAverage(magsq); m_magsq = m_movingAverage.asDouble(); sample.m_real = (FixReal) ci.real(); sample.m_imag = (FixReal) ci.imag(); } void SSBModSource::prefetch(unsigned int nbSamples) { unsigned int nbSamplesAudio = nbSamples * ((Real) m_audioSampleRate / (Real) m_channelSampleRate); pullAudio(nbSamplesAudio); } void SSBModSource::pullAudio(unsigned int nbSamplesAudio) { QMutexLocker mlock(&m_mutex); if (nbSamplesAudio > m_audioBuffer.size()) { m_audioBuffer.resize(nbSamplesAudio); } std::copy(&m_audioReadBuffer[0], &m_audioReadBuffer[nbSamplesAudio], &m_audioBuffer[0]); m_audioBufferFill = 0; if (m_audioReadBufferFill > nbSamplesAudio) // copy back remaining samples at the start of the read buffer { std::copy(&m_audioReadBuffer[nbSamplesAudio], &m_audioReadBuffer[m_audioReadBufferFill], &m_audioReadBuffer[0]); m_audioReadBufferFill = m_audioReadBufferFill - nbSamplesAudio; // adjust current read buffer fill pointer } } void SSBModSource::modulateSample() { pullAF(m_modSample); if (m_settings.m_feedbackAudioEnable) { pushFeedback(m_modSample * m_settings.m_feedbackVolumeFactor * 16384.0f); } calculateLevel(m_modSample); if (m_settings.m_audioBinaural) { m_demodBuffer[m_demodBufferFill++] = m_modSample.real() * std::numeric_limits::max(); m_demodBuffer[m_demodBufferFill++] = m_modSample.imag() * std::numeric_limits::max(); } else { // take projection on real axis m_demodBuffer[m_demodBufferFill++] = m_modSample.real() * std::numeric_limits::max(); } if (m_demodBufferFill >= m_demodBuffer.size()) { QList dataPipes; MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes); if (dataPipes.size() > 0) { QList::iterator it = dataPipes.begin(); for (; it != dataPipes.end(); ++it) { DataFifo *fifo = qobject_cast((*it)->m_element); if (fifo) { fifo->write( (quint8*) &m_demodBuffer[0], m_demodBuffer.size() * sizeof(qint16), m_settings.m_audioBinaural ? DataFifo::DataTypeCI16 : DataFifo::DataTypeI16 ); } } } m_demodBufferFill = 0; } } void SSBModSource::pullAF(Complex& sample) { if (m_settings.m_audioMute) { sample.real(0.0f); sample.imag(0.0f); return; } Complex ci; fftfilt::cmplx *filtered; int n_out = 0; int decim = 1<<(m_settings.m_spanLog2 - 1); unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1) switch (m_settings.m_modAFInput) { case SSBModSettings::SSBModInputTone: if (m_settings.m_dsb) { Real t = m_toneNco.next()/1.25; sample.real(t); sample.imag(t); } else { if (m_settings.m_usb) { sample = m_toneNco.nextIQ(); } else { sample = m_toneNco.nextQI(); } } break; case SSBModSettings::SSBModInputFile: // Monaural (mono): // sox f4exb_call.wav --encoding float --endian little f4exb_call.raw // ffplay -f f32le -ar 48k -ac 1 f4exb_call.raw // Binaural (stereo): // sox f4exb_call.wav --encoding float --endian little f4exb_call.raw // ffplay -f f32le -ar 48k -ac 2 f4exb_call.raw if (m_ifstream && m_ifstream->is_open()) { if (m_ifstream->eof()) { if (m_settings.m_playLoop) { m_ifstream->clear(); m_ifstream->seekg(0, std::ios::beg); } } if (m_ifstream->eof()) { ci.real(0.0f); ci.imag(0.0f); } else { if (m_settings.m_audioBinaural) { Complex c; m_ifstream->read(reinterpret_cast(&c), sizeof(Complex)); if (m_settings.m_audioFlipChannels) { ci.real(c.imag() * m_settings.m_volumeFactor); ci.imag(c.real() * m_settings.m_volumeFactor); } else { ci = c * m_settings.m_volumeFactor; } } else { Real real; m_ifstream->read(reinterpret_cast(&real), sizeof(Real)); if (m_settings.m_agc) { ci.real(clamp(m_audioCompressor.compress(real), -1.0f, 1.0f)); ci.imag(0.0f); ci *= m_settings.m_volumeFactor; } else { ci.real(real * m_settings.m_volumeFactor); ci.imag(0.0f); } } } } else { ci.real(0.0f); ci.imag(0.0f); } break; case SSBModSettings::SSBModInputAudio: if (m_settings.m_audioBinaural) { if (m_settings.m_audioFlipChannels) { ci.real((m_audioBuffer[m_audioBufferFill].r / SDR_TX_SCALEF) * m_settings.m_volumeFactor); ci.imag((m_audioBuffer[m_audioBufferFill].l / SDR_TX_SCALEF) * m_settings.m_volumeFactor); } else { ci.real((m_audioBuffer[m_audioBufferFill].l / SDR_TX_SCALEF) * m_settings.m_volumeFactor); ci.imag((m_audioBuffer[m_audioBufferFill].r / SDR_TX_SCALEF) * m_settings.m_volumeFactor); } } else { if (m_settings.m_agc) { float sample = (m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r) / 65536.0f; ci.real(clamp(m_audioCompressor.compress(sample), -1.0f, 1.0f)); ci.imag(0.0f); ci *= m_settings.m_volumeFactor; } else { ci.real(((m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r) / 65536.0f) * m_settings.m_volumeFactor); ci.imag(0.0f); } } if (m_audioBufferFill < m_audioBuffer.size() - 1) { m_audioBufferFill++; } else { qDebug("SSBModSource::pullAF: starve audio samples: size: %lu", m_audioBuffer.size()); m_audioBufferFill = m_audioBuffer.size() - 1; } break; case SSBModSettings::SSBModInputCWTone: Real fadeFactor; if (m_cwKeyer.getSample()) { m_cwKeyer.getCWSmoother().getFadeSample(true, fadeFactor); if (m_settings.m_dsb) { Real t = m_toneNco.next() * fadeFactor; sample.real(t); sample.imag(t); } else { if (m_settings.m_usb) { sample = m_toneNco.nextIQ() * fadeFactor; } else { sample = m_toneNco.nextQI() * fadeFactor; } } } else { if (m_cwKeyer.getCWSmoother().getFadeSample(false, fadeFactor)) { if (m_settings.m_dsb) { Real t = (m_toneNco.next() * fadeFactor)/1.25; sample.real(t); sample.imag(t); } else { if (m_settings.m_usb) { sample = m_toneNco.nextIQ() * fadeFactor; } else { sample = m_toneNco.nextQI() * fadeFactor; } } } else { sample.real(0.0f); sample.imag(0.0f); m_toneNco.setPhase(0); } } break; case SSBModSettings::SSBModInputNone: default: sample.real(0.0f); sample.imag(0.0f); break; } if ((m_settings.m_modAFInput == SSBModSettings::SSBModInputFile) || (m_settings.m_modAFInput == SSBModSettings::SSBModInputAudio)) // real audio { if (m_settings.m_dsb) { n_out = m_DSBFilter->runDSB(ci, &filtered); if (n_out > 0) { memcpy((void *) m_DSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex)); m_DSBFilterBufferIndex = 0; } sample = m_DSBFilterBuffer[m_DSBFilterBufferIndex]; m_DSBFilterBufferIndex++; } else { n_out = m_SSBFilter->runSSB(ci, &filtered, m_settings.m_usb); if (n_out > 0) { memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex)); m_SSBFilterBufferIndex = 0; } sample = m_SSBFilterBuffer[m_SSBFilterBufferIndex]; m_SSBFilterBufferIndex++; } if (n_out > 0) { for (int i = 0; i < n_out; i++) { // Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display // smart decimation with bit gain using float arithmetic (23 bits significand) m_sum += filtered[i]; if (!(m_undersampleCount++ & decim_mask)) { Real avgr = (m_sum.real() / decim) * 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot Real avgi = (m_sum.imag() / decim) * 0.891235351562f * SDR_TX_SCALEF; if (!m_settings.m_dsb & !m_settings.m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(avgi, avgr)); } else { m_sampleBuffer.push_back(Sample(avgr, avgi)); } m_sum.real(0.0); m_sum.imag(0.0); } } } } // Real audio else if ((m_settings.m_modAFInput == SSBModSettings::SSBModInputTone) || (m_settings.m_modAFInput == SSBModSettings::SSBModInputCWTone)) // tone { m_sum += sample; if (!(m_undersampleCount++ & decim_mask)) { Real avgr = (m_sum.real() / decim) * 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot Real avgi = (m_sum.imag() / decim) * 0.891235351562f * SDR_TX_SCALEF; if (!m_settings.m_dsb & !m_settings.m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(avgi, avgr)); } else { m_sampleBuffer.push_back(Sample(avgr, avgi)); } m_sum.real(0.0); m_sum.imag(0.0); } if (m_sumCount < (m_settings.m_dsb ? m_ssbFftLen : m_ssbFftLen>>1)) { n_out = 0; m_sumCount++; } else { n_out = m_sumCount; m_sumCount = 0; } } if (n_out > 0) { if (m_spectrumSink) { m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_settings.m_dsb); } m_sampleBuffer.clear(); } } void SSBModSource::pushFeedback(Complex c) { Complex ci; if (m_feedbackInterpolatorDistance < 1.0f) // interpolate { while (!m_feedbackInterpolator.interpolate(&m_feedbackInterpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_feedbackInterpolatorDistanceRemain += m_feedbackInterpolatorDistance; } } else // decimate { if (m_feedbackInterpolator.decimate(&m_feedbackInterpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_feedbackInterpolatorDistanceRemain += m_feedbackInterpolatorDistance; } } } void SSBModSource::processOneSample(Complex& ci) { if (m_settings.m_modAFInput == SSBModSettings::SSBModInputCWTone) // minimize latency for CW { m_feedbackAudioBuffer[0].l = ci.real(); m_feedbackAudioBuffer[0].r = ci.imag(); m_feedbackAudioFifo.writeOne((const quint8*) &m_feedbackAudioBuffer[0]); } else { m_feedbackAudioBuffer[m_feedbackAudioBufferFill].l = ci.real(); m_feedbackAudioBuffer[m_feedbackAudioBufferFill].r = ci.imag(); ++m_feedbackAudioBufferFill; if (m_feedbackAudioBufferFill >= m_feedbackAudioBuffer.size()) { uint res = m_feedbackAudioFifo.write((const quint8*)&m_feedbackAudioBuffer[0], m_feedbackAudioBufferFill); if (res != m_feedbackAudioBufferFill) { qDebug("SSBModSource::pushFeedback: %u/%u audio samples written m_feedbackInterpolatorDistance: %f", res, m_feedbackAudioBufferFill, m_feedbackInterpolatorDistance); m_feedbackAudioFifo.clear(); } m_feedbackAudioBufferFill = 0; } } } void SSBModSource::calculateLevel(Complex& sample) { Real t = sample.real(); // TODO: possibly adjust depending on sample type if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), t); m_levelSum += t * t; m_levelCalcCount++; } else { m_rmsLevel = sqrt(m_levelSum / m_levelNbSamples); m_peakLevelOut = m_peakLevel; m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } void SSBModSource::applyAudioSampleRate(int sampleRate) { if (sampleRate < 0) { qWarning("SSBModSource::applyAudioSampleRate: invalid sample rate %d", sampleRate); return; } qDebug("SSBModSource::applyAudioSampleRate: %d", sampleRate); m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) sampleRate / (Real) m_channelSampleRate; m_interpolator.create(48, sampleRate, m_settings.m_bandwidth, 3.0); float band = m_settings.m_bandwidth; float lowCutoff = m_settings.m_lowCutoff; bool usb = m_settings.m_usb; if (band < 100.0f) // at least 100 Hz { band = 100.0f; lowCutoff = 0; } if (band - lowCutoff < 100.0f) { lowCutoff = band - 100.0f; } m_SSBFilter->create_filter(lowCutoff / sampleRate, band / sampleRate); m_DSBFilter->create_dsb_filter((2.0f * band) / sampleRate); m_settings.m_bandwidth = band; m_settings.m_lowCutoff = lowCutoff; m_settings.m_usb = usb; m_toneNco.setFreq(m_settings.m_toneFrequency, sampleRate); m_cwKeyer.setSampleRate(sampleRate); m_cwKeyer.reset(); m_audioCompressor.m_rate = sampleRate; m_audioCompressor.initState(); m_audioSampleRate = sampleRate; applyFeedbackAudioSampleRate(m_feedbackAudioSampleRate); QList pipes; MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes); if (pipes.size() > 0) { for (const auto& pipe : pipes) { MessageQueue* messageQueue = qobject_cast(pipe->m_element); MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate); messageQueue->push(msg); } } } void SSBModSource::applyFeedbackAudioSampleRate(int sampleRate) { if (sampleRate < 0) { qWarning("SSBModSource::applyFeedbackAudioSampleRate: invalid sample rate %d", sampleRate); return; } qDebug("SSBModSource::applyFeedbackAudioSampleRate: %d", sampleRate); m_feedbackInterpolatorDistanceRemain = 0; m_feedbackInterpolatorConsumed = false; m_feedbackInterpolatorDistance = (Real) sampleRate / (Real) m_audioSampleRate; Real cutoff = std::min(sampleRate, m_audioSampleRate) / 2.2f; m_feedbackInterpolator.create(48, sampleRate, cutoff, 3.0); m_feedbackAudioSampleRate = sampleRate; } void SSBModSource::applySettings(const SSBModSettings& settings, bool force) { float band = settings.m_bandwidth; float lowCutoff = settings.m_lowCutoff; bool usb = settings.m_usb; if ((settings.m_bandwidth != m_settings.m_bandwidth) || (settings.m_lowCutoff != m_settings.m_lowCutoff) || force) { if (band < 100.0f) // at least 100 Hz { band = 100.0f; lowCutoff = 0; } if (band - lowCutoff < 100.0f) { lowCutoff = band - 100.0f; } m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) m_audioSampleRate / (Real) m_channelSampleRate; m_interpolator.create(48, m_audioSampleRate, band, 3.0); m_SSBFilter->create_filter(lowCutoff / m_audioSampleRate, band / m_audioSampleRate); m_DSBFilter->create_dsb_filter((2.0f * band) / m_audioSampleRate); } if ((settings.m_toneFrequency != m_settings.m_toneFrequency) || force) { m_toneNco.setFreq(settings.m_toneFrequency, m_audioSampleRate); } if ((settings.m_dsb != m_settings.m_dsb) || force) { if (settings.m_dsb) { std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer+m_ssbFftLen, Complex{0,0}); m_DSBFilterBufferIndex = 0; } else { std::fill(m_SSBFilterBuffer, m_SSBFilterBuffer+(m_ssbFftLen>>1), Complex{0,0}); m_SSBFilterBufferIndex = 0; } } if ((settings.m_modAFInput != m_settings.m_modAFInput) || force) { if (settings.m_modAFInput == SSBModSettings::SSBModInputAudio) { connect(&m_audioFifo, SIGNAL(dataReady()), this, SLOT(handleAudio())); } else { disconnect(&m_audioFifo, SIGNAL(dataReady()), this, SLOT(handleAudio())); } } if ((settings.m_cmpThresholdDB != m_settings.m_cmpThresholdDB) || (settings.m_cmpPreGainDB != m_settings.m_cmpPreGainDB) || force) { m_audioCompressor.initSimple( m_audioSampleRate, settings.m_cmpPreGainDB, // pregain (dB) settings.m_cmpThresholdDB, // threshold (dB) 20, // knee (dB) 12, // ratio (dB) 0.003, // attack (s) 0.25 // release (s) ); } m_settings = settings; m_settings.m_bandwidth = band; m_settings.m_lowCutoff = lowCutoff; m_settings.m_usb = usb; } void SSBModSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "SSBModSource::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((channelFrequencyOffset != m_channelFrequencyOffset) || (channelSampleRate != m_channelSampleRate) || force) { m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate); } if ((channelSampleRate != m_channelSampleRate) || force) { m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) m_audioSampleRate / (Real) channelSampleRate; m_interpolator.create(48, m_audioSampleRate, m_settings.m_bandwidth, 3.0); } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void SSBModSource::handleAudio() { QMutexLocker mlock(&m_mutex); unsigned int nbRead; while ((nbRead = m_audioFifo.read(reinterpret_cast(&m_audioReadBuffer[m_audioReadBufferFill]), 4096)) != 0) { if (m_audioReadBufferFill + nbRead + 4096 < m_audioReadBuffer.size()) { m_audioReadBufferFill += nbRead; } } }