/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany // // written by Christian Daniel // // Copyright (C) 2015-2019, 2021 Edouard Griffiths, F4EXB // // Copyright (C) 2015 John Greb // // Copyright (C) 2019 Davide Gerhard // // Copyright (C) 2020 Kacper Michajłow // // // // Remote sink channel (Rx) data blocks to read queue // // // // SDRangel can serve as a remote SDR front end that handles the interface // // with a physical device and sends or receives the I/Q samples stream via UDP // // to or from another SDRangel instance or any program implementing the same // // protocol. The remote SDRangel is controlled via its Web REST API. // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef CHANNEL_REMOTEDATAREADQUEUE_H_ #define CHANNEL_REMOTEDATAREADQUEUE_H_ #include #include "export.h" class RemoteDataFrame; struct Sample; class SDRBASE_API RemoteDataReadQueue { public: RemoteDataReadQueue(); ~RemoteDataReadQueue(); void push(RemoteDataFrame* dataFrame); //!< push frame on the queue void readSample(Sample& s, bool isTx); //!< Read sample from queue uint32_t length() const { return m_dataReadQueue.size(); } //!< Returns queue length uint32_t size() const { return m_maxSize; } //!< Returns queue size (max length) void setSize(uint32_t size); //!< Sets the queue size (max length) uint32_t readSampleCount() const { return m_sampleCount; } //!< Returns the absolute number of samples read static const uint32_t MinimumMaxSize; private: QQueue m_dataReadQueue; RemoteDataFrame *m_dataFrame; uint32_t m_maxSize; uint32_t m_blockIndex; uint32_t m_sampleIndex; uint32_t m_sampleCount; //!< use a counter capped below 2^31 as it is going to be converted to an int in the web interface RemoteDataFrame* pop(); //!< Pop frame from the queue inline void convertDataToSample(Sample& s, uint32_t blockIndex, uint32_t sampleIndex, bool isTx) { int sampleSize = m_dataFrame->m_superBlocks[blockIndex].m_header.m_sampleBytes * 2; // I/Q sample size in data block int32_t iconv, qconv; if (sizeof(Sample) == sampleSize) // no conversion { s = *((Sample*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize])); } else if (isTx) { if (sampleSize == 2) // 8 -> 16 bits { int8_t *buf = (int8_t*) m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf; iconv = buf[sampleIndex*sampleSize] * (1<<8); qconv = buf[sampleIndex*sampleSize+1] * (1<<8); s.setReal(iconv); s.setImag(qconv); } else if (sampleSize == 4) // just convert types (always 16 bits wide) { iconv = *((int16_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize])); qconv = *((int16_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize+2])); s.setReal(iconv); s.setImag(qconv); } else if (sampleSize == 8) // just convert types (always 16 bits wide) { iconv = *((int32_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize])); qconv = *((int32_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize+4])); s.setReal(iconv); s.setImag(qconv); } else // invalid { s = Sample{0, 0}; } } else { if ((sampleSize == 2) && (sizeof(Sample) == 2)) // 8 -> 16 bits { int8_t *buf = (int8_t*) m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf; iconv = buf[sampleIndex*sampleSize] * (1<<8); qconv = buf[sampleIndex*sampleSize+1] * (1<<8); s.setReal(iconv); s.setImag(qconv); } else if ((sampleSize == 2) && (sizeof(Sample) == 4)) // 8 -> 24 bits { int8_t *buf = (int8_t*) m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf; iconv = buf[sampleIndex*sampleSize] * (1<<16); qconv = buf[sampleIndex*sampleSize+1] * (1<<16); s.setReal(iconv); s.setImag(qconv); } else if (sampleSize == 4) // 16 -> 24 bits { iconv = *((int16_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize])) * (1<<8); qconv = *((int16_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize+2])) * (1<<8); s.setReal(iconv); s.setImag(qconv); } else if (sampleSize == 8) // 24 -> 16 bits { iconv = *((int32_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize])) / (1<<8); qconv = *((int32_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize+4])) / (1<<8); s.setReal(iconv); s.setImag(qconv); } else // invalid { s = Sample{0, 0}; } } } }; #endif /* CHANNEL_REMOTEDATAREADQUEUE_H_ */