/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include "maincore.h" #include "dsp/spectrumvis.h" #include "gui/glspectrumview.h" #include "gui/spectrummeasurements.h" #include "settings/mainsettings.h" #include "util/messagequeue.h" #include "util/db.h" #include MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportSampleRate, Message) MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportWaterfallShare, Message) MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportFFTOverlap, Message) MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportPowerScale, Message) MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportCalibrationShift, Message) MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportHistogramMarkersChange, Message) MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportWaterfallMarkersChange, Message) const float GLSpectrumView::m_maxFrequencyZoom = 10.0f; const float GLSpectrumView::m_annotationMarkerHeight = 20.0f; GLSpectrumView::GLSpectrumView(QWidget* parent) : QOpenGLWidget(parent), m_markersDisplay(SpectrumSettings::MarkersDisplaySpectrum), m_histogramFindPeaks(false), m_cursorState(CSNormal), m_cursorChannel(0), m_spectrumVis(nullptr), m_fpsPeriodMs(50), m_mouseInside(false), m_changesPending(true), m_centerFrequency(100000000), m_referenceLevel(0), m_powerRange(100), m_linear(false), m_decay(1), m_sampleRate(500000), m_timingRate(1), m_fftOverlap(0), m_fftSize(512), m_nbBins(512), m_displayGrid(true), m_displayGridIntensity(5), m_displayTraceIntensity(50), m_invertedWaterfall(true), m_displayMaxHold(false), m_currentSpectrum(nullptr), m_displayCurrent(false), m_leftMargin(0), m_rightMargin(0), m_topMargin(0), m_frequencyScaleHeight(0), m_histogramHeight(80), m_waterfallHeight(0), m_bottomMargin(0), m_waterfallBuffer(nullptr), m_waterfallBufferPos(0), m_waterfallTextureHeight(-1), m_waterfallTexturePos(0), m_displayWaterfall(true), m_ssbSpectrum(false), m_lsbDisplay(false), m_3DSpectrogramBuffer(nullptr), m_3DSpectrogramBufferPos(0), m_3DSpectrogramTextureHeight(-1), m_3DSpectrogramTexturePos(0), m_display3DSpectrogram(false), m_rotate3DSpectrogram(false), m_pan3DSpectrogram(false), m_scaleZ3DSpectrogram(false), m_3DSpectrogramStyle(SpectrumSettings::Outline), m_colorMapName("Angel"), m_scrollFrequency(false), m_scrollStartCenterFreq(0), m_histogramBuffer(nullptr), m_histogram(nullptr), m_displayHistogram(true), m_displayChanged(false), m_displaySourceOrSink(true), m_displayStreamIndex(0), m_matrixLoc(0), m_colorLoc(0), m_useCalibration(false), m_calibrationGain(1.0), m_calibrationShiftdB(0.0), m_calibrationInterpMode(SpectrumSettings::CalibInterpLinear), m_messageQueueToGUI(nullptr), m_openGLLogger(nullptr), m_isDeviceSpectrum(false), m_measurements(nullptr), m_measurement(SpectrumSettings::MeasurementNone), m_measurementCenterFrequencyOffset(0), m_measurementBandwidth(10000), m_measurementChSpacing(10000), m_measurementAdjChBandwidth(10000), m_measurementHarmonics(5), m_measurementPeaks(5), m_measurementHighlight(true), m_measurementPrecision(1) { // Enable multisampling anti-aliasing (MSAA) int multisamples = MainCore::instance()->getSettings().getMultisampling(); if (multisamples > 0) { QSurfaceFormat format; format.setSamples(multisamples); setFormat(format); } setObjectName("GLSpectrum"); setAutoFillBackground(false); setAttribute(Qt::WA_OpaquePaintEvent, true); setAttribute(Qt::WA_NoSystemBackground, true); setMouseTracking(true); setMinimumSize(360, 200); m_waterfallShare = 0.5; for (int i = 0; i <= 239; i++) { QColor c; c.setHsv(239 - i, 255, 15 + i); ((quint8*)&m_waterfallPalette[i])[0] = c.red(); ((quint8*)&m_waterfallPalette[i])[1] = c.green(); ((quint8*)&m_waterfallPalette[i])[2] = c.blue(); ((quint8*)&m_waterfallPalette[i])[3] = c.alpha(); } m_waterfallPalette[239] = 0xffffffff; m_histogramPalette[0] = 0; for (int i = 1; i < 240; i++) { QColor c; int light = i < 60 ? 128 + (60-i) : 128; int sat = i < 60 ? 140 + i : i < 180 ? 200 : 200 - (i-180); c.setHsl(239 - i, sat, light); ((quint8*)&m_histogramPalette[i])[0] = c.red(); ((quint8*)&m_histogramPalette[i])[1] = c.green(); ((quint8*)&m_histogramPalette[i])[2] = c.blue(); ((quint8*)&m_histogramPalette[i])[3] = c.alpha(); } // 4.2.3 palette // for (int i = 1; i < 240; i++) // { // QColor c; // int val = i < 60 ? 255 : 200; // int sat = i < 60 ? 128 : i < 180 ? 255 : 180; // c.setHsv(239 - i, sat, val); // ((quint8*)&m_histogramPalette[i])[0] = c.red(); // ((quint8*)&m_histogramPalette[i])[1] = c.green(); // ((quint8*)&m_histogramPalette[i])[2] = c.blue(); // ((quint8*)&m_histogramPalette[i])[3] = c.alpha(); // } // Original palette: // for(int i = 16; i < 240; i++) { // QColor c; // c.setHsv(239 - i, 255 - ((i < 200) ? 0 : (i - 200) * 3), 150 + ((i < 100) ? i : 100)); // ((quint8*)&m_histogramPalette[i])[0] = c.red(); // ((quint8*)&m_histogramPalette[i])[1] = c.green(); // ((quint8*)&m_histogramPalette[i])[2] = c.blue(); // ((quint8*)&m_histogramPalette[i])[3] = c.alpha(); // } // for(int i = 1; i < 16; i++) { // QColor c; // c.setHsv(255, 128, 48 + i * 4); // ((quint8*)&m_histogramPalette[i])[0] = c.red(); // ((quint8*)&m_histogramPalette[i])[1] = c.green(); // ((quint8*)&m_histogramPalette[i])[2] = c.blue(); // ((quint8*)&m_histogramPalette[i])[3] = c.alpha(); // } m_decayDivisor = 1; m_decayDivisorCount = m_decayDivisor; m_histogramStroke = 30; m_timeScale.setFont(font()); m_timeScale.setOrientation(Qt::Vertical); m_timeScale.setRange(Unit::Time, 0, 1); m_powerScale.setFont(font()); m_powerScale.setOrientation(Qt::Vertical); m_frequencyScale.setFont(font()); m_frequencyScale.setOrientation(Qt::Horizontal); m_textOverlayFont = font(); // QFontDatabase::systemFont(QFontDatabase::FixedFont); m_textOverlayFont.setBold(true); // m_textOverlayFont.setPointSize(font().pointSize() - 1); resetFrequencyZoom(); m_timer.setTimerType(Qt::PreciseTimer); connect(&m_timer, SIGNAL(timeout()), this, SLOT(tick())); m_timer.start(m_fpsPeriodMs); // Handle KeyEvents setFocusPolicy(Qt::StrongFocus); installEventFilter(this); } GLSpectrumView::~GLSpectrumView() { QMutexLocker mutexLocker(&m_mutex); if (m_waterfallBuffer) { delete m_waterfallBuffer; m_waterfallBuffer = nullptr; } if (m_3DSpectrogramBuffer) { delete m_3DSpectrogramBuffer; m_3DSpectrogramBuffer = nullptr; } if (m_histogramBuffer) { delete m_histogramBuffer; m_histogramBuffer = nullptr; } if (m_histogram) { delete[] m_histogram; m_histogram = nullptr; } if (m_openGLLogger) { delete m_openGLLogger; m_openGLLogger = nullptr; } } void GLSpectrumView::setCenterFrequency(qint64 frequency) { m_mutex.lock(); m_centerFrequency = frequency; if (m_useCalibration) { updateCalibrationPoints(); } m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setReferenceLevel(Real referenceLevel) { m_mutex.lock(); m_referenceLevel = referenceLevel; m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setPowerRange(Real powerRange) { m_mutex.lock(); m_powerRange = powerRange; m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setDecay(int decay) { m_decay = decay < 0 ? 0 : decay > 20 ? 20 : decay; } void GLSpectrumView::setDecayDivisor(int decayDivisor) { m_decayDivisor = decayDivisor < 1 ? 1 : decayDivisor > 20 ? 20 : decayDivisor; } void GLSpectrumView::setHistoStroke(int stroke) { m_histogramStroke = stroke < 1 ? 1 : stroke > 60 ? 60 : stroke; } void GLSpectrumView::setSampleRate(qint32 sampleRate) { m_mutex.lock(); m_sampleRate = sampleRate; if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportSampleRate(m_sampleRate)); } m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setTimingRate(qint32 timingRate) { m_mutex.lock(); m_timingRate = timingRate; m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setFFTOverlap(int overlap) { m_mutex.lock(); m_fftOverlap = overlap; m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setDisplayWaterfall(bool display) { m_mutex.lock(); m_displayWaterfall = display; if (!display) { m_waterfallMarkers.clear(); if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange()); } } m_changesPending = true; stopDrag(); m_mutex.unlock(); update(); } void GLSpectrumView::setDisplay3DSpectrogram(bool display) { m_mutex.lock(); m_display3DSpectrogram = display; m_changesPending = true; stopDrag(); m_mutex.unlock(); update(); } void GLSpectrumView::setSpectrumStyle(SpectrumSettings::SpectrumStyle style) { m_spectrumStyle = style; update(); } void GLSpectrumView::set3DSpectrogramStyle(SpectrumSettings::SpectrogramStyle style) { m_3DSpectrogramStyle = style; update(); } void GLSpectrumView::setColorMapName(const QString &colorMapName) { m_mutex.lock(); m_colorMapName = colorMapName; m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setSsbSpectrum(bool ssbSpectrum) { m_ssbSpectrum = ssbSpectrum; update(); } void GLSpectrumView::setLsbDisplay(bool lsbDisplay) { m_lsbDisplay = lsbDisplay; update(); } void GLSpectrumView::setInvertedWaterfall(bool inv) { m_mutex.lock(); m_invertedWaterfall = inv; m_changesPending = true; stopDrag(); m_mutex.unlock(); update(); } void GLSpectrumView::setDisplayMaxHold(bool display) { m_mutex.lock(); m_displayMaxHold = display; if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram) { m_histogramMarkers.clear(); if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange()); } } m_changesPending = true; stopDrag(); m_mutex.unlock(); update(); } void GLSpectrumView::setDisplayCurrent(bool display) { m_mutex.lock(); m_displayCurrent = display; if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram) { m_histogramMarkers.clear(); if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange()); } } m_changesPending = true; stopDrag(); m_mutex.unlock(); update(); } void GLSpectrumView::setDisplayHistogram(bool display) { m_mutex.lock(); m_displayHistogram = display; if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram) { m_histogramMarkers.clear(); if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange()); } } m_changesPending = true; stopDrag(); m_mutex.unlock(); update(); } void GLSpectrumView::setDisplayGrid(bool display) { m_displayGrid = display; update(); } void GLSpectrumView::setDisplayGridIntensity(int intensity) { m_displayGridIntensity = intensity; if (m_displayGridIntensity > 100) { m_displayGridIntensity = 100; } else if (m_displayGridIntensity < 0) { m_displayGridIntensity = 0; } update(); } void GLSpectrumView::setDisplayTraceIntensity(int intensity) { m_displayTraceIntensity = intensity; if (m_displayTraceIntensity > 100) { m_displayTraceIntensity = 100; } else if (m_displayTraceIntensity < 0) { m_displayTraceIntensity = 0; } update(); } void GLSpectrumView::setFreqScaleTruncationMode(bool mode) { m_frequencyScale.setTruncateMode(mode); update(); } void GLSpectrumView::setLinear(bool linear) { m_mutex.lock(); m_linear = linear; m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setUseCalibration(bool useCalibration) { m_mutex.lock(); m_useCalibration = useCalibration; if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportCalibrationShift(m_useCalibration ? m_calibrationShiftdB : 0.0)); } m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setMeasurementParams(SpectrumSettings::Measurement measurement, int centerFrequencyOffset, int bandwidth, int chSpacing, int adjChBandwidth, int harmonics, int peaks, bool highlight, int precision) { m_mutex.lock(); m_measurement = measurement; m_measurementCenterFrequencyOffset = centerFrequencyOffset; m_measurementBandwidth = bandwidth; m_measurementChSpacing = chSpacing; m_measurementAdjChBandwidth = adjChBandwidth; m_measurementHarmonics = harmonics; m_measurementPeaks = peaks; m_measurementHighlight = highlight; m_measurementPrecision = precision; m_changesPending = true; if (m_measurements) { m_measurements->setMeasurementParams(measurement, peaks, precision); } m_mutex.unlock(); update(); } void GLSpectrumView::addChannelMarker(ChannelMarker* channelMarker) { m_mutex.lock(); connect(channelMarker, SIGNAL(changedByAPI()), this, SLOT(channelMarkerChanged())); connect(channelMarker, SIGNAL(destroyed(QObject*)), this, SLOT(channelMarkerDestroyed(QObject*))); m_channelMarkerStates.append(new ChannelMarkerState(channelMarker)); m_changesPending = true; stopDrag(); m_mutex.unlock(); update(); } void GLSpectrumView::removeChannelMarker(ChannelMarker* channelMarker) { m_mutex.lock(); for (int i = 0; i < m_channelMarkerStates.size(); ++i) { if (m_channelMarkerStates[i]->m_channelMarker == channelMarker) { channelMarker->disconnect(this); delete m_channelMarkerStates.takeAt(i); m_changesPending = true; stopDrag(); m_mutex.unlock(); update(); return; } } m_mutex.unlock(); } void GLSpectrumView::setHistogramMarkers(const QList& histogramMarkers) { m_mutex.lock(); m_histogramMarkers = histogramMarkers; updateHistogramMarkers(); m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setWaterfallMarkers(const QList& waterfallMarkers) { m_mutex.lock(); m_waterfallMarkers = waterfallMarkers; updateWaterfallMarkers(); m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setAnnotationMarkers(const QList& annotationMarkers) { m_mutex.lock(); m_annotationMarkers = annotationMarkers; updateAnnotationMarkers(); m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setMarkersDisplay(SpectrumSettings::MarkersDisplay markersDisplay) { m_mutex.lock(); m_markersDisplay = markersDisplay; updateMarkersDisplay(); m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setCalibrationPoints(const QList& calibrationPoints) { m_mutex.lock(); m_calibrationPoints = calibrationPoints; updateCalibrationPoints(); m_changesPending = true; m_mutex.unlock(); update(); } void GLSpectrumView::setCalibrationInterpMode(SpectrumSettings::CalibrationInterpolationMode mode) { m_mutex.lock(); m_calibrationInterpMode = mode; updateCalibrationPoints(); m_changesPending = true; m_mutex.unlock(); update(); } float GLSpectrumView::getPowerMax() const { return m_linear ? m_powerScale.getRangeMax() : CalcDb::powerFromdB(m_powerScale.getRangeMax()); } float GLSpectrumView::getTimeMax() const { return m_timeScale.getRangeMax(); } void GLSpectrumView::newSpectrum(const Real *spectrum, int nbBins, int fftSize) { QMutexLocker mutexLocker(&m_mutex); m_displayChanged = true; if (m_changesPending) { m_fftSize = fftSize; m_nbBins = nbBins; return; } if ((fftSize != m_fftSize) || (m_nbBins != nbBins)) { m_fftSize = fftSize; m_nbBins = nbBins; m_changesPending = true; return; } updateWaterfall(spectrum); update3DSpectrogram(spectrum); updateHistogram(spectrum); } void GLSpectrumView::updateWaterfall(const Real *spectrum) { if (m_waterfallBufferPos < m_waterfallBuffer->height()) { quint32* pix = (quint32*)m_waterfallBuffer->scanLine(m_waterfallBufferPos); for (int i = 0; i < m_nbBins; i++) { int v = (int)((spectrum[i] - m_referenceLevel) * 2.4 * 100.0 / m_powerRange + 240.0); if (v > 239) { v = 239; } else if (v < 0) { v = 0; } *pix++ = m_waterfallPalette[(int)v]; } m_waterfallBufferPos++; } } void GLSpectrumView::update3DSpectrogram(const Real *spectrum) { if (m_3DSpectrogramBufferPos < m_3DSpectrogramBuffer->height()) { quint8* pix = (quint8*)m_3DSpectrogramBuffer->scanLine(m_3DSpectrogramBufferPos); for (int i = 0; i < m_nbBins; i++) { int v = (int)((spectrum[i] - m_referenceLevel) * 2.4 * 100.0 / m_powerRange + 240.0); if (v > 255) { v = 255; } else if (v < 0) { v = 0; } *pix++ = v; } m_3DSpectrogramBufferPos++; } } void GLSpectrumView::updateHistogram(const Real *spectrum) { quint8* b = m_histogram; int fftMulSize = 100 * m_nbBins; if ((m_displayHistogram || m_displayMaxHold) && (m_decay != 0)) { m_decayDivisorCount--; if ((m_decay > 1) || (m_decayDivisorCount <= 0)) { for (int i = 0; i < fftMulSize; i++) { if (*b > m_decay) { *b = *b - m_decay; } else { *b = 0; } b++; } m_decayDivisorCount = m_decayDivisor; } } m_currentSpectrum = spectrum; // Store spectrum for current spectrum line display #if 0 //def USE_SSE2 if(m_decay >= 0) { // normal const __m128 refl = {m_referenceLevel, m_referenceLevel, m_referenceLevel, m_referenceLevel}; const __m128 power = {m_powerRange, m_powerRange, m_powerRange, m_powerRange}; const __m128 mul = {100.0f, 100.0f, 100.0f, 100.0f}; for(int i = 0; i < m_fftSize; i += 4) { __m128 abc = _mm_loadu_ps (&spectrum[i]); abc = _mm_sub_ps(abc, refl); abc = _mm_mul_ps(abc, mul); abc = _mm_div_ps(abc, power); abc = _mm_add_ps(abc, mul); __m128i result = _mm_cvtps_epi32(abc); for(int j = 0; j < 4; j++) { int v = ((int*)&result)[j]; if((v >= 0) && (v <= 99)) { b = m_histogram + (i + j) * 100 + v; if(*b < 220) *b += m_histogramStroke; // was 4 else if(*b < 239) *b += 1; } } } } else { // draw double pixels int add = -m_decay * 4; const __m128 refl = {m_referenceLevel, m_referenceLevel, m_referenceLevel, m_referenceLevel}; const __m128 power = {m_powerRange, m_powerRange, m_powerRange, m_powerRange}; const __m128 mul = {100.0f, 100.0f, 100.0f, 100.0f}; for(int i = 0; i < m_fftSize; i += 4) { __m128 abc = _mm_loadu_ps (&spectrum[i]); abc = _mm_sub_ps(abc, refl); abc = _mm_mul_ps(abc, mul); abc = _mm_div_ps(abc, power); abc = _mm_add_ps(abc, mul); __m128i result = _mm_cvtps_epi32(abc); for(int j = 0; j < 4; j++) { int v = ((int*)&result)[j]; if((v >= 1) && (v <= 98)) { b = m_histogram + (i + j) * 100 + v; if(b[-1] < 220) b[-1] += add; else if(b[-1] < 239) b[-1] += 1; if(b[0] < 220) b[0] += add; else if(b[0] < 239) b[0] += 1; if(b[1] < 220) b[1] += add; else if(b[1] < 239) b[1] += 1; } else if((v >= 0) && (v <= 99)) { b = m_histogram + (i + j) * 100 + v; if(*b < 220) *b += add; else if(*b < 239) *b += 1; } } } } #else for (int i = 0; i < m_nbBins; i++) { int v = (int)((spectrum[i] - m_referenceLevel) * 100.0 / m_powerRange + 100.0); if ((v >= 0) && (v <= 99)) { b = m_histogram + i * 100 + v; // capping to 239 as palette values are [0..239] if (*b + m_histogramStroke <= 239) { *b += m_histogramStroke; // was 4 } else { *b = 239; } } } #endif } void GLSpectrumView::initializeGL() { QOpenGLContext *glCurrentContext = QOpenGLContext::currentContext(); int majorVersion = 0; int minorVersion = 0; if (glCurrentContext) { if (QOpenGLContext::currentContext()->isValid()) { qDebug() << "GLSpectrumView::initializeGL: context:" << " major: " << (QOpenGLContext::currentContext()->format()).majorVersion() << " minor: " << (QOpenGLContext::currentContext()->format()).minorVersion() << " ES: " << (QOpenGLContext::currentContext()->isOpenGLES() ? "yes" : "no"); majorVersion = (QOpenGLContext::currentContext()->format()).majorVersion(); minorVersion = (QOpenGLContext::currentContext()->format()).minorVersion(); } else { qDebug() << "GLSpectrumView::initializeGL: current context is invalid"; } // Enable OpenGL debugging // Disable for release, as some OpenGL drivers are quite verbose and output // info on every frame if (false) { QSurfaceFormat format = glCurrentContext->format(); format.setOption(QSurfaceFormat::DebugContext); glCurrentContext->setFormat(format); if (glCurrentContext->hasExtension(QByteArrayLiteral("GL_KHR_debug"))) { m_openGLLogger = new QOpenGLDebugLogger(this); m_openGLLogger->initialize(); connect(m_openGLLogger, &QOpenGLDebugLogger::messageLogged, this, &GLSpectrumView::openGLDebug); m_openGLLogger->startLogging(QOpenGLDebugLogger::SynchronousLogging); } else { qDebug() << "GLSpectrumView::initializeGL: GL_KHR_debug not available"; } } } else { qCritical() << "GLSpectrumView::initializeGL: no current context"; return; } QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions(); glFunctions->initializeOpenGLFunctions(); //glDisable(GL_DEPTH_TEST); m_glShaderSimple.initializeGL(majorVersion, minorVersion); m_glShaderLeftScale.initializeGL(majorVersion, minorVersion); m_glShaderFrequencyScale.initializeGL(majorVersion, minorVersion); m_glShaderWaterfall.initializeGL(majorVersion, minorVersion); m_glShaderHistogram.initializeGL(majorVersion, minorVersion); m_glShaderColorMap.initializeGL(majorVersion, minorVersion); m_glShaderTextOverlay.initializeGL(majorVersion, minorVersion); m_glShaderInfo.initializeGL(majorVersion, minorVersion); m_glShaderSpectrogram.initializeGL(majorVersion, minorVersion); m_glShaderSpectrogramTimeScale.initializeGL(majorVersion, minorVersion); m_glShaderSpectrogramPowerScale.initializeGL(majorVersion, minorVersion); } void GLSpectrumView::openGLDebug(const QOpenGLDebugMessage &debugMessage) { qDebug() << "GLSpectrumView::openGLDebug: " << debugMessage; } void GLSpectrumView::resizeGL(int width, int height) { QMutexLocker mutexLocker(&m_mutex); QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions(); glFunctions->glViewport(0, 0, width, height); m_changesPending = true; } void GLSpectrumView::clearSpectrumHistogram() { if (!m_mutex.tryLock(2)) { return; } memset(m_histogram, 0x00, 100 * m_nbBins); m_mutex.unlock(); update(); } void GLSpectrumView::paintGL() { if (!m_mutex.tryLock(2)) { return; } if (m_changesPending) { applyChanges(); m_changesPending = false; } if (m_nbBins <= 0) { m_mutex.unlock(); return; } QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions(); glFunctions->glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glFunctions->glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); QMatrix4x4 spectrogramGridMatrix; int devicePixelRatio; if (m_display3DSpectrogram) { m_glShaderSpectrogram.applyTransform(spectrogramGridMatrix); // paint 3D spectrogram if (m_3DSpectrogramTexturePos + m_3DSpectrogramBufferPos < m_3DSpectrogramTextureHeight) { m_glShaderSpectrogram.subTexture(0, m_3DSpectrogramTexturePos, m_nbBins, m_3DSpectrogramBufferPos, m_3DSpectrogramBuffer->scanLine(0)); m_3DSpectrogramTexturePos += m_3DSpectrogramBufferPos; } else { int breakLine = m_3DSpectrogramTextureHeight - m_3DSpectrogramTexturePos; int linesLeft = m_3DSpectrogramTexturePos + m_3DSpectrogramBufferPos - m_3DSpectrogramTextureHeight; m_glShaderSpectrogram.subTexture(0, m_3DSpectrogramTexturePos, m_nbBins, breakLine, m_3DSpectrogramBuffer->scanLine(0)); m_glShaderSpectrogram.subTexture(0, 0, m_nbBins, linesLeft, m_3DSpectrogramBuffer->scanLine(breakLine)); m_3DSpectrogramTexturePos = linesLeft; } m_3DSpectrogramBufferPos = 0; float prop_y = m_3DSpectrogramTexturePos / (m_3DSpectrogramTextureHeight - 1.0); // Temporarily reduce viewport to waterfall area so anything outside is clipped if (window()->windowHandle()) { devicePixelRatio = window()->windowHandle()->devicePixelRatio(); } else { devicePixelRatio = 1; } glFunctions->glViewport(0, m_3DSpectrogramBottom*devicePixelRatio, width()*devicePixelRatio, m_waterfallHeight*devicePixelRatio); m_glShaderSpectrogram.drawSurface(m_3DSpectrogramStyle, spectrogramGridMatrix, prop_y, m_invertedWaterfall); glFunctions->glViewport(0, 0, width()*devicePixelRatio, height()*devicePixelRatio); } else if (m_displayWaterfall) { // paint 2D waterfall { GLfloat vtx1[] = { 0, m_invertedWaterfall ? 0.0f : 1.0f, 1, m_invertedWaterfall ? 0.0f : 1.0f, 1, m_invertedWaterfall ? 1.0f : 0.0f, 0, m_invertedWaterfall ? 1.0f : 0.0f }; if (m_waterfallTexturePos + m_waterfallBufferPos < m_waterfallTextureHeight) { m_glShaderWaterfall.subTexture(0, m_waterfallTexturePos, m_nbBins, m_waterfallBufferPos, m_waterfallBuffer->scanLine(0)); m_waterfallTexturePos += m_waterfallBufferPos; } else { int breakLine = m_waterfallTextureHeight - m_waterfallTexturePos; int linesLeft = m_waterfallTexturePos + m_waterfallBufferPos - m_waterfallTextureHeight; m_glShaderWaterfall.subTexture(0, m_waterfallTexturePos, m_nbBins, breakLine, m_waterfallBuffer->scanLine(0)); m_glShaderWaterfall.subTexture(0, 0, m_nbBins, linesLeft, m_waterfallBuffer->scanLine(breakLine)); m_waterfallTexturePos = linesLeft; } m_waterfallBufferPos = 0; float prop_y = m_waterfallTexturePos / (m_waterfallTextureHeight - 1.0); float off = 1.0 / (m_waterfallTextureHeight - 1.0); GLfloat tex1[] = { 0, prop_y + 1 - off, 1, prop_y + 1 - off, 1, prop_y, 0, prop_y }; m_glShaderWaterfall.drawSurface(m_glWaterfallBoxMatrix, tex1, vtx1, 4); } // paint channels if (m_mouseInside) { for (int i = 0; i < m_channelMarkerStates.size(); ++i) { ChannelMarkerState* dv = m_channelMarkerStates[i]; if (dv->m_channelMarker->getVisible() && (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink) && dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex)) { { GLfloat q3[] { 0, 0, 1, 0, 1, 1, 0, 1, 0.5, 0, 0.5, 1, }; QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.3f); m_glShaderSimple.drawSurface(dv->m_glMatrixWaterfall, color, q3, 4); QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f); m_glShaderSimple.drawSegments(dv->m_glMatrixDsbWaterfall, colorLine, &q3[8], 2); } } } } // draw rect around { GLfloat q3[] { 1, 1, 0, 1, 0, 0, 1, 0 }; QVector4D color(1.0f, 1.0f, 1.0f, 0.5f); m_glShaderSimple.drawContour(m_glWaterfallBoxMatrix, color, q3, 4); } } // paint histogram if (m_displayHistogram || m_displayMaxHold || m_displayCurrent) { if (m_displayHistogram) { { // import new lines into the texture quint32* pix; quint8* bs = m_histogram; for (int y = 0; y < 100; y++) { quint8* b = bs; pix = (quint32*)m_histogramBuffer->scanLine(99 - y); for (int x = 0; x < m_nbBins; x++) { *pix = m_histogramPalette[*b]; pix++; b += 100; } bs++; } GLfloat vtx1[] = { 0, 0, 1, 0, 1, 1, 0, 1 }; GLfloat tex1[] = { 0, 0, 1, 0, 1, 1, 0, 1 }; m_glShaderHistogram.subTexture(0, 0, m_nbBins, 100, m_histogramBuffer->scanLine(0)); m_glShaderHistogram.drawSurface(m_glHistogramBoxMatrix, tex1, vtx1, 4); } } // paint channels if (m_mouseInside) { // Effective BW overlays for (int i = 0; i < m_channelMarkerStates.size(); ++i) { ChannelMarkerState* dv = m_channelMarkerStates[i]; if (dv->m_channelMarker->getVisible() && (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink) && dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex)) { { GLfloat q3[] { 0, 0, 1, 0, 1, 1, 0, 1, 0.5, 0, 0.5, 1 }; QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.3f); m_glShaderSimple.drawSurface(dv->m_glMatrixHistogram, color, q3, 4); QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f); if (dv->m_channelMarker->getSidebands() != ChannelMarker::dsb) { q3[6] = 0.5; } m_glShaderSimple.drawSegments(dv->m_glMatrixDsbHistogram, colorLine, &q3[8], 2); m_glShaderSimple.drawSegments(dv->m_glMatrixFreqScale, colorLine, q3, 2); } } } } } // paint left scales (time and power) if (m_displayWaterfall || m_displayMaxHold || m_displayCurrent || m_displayHistogram ) { { GLfloat vtx1[] = { 0, 1, 1, 1, 1, 0, 0, 0 }; GLfloat tex1[] = { 0, 1, 1, 1, 1, 0, 0, 0 }; m_glShaderLeftScale.drawSurface(m_glLeftScaleBoxMatrix, tex1, vtx1, 4); } } // paint frequency scale if (m_displayWaterfall || m_displayMaxHold || m_displayCurrent || m_displayHistogram) { { GLfloat vtx1[] = { 0, 1, 1, 1, 1, 0, 0, 0 }; GLfloat tex1[] = { 0, 1, 1, 1, 1, 0, 0, 0 }; m_glShaderFrequencyScale.drawSurface(m_glFrequencyScaleBoxMatrix, tex1, vtx1, 4); } // paint channels // Effective bandwidth overlays for (int i = 0; i < m_channelMarkerStates.size(); ++i) { ChannelMarkerState* dv = m_channelMarkerStates[i]; // frequency scale channel overlay if (dv->m_channelMarker->getVisible() && (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink) && dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex)) { { GLfloat q3[] { 1, 0.2, 0, 0.2, 0, 0, 1, 0, 0.5, 0, 0.5, 1 }; QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.5f); m_glShaderSimple.drawSurface(dv->m_glMatrixFreqScale, color, q3, 4); if (dv->m_channelMarker->getHighlighted()) { QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f); m_glShaderSimple.drawSegments(dv->m_glMatrixDsbFreqScale, colorLine, &q3[8], 2); m_glShaderSimple.drawSegments(dv->m_glMatrixFreqScale, colorLine, &q3[4], 2); } } } } } // paint 3D spectrogram scales if (m_display3DSpectrogram && m_displayGrid) { glFunctions->glViewport(0, m_3DSpectrogramBottom*devicePixelRatio, width()*devicePixelRatio, m_waterfallHeight*devicePixelRatio); { GLfloat l = m_spectrogramTimePixmap.width() / (GLfloat) width(); GLfloat r = m_rightMargin / (GLfloat) width(); GLfloat h = m_frequencyPixmap.height() / (GLfloat) m_waterfallHeight; GLfloat vtx1[] = { -l, -h, 1.0f+r, -h, 1.0f+r, 0.0f, -l, 0.0f }; GLfloat tex1[] = { 0, 1, 1, 1, 1, 0, 0, 0 }; m_glShaderFrequencyScale.drawSurface(spectrogramGridMatrix, tex1, vtx1, 4); } { GLfloat w = m_spectrogramTimePixmap.width() / (GLfloat) width(); GLfloat h = (m_bottomMargin/2) / (GLfloat) m_waterfallHeight; // m_bottomMargin is fm.ascent GLfloat vtx1[] = { -w, 0.0f-h, 0.0f, 0.0f-h, 0.0f, 1.0f+h, -w, 1.0f+h }; GLfloat tex1[] = { 0, 1, 1, 1, 1, 0, 0, 0 }; m_glShaderSpectrogramTimeScale.drawSurface(spectrogramGridMatrix, tex1, vtx1, 4); } { GLfloat w = m_spectrogramPowerPixmap.width() / (GLfloat) width(); GLfloat h = m_topMargin / (GLfloat) m_spectrogramPowerPixmap.height(); GLfloat vtx1[] = { -w, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f+h, -w, 1.0f, 1.0f+h, }; GLfloat tex1[] = { 0, 1, 1, 1, 1, 0, 0, 0 }; m_glShaderSpectrogramPowerScale.drawSurface(spectrogramGridMatrix, tex1, vtx1, 4, 3); } glFunctions->glViewport(0, 0, width()*devicePixelRatio, height()*devicePixelRatio); } // paint max hold lines on top of histogram if (m_displayMaxHold) { if (m_maxHold.size() < (uint) m_nbBins) { m_maxHold.resize(m_nbBins); } for (int i = 0; i < m_nbBins; i++) { int j; quint8* bs = m_histogram + i * 100; for (j = 99; j >= 0; j--) { if (bs[j] > 0) { break; } } // m_referenceLevel : top // m_referenceLevel - m_powerRange : bottom m_maxHold[i] = ((j - 99) * m_powerRange) / 99.0 + m_referenceLevel; } // Fill under max hold line if (m_spectrumStyle != SpectrumSettings::Line) { GLfloat *q3 = m_q3ColorMap.m_array; for (int i = 0; i < m_nbBins; i++) { Real v = m_maxHold[i] - m_referenceLevel; if (v > 0) { v = 0; } else if (v < -m_powerRange) { v = -m_powerRange; } q3[4*i] = (GLfloat)i; q3[4*i+1] = -m_powerRange; q3[4*i+2] = (GLfloat)i; q3[4*i+3] = v; } // Replicate Nyquist sample to end of positive side q3[4*m_nbBins] = (GLfloat) m_nbBins; q3[4*m_nbBins+1] = q3[1]; q3[4*m_nbBins+2] = (GLfloat) m_nbBins; q3[4*m_nbBins+3] = q3[3]; QVector4D color(0.5f, 0.0f, 0.0f, (float) m_displayTraceIntensity / 100.0f); m_glShaderSimple.drawSurfaceStrip(m_glHistogramSpectrumMatrix, color, q3, 2*(m_nbBins+1)); } // Max hold line { GLfloat *q3 = m_q3FFT.m_array; for (int i = 0; i < m_nbBins; i++) { Real v = m_maxHold[i] - m_referenceLevel; if (v >= 0) { v = 0; } else if (v < -m_powerRange) { v = -m_powerRange; } q3[2*i] = (Real) i; q3[2*i+1] = v; } // Replicate Nyquist sample to end of positive side q3[2*m_nbBins] = (GLfloat) m_nbBins; q3[2*m_nbBins+1] = q3[1]; QVector4D color(1.0f, 0.0f, 0.0f, (float) m_displayTraceIntensity / 100.0f); m_glShaderSimple.drawPolyline(m_glHistogramSpectrumMatrix, color, q3, m_nbBins+1); } } // paint current spectrum line on top of histogram if (m_displayCurrent && m_currentSpectrum) { Real bottom = -m_powerRange; GLfloat *q3; if (m_spectrumStyle != SpectrumSettings::Line) { q3 = m_q3ColorMap.m_array; // Fill under line for (int i = 0; i < m_nbBins; i++) { Real v = m_currentSpectrum[i] - m_referenceLevel; if (v > 0) { v = 0; } else if (v < bottom) { v = bottom; } q3[4*i] = (GLfloat)i; q3[4*i+1] = bottom; q3[4*i+2] = (GLfloat)i; q3[4*i+3] = v; } // Replicate Nyquist sample to end of positive side q3[4*m_nbBins] = (GLfloat) m_nbBins; q3[4*m_nbBins+1] = q3[1]; q3[4*m_nbBins+2] = (GLfloat) m_nbBins; q3[4*m_nbBins+3] = q3[3]; QVector4D color(1.0f, 1.0f, 0.25f, (float) m_displayTraceIntensity / 100.0f); if (m_spectrumStyle == SpectrumSettings::Gradient) { m_glShaderColorMap.drawSurfaceStrip(m_glHistogramSpectrumMatrix, q3, 2*(m_nbBins+1), bottom, 0.75f); } else { m_glShaderSimple.drawSurfaceStrip(m_glHistogramSpectrumMatrix, color, q3, 2*(m_nbBins+1)); } } { if (m_histogramFindPeaks) { m_peakFinder.init(m_currentSpectrum[0]); } // Draw line q3 = m_q3FFT.m_array; for (int i = 0; i < m_nbBins; i++) { Real v = m_currentSpectrum[i] - m_referenceLevel; if (v > 0) { v = 0; } else if (v < bottom) { v = bottom; } q3[2*i] = (Real) i; q3[2*i+1] = v; if (m_histogramFindPeaks && (i > 0)) { m_peakFinder.push(m_currentSpectrum[i], i == m_nbBins - 1); } } // Replicate Nyquist sample to end of positive side q3[2*m_nbBins] = (GLfloat) m_nbBins; q3[2*m_nbBins+1] = q3[1]; QVector4D color; if (m_spectrumStyle == SpectrumSettings::Gradient) { color = QVector4D(m_colorMap[255*3], m_colorMap[255*3+1], m_colorMap[255*3+2], (float) m_displayTraceIntensity / 100.0f); } else { color = QVector4D(1.0f, 1.0f, 0.25f, (float) m_displayTraceIntensity / 100.0f); } m_glShaderSimple.drawPolyline(m_glHistogramSpectrumMatrix, color, q3, m_nbBins+1); if (m_histogramFindPeaks) { m_peakFinder.sortPeaks(); } } } if (m_displayCurrent && m_currentSpectrum && (m_markersDisplay & SpectrumSettings::MarkersDisplaySpectrum)) { if (m_histogramFindPeaks) { updateHistogramPeaks(); } drawSpectrumMarkers(); } if (m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations) { drawAnnotationMarkers(); } // paint waterfall grid if (m_displayWaterfall && m_displayGrid) { const ScaleEngine::TickList* tickList; const ScaleEngine::Tick* tick; tickList = &m_timeScale.getTickList(); { GLfloat *q3 = m_q3TickTime.m_array; int effectiveTicks = 0; for (int i= 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) { float y = tick->pos / m_timeScale.getSize(); q3[4*effectiveTicks] = 0; q3[4*effectiveTicks+1] = y; q3[4*effectiveTicks+2] = 1; q3[4*effectiveTicks+3] = y; effectiveTicks++; } } } QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f); m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, color, q3, 2*effectiveTicks); } tickList = &m_frequencyScale.getTickList(); { GLfloat *q3 = m_q3TickFrequency.m_array; int effectiveTicks = 0; for (int i= 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) { float x = tick->pos / m_frequencyScale.getSize(); q3[4*effectiveTicks] = x; q3[4*effectiveTicks+1] = 0; q3[4*effectiveTicks+2] = x; q3[4*effectiveTicks+3] = 1; effectiveTicks++; } } } QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f); m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, color, q3, 2*effectiveTicks); } } // paint 3D spectrogram grid - this is drawn on top of signal, so that appears slightly transparent // x-axis is freq, y time and z power if (m_displayGrid && m_display3DSpectrogram) { const ScaleEngine::TickList* tickList; const ScaleEngine::Tick* tick; glFunctions->glViewport(0, m_3DSpectrogramBottom*devicePixelRatio, width()*devicePixelRatio, m_waterfallHeight*devicePixelRatio); tickList = &m_powerScale.getTickList(); { GLfloat *q3 = m_q3TickPower.m_array; int effectiveTicks = 0; for (int i= 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) { float y = tick->pos / m_powerScale.getSize(); q3[6*effectiveTicks] = 0.0; q3[6*effectiveTicks+1] = 1.0; q3[6*effectiveTicks+2] = y; q3[6*effectiveTicks+3] = 1.0; q3[6*effectiveTicks+4] = 1.0; q3[6*effectiveTicks+5] = y; effectiveTicks++; } } } QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f); m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks, 3); } tickList = &m_timeScale.getTickList(); { GLfloat *q3 = m_q3TickTime.m_array; int effectiveTicks = 0; for (int i= 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) { float y = tick->pos / m_timeScale.getSize(); q3[4*effectiveTicks] = 0.0; q3[4*effectiveTicks+1] = 1.0 - y; q3[4*effectiveTicks+2] = 1.0; q3[4*effectiveTicks+3] = 1.0 - y; effectiveTicks++; } } } QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f); m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks); } tickList = &m_frequencyScale.getTickList(); { GLfloat *q3 = m_q3TickFrequency.m_array; int effectiveTicks = 0; for (int i= 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) { float x = tick->pos / m_frequencyScale.getSize(); q3[4*effectiveTicks] = x; q3[4*effectiveTicks+1] = -0.0; q3[4*effectiveTicks+2] = x; q3[4*effectiveTicks+3] = 1.0; effectiveTicks++; } } } QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f); m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks); } { GLfloat *q3 = m_q3TickFrequency.m_array; int effectiveTicks = 0; for (int i= 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) { float x = tick->pos / m_frequencyScale.getSize(); q3[6*effectiveTicks] = x; q3[6*effectiveTicks+1] = 1.0; q3[6*effectiveTicks+2] = 0.0; q3[6*effectiveTicks+3] = x; q3[6*effectiveTicks+4] = 1.0; q3[6*effectiveTicks+5] = 1.0; effectiveTicks++; } } } QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f); m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks, 3); } glFunctions->glViewport(0, 0, width()*devicePixelRatio, height()*devicePixelRatio); } // paint histogram grid if ((m_displayHistogram || m_displayMaxHold || m_displayCurrent) && (m_displayGrid)) { const ScaleEngine::TickList* tickList; const ScaleEngine::Tick* tick; tickList = &m_powerScale.getTickList(); { GLfloat *q3 = m_q3TickPower.m_array; int effectiveTicks = 0; for (int i= 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) { float y = tick->pos / m_powerScale.getSize(); q3[4*effectiveTicks] = 0; q3[4*effectiveTicks+1] = 1-y; q3[4*effectiveTicks+2] = 1; q3[4*effectiveTicks+3] = 1-y; effectiveTicks++; } } } QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f); m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, q3, 2*effectiveTicks); } tickList = &m_frequencyScale.getTickList(); { GLfloat *q3 = m_q3TickFrequency.m_array; int effectiveTicks = 0; for (int i= 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) { float x = tick->pos / m_frequencyScale.getSize(); q3[4*effectiveTicks] = x; q3[4*effectiveTicks+1] = 0; q3[4*effectiveTicks+2] = x; q3[4*effectiveTicks+3] = 1; effectiveTicks++; } } } QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f); m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, q3, 2*effectiveTicks); } } // paint rect around histogram (do last, so on top of filled spectrum) if (m_displayHistogram || m_displayMaxHold || m_displayCurrent) { { GLfloat q3[] { 1, 1, 0, 1, 0, 0, 1, 0 }; QVector4D color(1.0f, 1.0f, 1.0f, 0.5f); m_glShaderSimple.drawContour(m_glHistogramBoxMatrix, color, q3, 4); } } // Paint info line { GLfloat vtx1[] = { 0, 1, 1, 1, 1, 0, 0, 0 }; GLfloat tex1[] = { 0, 1, 1, 1, 1, 0, 0, 0 }; m_glShaderInfo.drawSurface(m_glInfoBoxMatrix, tex1, vtx1, 4); } if (m_currentSpectrum) { switch (m_measurement) { case SpectrumSettings::MeasurementPeaks: measurePeaks(); break; case SpectrumSettings::MeasurementChannelPower: measureChannelPower(); break; case SpectrumSettings::MeasurementAdjacentChannelPower: measureAdjacentChannelPower(); break; case SpectrumSettings::MeasurementOccupiedBandwidth: measureOccupiedBandwidth(); break; case SpectrumSettings::Measurement3dBBandwidth: measure3dBBandwidth(); break; case SpectrumSettings::MeasurementSNR: measureSNR(); measureSFDR(); break; default: break; } } m_mutex.unlock(); } // paintGL // Hightlight power band for SFDR void GLSpectrumView::drawPowerBandMarkers(float max, float min, const QVector4D &color) { float p1 = (m_powerScale.getRangeMax() - min) / m_powerScale.getRange(); float p2 = (m_powerScale.getRangeMax() - max) / m_powerScale.getRange(); GLfloat q3[] { 1, p2, 0, p2, 0, p1, 1, p1, 0, p1, 0, p2 }; m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4); } // Hightlight bandwidth being measured void GLSpectrumView::drawBandwidthMarkers(int64_t centerFrequency, int bandwidth, const QVector4D &color) { float f1 = (centerFrequency - bandwidth / 2); float f2 = (centerFrequency + bandwidth / 2); float x1 = (f1 - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange(); float x2 = (f2 - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange(); GLfloat q3[] { x2, 1, x1, 1, x1, 0, x2, 0, x1, 0, x1, 1 }; m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4); } // Hightlight peak being measured. Note that the peak isn't always at the center void GLSpectrumView::drawPeakMarkers(int64_t startFrequency, int64_t endFrequency, const QVector4D &color) { float x1 = (startFrequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange(); float x2 = (endFrequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange(); GLfloat q3[] { x2, 1, x1, 1, x1, 0, x2, 0, x1, 0, x1, 1 }; m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4); } void GLSpectrumView::drawSpectrumMarkers() { if (!m_currentSpectrum) { return; } QVector4D lineColor(1.0f, 1.0f, 1.0f, 0.3f); // paint histogram markers if (m_histogramMarkers.size() > 0) { for (int i = 0; i < m_histogramMarkers.size(); i++) { if (!m_histogramMarkers.at(i).m_show) { continue; } QPointF ypoint = m_histogramMarkers.at(i).m_point; QString powerStr = m_histogramMarkers.at(i).m_powerStr; if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower) { float power = m_linear ? m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin] * (m_useCalibration ? m_calibrationGain : 1.0f): m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin] + (m_useCalibration ? m_calibrationShiftdB : 0.0f); ypoint.ry() = (m_powerScale.getRangeMax() - power) / m_powerScale.getRange(); ypoint.ry() = ypoint.ry() < 0 ? 0 : ypoint.ry() > 1 ? 1 : ypoint.ry(); powerStr = displayPower( power, m_linear ? 'e' : 'f', m_linear ? 3 : 1 ); } else if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax) { float power = m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin]; if ((m_histogramMarkers.at(i).m_holdReset) || (power > m_histogramMarkers[i].m_powerMax)) { m_histogramMarkers[i].m_powerMax = power; m_histogramMarkers[i].m_holdReset = false; } float powerMax = m_linear ? m_histogramMarkers[i].m_powerMax * (m_useCalibration ? m_calibrationGain : 1.0f) : m_histogramMarkers[i].m_powerMax + (m_useCalibration ? m_calibrationShiftdB : 0.0f); ypoint.ry() = (m_powerScale.getRangeMax() - powerMax) / m_powerScale.getRange(); ypoint.ry() = ypoint.ry() < 0 ? 0 : ypoint.ry() > 1 ? 1 : ypoint.ry(); powerStr = displayPower( powerMax, m_linear ? 'e' : 'f', m_linear ? 3 : 1 ); } // crosshairs GLfloat h[] { (float) m_histogramMarkers.at(i).m_point.x(), 0, (float) m_histogramMarkers.at(i).m_point.x(), 1 }; m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, lineColor, h, 2); GLfloat v[] { 0, (float) ypoint.y(), 1, (float) ypoint.y() }; m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, lineColor, v, 2); QColor textColor = m_histogramMarkers.at(i).m_markerColor; // text if (i == 0) { drawTextOverlay( m_histogramMarkers.at(i).m_frequencyStr, textColor, m_textOverlayFont, m_histogramMarkers.at(i).m_point.x() * m_histogramRect.width(), (m_invertedWaterfall || (m_waterfallHeight == 0)) ? m_histogramRect.height() : 0, m_histogramMarkers.at(i).m_point.x() < 0.5f, !m_invertedWaterfall && (m_waterfallHeight != 0), m_histogramRect); drawTextOverlay( powerStr, textColor, m_textOverlayFont, 0, ypoint.y() * m_histogramRect.height(), true, ypoint.y() < 0.5f, m_histogramRect); } else { textColor.setAlpha(192); float power0, poweri; if (m_histogramMarkers.at(0).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower) { power0 = m_currentSpectrum[m_histogramMarkers.at(0).m_fftBin]; } else if (m_histogramMarkers.at(0).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax) { power0 = m_histogramMarkers.at(0).m_powerMax; } else { power0 = m_linear ? m_histogramMarkers.at(0).m_power : CalcDb::dbPower(m_histogramMarkers.at(0).m_power); } if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower) { poweri = m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin]; } else if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax) { poweri = m_histogramMarkers.at(i).m_powerMax; } else { poweri = m_linear ? m_histogramMarkers.at(i).m_power : CalcDb::dbPower(m_histogramMarkers.at(i).m_power); } QString deltaPowerStr; if (m_linear) { deltaPowerStr = QString::number(poweri - power0, 'e', 3); } else { deltaPowerStr = QString::number(poweri - power0, 'f', 1); } drawTextOverlay( m_histogramMarkers.at(i).m_deltaFrequencyStr, textColor, m_textOverlayFont, m_histogramMarkers.at(i).m_point.x() * m_histogramRect.width(), (m_invertedWaterfall || (m_waterfallHeight == 0)) ? 0 : m_histogramRect.height(), m_histogramMarkers.at(i).m_point.x() < 0.5f, (m_invertedWaterfall || (m_waterfallHeight == 0)), m_histogramRect); drawTextOverlay( deltaPowerStr, textColor, m_textOverlayFont, m_histogramRect.width(), ypoint.y() * m_histogramRect.height(), false, ypoint.y() < 0.5f, m_histogramRect); } } } // paint waterfall markers if (m_waterfallMarkers.size() > 0) { // crosshairs for (int i = 0; i < m_waterfallMarkers.size(); i++) { if (!m_waterfallMarkers.at(i).m_show) { continue; } GLfloat h[] { (float) m_waterfallMarkers.at(i).m_point.x(), 0, (float) m_waterfallMarkers.at(i).m_point.x(), 1 }; m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, lineColor, h, 2); GLfloat v[] { 0, (float) m_waterfallMarkers.at(i).m_point.y(), 1, (float) m_waterfallMarkers.at(i).m_point.y() }; m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, lineColor, v, 2); // } // text // for (int i = 0; i < m_waterfallMarkers.size(); i++) // { QColor textColor = m_waterfallMarkers.at(i).m_markerColor; textColor.setAlpha(192); if (i == 0) { drawTextOverlay( m_waterfallMarkers.at(i).m_frequencyStr, textColor, m_textOverlayFont, m_waterfallMarkers.at(i).m_point.x() * m_waterfallRect.width(), (!m_invertedWaterfall || (m_histogramHeight == 0)) ? m_waterfallRect.height() : 0, m_waterfallMarkers.at(i).m_point.x() < 0.5f, m_invertedWaterfall && (m_histogramHeight != 0), m_waterfallRect); drawTextOverlay( m_waterfallMarkers.at(i).m_timeStr, textColor, m_textOverlayFont, 0, m_waterfallMarkers.at(i).m_point.y() * m_waterfallRect.height(), true, m_waterfallMarkers.at(i).m_point.y() < 0.5f, m_waterfallRect); } else { drawTextOverlay( m_waterfallMarkers.at(i).m_deltaFrequencyStr, textColor, m_textOverlayFont, m_waterfallMarkers.at(i).m_point.x() * m_waterfallRect.width(), (!m_invertedWaterfall || (m_histogramHeight == 0)) ? 0 : m_waterfallRect.height(), m_waterfallMarkers.at(i).m_point.x() < 0.5f, !m_invertedWaterfall || (m_histogramHeight == 0), m_waterfallRect); drawTextOverlay( m_waterfallMarkers.at(i).m_deltaTimeStr, textColor, m_textOverlayFont, m_waterfallRect.width(), m_waterfallMarkers.at(i).m_point.y() * m_waterfallRect.height(), false, m_waterfallMarkers.at(i).m_point.y() < 0.5f, m_waterfallRect); } } } } void GLSpectrumView::drawAnnotationMarkers() { if ((!m_currentSpectrum) || (m_visibleAnnotationMarkers.size() == 0)) { return; } float h = m_annotationMarkerHeight / (float) m_histogramHeight; float htop = 1.0f / (float) m_histogramHeight; for (const auto &marker : m_visibleAnnotationMarkers) { if (marker->m_show == SpectrumAnnotationMarker::Hidden) { continue; } QVector4D color(marker->m_markerColor.redF(), marker->m_markerColor.greenF(), marker->m_markerColor.blueF(), 0.5f); if (marker->m_bandwidth == 0) { GLfloat d[] { marker->m_startPos, htop, marker->m_startPos, h }; m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, d, 2); } else { GLfloat q3[] { marker->m_stopPos, h, marker->m_startPos, h, marker->m_startPos, htop, marker->m_stopPos, htop }; m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4); } // Always draw a line in the top area, so we can see where bands start/stop when contiguous // When show is ShowFull, we draw at full height of spectrum bool full = marker->m_show == SpectrumAnnotationMarker::ShowFull; GLfloat d1[] { marker->m_startPos, full ? 0 : htop, marker->m_startPos, full ? 1 : h, }; m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, d1, 2); if (marker->m_bandwidth != 0) { GLfloat d2[] { marker->m_stopPos, full ? 0 : htop, marker->m_stopPos, full ? 1 : h, }; m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, d2, 2); } if ((marker->m_show == SpectrumAnnotationMarker::ShowFull) || (marker->m_show == SpectrumAnnotationMarker::ShowText)) { float txtpos = marker->m_startPos < 0.5f ? marker->m_startPos : marker->m_stopPos; drawTextOverlay( marker->m_text, QColor(255, 255, 255, 192), m_textOverlayFont, txtpos * m_histogramRect.width(), 0, marker->m_startPos < 0.5f, true, m_histogramRect); } } } // Find and display peak in info line void GLSpectrumView::measurePeak() { float power, frequency; findPeak(power, frequency); drawTextsRight( {"Peak: ", ""}, { displayPower(power, m_linear ? 'e' : 'f', m_linear ? 3 : 1), displayFull(frequency) }, {m_peakPowerMaxStr, m_peakFrequencyMaxStr}, {m_peakPowerUnits, "Hz"} ); if (m_measurements) { m_measurements->setPeak(0, frequency, power); } } // Find and display peaks void GLSpectrumView::measurePeaks() { // Copy current spectrum so we can modify it Real *spectrum = new Real[m_nbBins]; std::copy(m_currentSpectrum, m_currentSpectrum + m_nbBins, spectrum); for (int i = 0; i < m_measurementPeaks; i++) { // Find peak int peakBin = findPeakBin(spectrum); int left, right; peakWidth(spectrum, peakBin, left, right, 0, m_nbBins); left++; right--; float power = m_linear ? spectrum[peakBin] * (m_useCalibration ? m_calibrationGain : 1.0f) : spectrum[peakBin] + (m_useCalibration ? m_calibrationShiftdB : 0.0f); int64_t frequency = binToFrequency(peakBin); // Add to table if (m_measurements) { m_measurements->setPeak(i, frequency, power); } if (m_measurementHighlight) { float x = peakBin / (float)m_nbBins; float y = (m_powerScale.getRangeMax() - power) / m_powerScale.getRange(); QString text = QString::number(i + 1); drawTextOverlayCentered( text, QColor(255, 255, 255), m_textOverlayFont, x * m_histogramRect.width(), y * m_histogramRect.height(), m_histogramRect); } // Remove peak from spectrum so not found on next pass for (int j = left; j <= right; j++) { spectrum[j] = -std::numeric_limits::max(); } } delete[] spectrum; } // Calculate and display channel power void GLSpectrumView::measureChannelPower() { float power; power = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth); if (m_measurements) { m_measurements->setChannelPower(power); } if (m_measurementHighlight) { drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth, m_measurementLightMarkerColor); } } // Calculate and display channel power and adjacent channel power void GLSpectrumView::measureAdjacentChannelPower() { float power, powerLeft, powerRight; power = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth); powerLeft = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset - m_measurementChSpacing, m_measurementAdjChBandwidth); powerRight = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset + m_measurementChSpacing, m_measurementAdjChBandwidth); float leftDiff = powerLeft - power; float rightDiff = powerRight - power; if (m_measurements) { m_measurements->setAdjacentChannelPower(powerLeft, leftDiff, power, powerRight, rightDiff); } if (m_measurementHighlight) { drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth, m_measurementLightMarkerColor); drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset - m_measurementChSpacing, m_measurementAdjChBandwidth, m_measurementDarkMarkerColor); drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset + m_measurementChSpacing, m_measurementAdjChBandwidth, m_measurementDarkMarkerColor); } } // Measure bandwidth that has 99% of power void GLSpectrumView::measureOccupiedBandwidth() { float hzPerBin = m_sampleRate / (float) m_fftSize; int start = frequencyToBin(m_centerFrequency + m_measurementCenterFrequencyOffset); float totalPower, power = 0.0f; int step = 0; int width = 0; int idx = start; float gain = m_useCalibration ? m_calibrationGain : 1.0f; float shift = m_useCalibration ? m_calibrationShiftdB : 0.0f; totalPower = CalcDb::powerFromdB(calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth)); do { if ((idx >= 0) && (idx < m_nbBins)) { if (m_linear) { power += m_currentSpectrum[idx] * gain; } else { power += CalcDb::powerFromdB(m_currentSpectrum[idx]) + shift; } width++; } step++; if ((step & 1) == 1) { idx -= step; } else { idx += step; } } while (((power / totalPower) < 0.99f) && (step < m_nbBins)); float occupiedBandwidth = width * hzPerBin; if (m_measurements) { m_measurements->setOccupiedBandwidth(occupiedBandwidth); } if (m_measurementHighlight) { drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth, m_measurementDarkMarkerColor); drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, occupiedBandwidth, m_measurementLightMarkerColor); } } // Measure bandwidth -3dB from peak void GLSpectrumView::measure3dBBandwidth() { // Find max peak and it's power in dB int peakBin = findPeakBin(m_currentSpectrum); float peakPower = m_linear ? CalcDb::dbPower(m_currentSpectrum[peakBin]) : m_currentSpectrum[peakBin]; // Search right until 3dB from peak int rightBin = peakBin; for (int i = peakBin + 1; i < m_nbBins; i++) { float power = m_linear ? CalcDb::dbPower(m_currentSpectrum[i]) : m_currentSpectrum[i]; if (peakPower - power > 3.0f) { rightBin = i - 1; break; } } // Search left until 3dB from peak int leftBin = peakBin; for (int i = peakBin - 1; i >= 0; i--) { float power = m_linear ? CalcDb::dbPower(m_currentSpectrum[i]) : m_currentSpectrum[i]; if (peakPower - power > 3.0f) { leftBin = i + 1; break; } } // Calcualte bandwidth int bins = rightBin - leftBin - 1; bins = std::max(1, bins); float hzPerBin = m_sampleRate / (float) m_fftSize; float bandwidth = bins * hzPerBin; int centerBin = leftBin + (rightBin - leftBin) / 2; float centerFrequency = binToFrequency(centerBin); if (m_measurements) { m_measurements->set3dBBandwidth(bandwidth); } if (m_measurementHighlight) { drawBandwidthMarkers(centerFrequency, bandwidth, m_measurementLightMarkerColor); } } const QVector4D GLSpectrumView::m_measurementLightMarkerColor = QVector4D(0.6f, 0.6f, 0.6f, 0.2f); const QVector4D GLSpectrumView::m_measurementDarkMarkerColor = QVector4D(0.6f, 0.6f, 0.6f, 0.15f); // Find the width of a peak, by seaching in either direction until // power is no longer falling void GLSpectrumView::peakWidth(const Real *spectrum, int center, int &left, int &right, int maxLeft, int maxRight) const { float prevLeft = spectrum[center]; float prevRight = spectrum[center]; left = center - 1; right = center + 1; while ((left > maxLeft) && (spectrum[left] < prevLeft) && (right < maxRight) && (spectrum[right] < prevRight)) { prevLeft = spectrum[left]; left--; prevRight = spectrum[right]; right++; } } int GLSpectrumView::findPeakBin(const Real *spectrum) const { int bin; float power; bin = 0; power = spectrum[0]; for (int i = 1; i < m_nbBins; i++) { if (spectrum[i] > power) { power = spectrum[i]; bin = i; } } return bin; } float GLSpectrumView::calPower(float power) const { if (m_linear) { return power * (m_useCalibration ? m_calibrationGain : 1.0f); } else { return CalcDb::powerFromdB(power) + (m_useCalibration ? m_calibrationShiftdB : 0.0f); } } int GLSpectrumView::frequencyToBin(int64_t frequency) const { float rbw = m_sampleRate / (float)m_fftSize; return (frequency - m_frequencyScale.getRangeMin()) / rbw; } int64_t GLSpectrumView::binToFrequency(int bin) const { float rbw = m_sampleRate / (float)m_fftSize; return m_frequencyScale.getRangeMin() + bin * rbw; } // Find a peak and measure SNR / THD / SINAD void GLSpectrumView::measureSNR() { // Find bin with max peak - that will be our signal int sig = findPeakBin(m_currentSpectrum); int sigLeft, sigRight; peakWidth(m_currentSpectrum, sig, sigLeft, sigRight, 0, m_nbBins); int sigBins = sigRight - sigLeft - 1; int binsLeft = sig - sigLeft; int binsRight = sigRight - sig; // Highlight the signal float sigFreq = binToFrequency(sig); if (m_measurementHighlight) { drawPeakMarkers(binToFrequency(sigLeft+1), binToFrequency(sigRight-1), m_measurementLightMarkerColor); } // Find the harmonics and highlight them QList hBinsLeft; QList hBinsRight; QList hBinsBins; for (int h = 2; h < m_measurementHarmonics + 2; h++) { float hFreq = sigFreq * h; if (hFreq < m_frequencyScale.getRangeMax()) { int hBin = frequencyToBin(hFreq); // Check if peak is an adjacent bin if (m_currentSpectrum[hBin-1] > m_currentSpectrum[hBin]) { hBin--; } else if (m_currentSpectrum[hBin+1] > m_currentSpectrum[hBin]) { hBin++; } hFreq = binToFrequency(hBin); int hLeft, hRight; peakWidth(m_currentSpectrum, hBin, hLeft, hRight, hBin - binsLeft, hBin + binsRight); int hBins = hRight - hLeft - 1; if (m_measurementHighlight) { drawPeakMarkers(binToFrequency(hLeft+1), binToFrequency(hRight-1), m_measurementDarkMarkerColor); } hBinsLeft.append(hLeft); hBinsRight.append(hRight); hBinsBins.append(hBins); } } // Integrate signal, harmonic and noise power float sigPower = 0.0f; float noisePower = 0.0f; float harmonicPower = 0.0f; QList noise; float gain = m_useCalibration ? m_calibrationGain : 1.0f; float shift = m_useCalibration ? m_calibrationShiftdB : 0.0f; for (int i = 0; i < m_nbBins; i++) { float power; if (m_linear) { power = m_currentSpectrum[i] * gain; } else { power = CalcDb::powerFromdB(m_currentSpectrum[i]) + shift; } // Signal power if ((i > sigLeft) && (i < sigRight)) { sigPower += power; continue; } // Harmonics for (int h = 0; h < hBinsLeft.size(); h++) { if ((i > hBinsLeft[h]) && (i < hBinsRight[h])) { harmonicPower += power; continue; } } // Noise noisePower += power; noise.append(power); } // Calculate median of noise float noiseMedian = 0.0; if (noise.size() > 0) { auto m = noise.begin() + noise.size()/2; std::nth_element(noise.begin(), m, noise.end()); noiseMedian = noise[noise.size()/2]; } // Assume we have similar noise where the signal and harmonics are float inBandNoise = noiseMedian * sigBins; noisePower += inBandNoise; sigPower -= inBandNoise; for (auto hBins : hBinsBins) { float hNoise = noiseMedian * hBins; noisePower += hNoise; harmonicPower -= hNoise; } if (m_measurements) { // Calculate SNR in dB over full bandwidth float snr = CalcDb::dbPower(sigPower / noisePower); // Calculate SNR, where noise is median of noise summed over signal b/w float snfr = CalcDb::dbPower(sigPower / inBandNoise); // Calculate THD - Total harmonic distortion float thd = harmonicPower / sigPower; float thdDB = CalcDb::dbPower(thd); // Calculate THD+N - Total harmonic distortion plus noise float thdpn = CalcDb::dbPower((harmonicPower + noisePower) / sigPower); // Calculate SINAD - Signal to noise and distotion ratio (Should be -THD+N) float sinad = CalcDb::dbPower((sigPower + harmonicPower + noisePower) / (harmonicPower + noisePower)); m_measurements->setSNR(snr, snfr, thdDB, thdpn, sinad); } } void GLSpectrumView::measureSFDR() { // Find first peak which is our signal int peakBin = findPeakBin(m_currentSpectrum); int peakLeft, peakRight; peakWidth(m_currentSpectrum, peakBin, peakLeft, peakRight, 0, m_nbBins); // Find next largest peak, which is the spur int nextPeakBin = -1; float nextPeakPower = -std::numeric_limits::max(); for (int i = 0; i < m_nbBins; i++) { if ((i < peakLeft) || (i > peakRight)) { if (m_currentSpectrum[i] > nextPeakPower) { nextPeakBin = i; nextPeakPower = m_currentSpectrum[i]; } } } if (nextPeakBin != -1) { // Calculate SFDR in dB from difference between two peaks float peakPower = calPower(m_currentSpectrum[peakBin]); float nextPeakPower = calPower(m_currentSpectrum[nextPeakBin]); float peakPowerDB = CalcDb::dbPower(peakPower); float nextPeakPowerDB = CalcDb::dbPower(nextPeakPower); float sfdr = peakPowerDB - nextPeakPowerDB; // Display if (m_measurements) { m_measurements->setSFDR(sfdr); } if (m_measurementHighlight) { if (m_linear) { drawPowerBandMarkers(peakPower, nextPeakPower, m_measurementDarkMarkerColor); } else { drawPowerBandMarkers(peakPowerDB, nextPeakPowerDB, m_measurementDarkMarkerColor); } } } } // Find power and frequency of max peak in current spectrum void GLSpectrumView::findPeak(float &power, float &frequency) const { int bin; bin = 0; power = m_currentSpectrum[0]; for (int i = 1; i < m_nbBins; i++) { if (m_currentSpectrum[i] > power) { power = m_currentSpectrum[i]; bin = i; } } power = m_linear ? power * (m_useCalibration ? m_calibrationGain : 1.0f) : power + (m_useCalibration ? m_calibrationShiftdB : 0.0f); frequency = binToFrequency(bin); } // Calculate channel power in dB float GLSpectrumView::calcChannelPower(int64_t centerFrequency, int channelBandwidth) const { float hzPerBin = m_sampleRate / (float) m_fftSize; int bins = channelBandwidth / hzPerBin; int start = frequencyToBin(centerFrequency) - (bins / 2); int end = start + bins; float power = 0.0; start = std::max(start, 0); end = std::min(end, m_nbBins); if (m_linear) { float gain = m_useCalibration ? m_calibrationGain : 1.0f; for (int i = start; i < end; i++) { power += m_currentSpectrum[i] * gain; } } else { float shift = m_useCalibration ? m_calibrationShiftdB : 0.0f; for (int i = start; i < end; i++) { power += CalcDb::powerFromdB(m_currentSpectrum[i]) + shift; } } return CalcDb::dbPower(power); } void GLSpectrumView::stopDrag() { if (m_cursorState != CSNormal) { if ((m_cursorState == CSSplitterMoving) || (m_cursorState == CSChannelMoving)) { releaseMouse(); } setCursor(Qt::ArrowCursor); m_cursorState = CSNormal; } } void GLSpectrumView::applyChanges() { if (m_nbBins <= 0) { return; } QFontMetrics fm(font()); int M = fm.horizontalAdvance("-"); m_topMargin = fm.ascent() * 2.0; m_bottomMargin = fm.ascent() * 1.0; m_infoHeight = fm.height() * 3; int waterfallTop = 0; m_frequencyScaleHeight = fm.height() * 3; // +1 line for marker frequency scale int frequencyScaleTop = 0; int histogramTop = 0; //int m_leftMargin; m_rightMargin = fm.horizontalAdvance("000"); // displays both histogram and waterfall if ((m_displayWaterfall || m_display3DSpectrogram) && (m_displayHistogram | m_displayMaxHold | m_displayCurrent)) { m_waterfallHeight = height() * m_waterfallShare - 1; if (m_waterfallHeight < 0) { m_waterfallHeight = 0; } if (m_invertedWaterfall) { histogramTop = m_topMargin; m_histogramHeight = height() - m_topMargin - m_waterfallHeight - m_frequencyScaleHeight - m_bottomMargin; waterfallTop = histogramTop + m_histogramHeight + m_frequencyScaleHeight + 1; frequencyScaleTop = histogramTop + m_histogramHeight + 1; } else { waterfallTop = m_topMargin; frequencyScaleTop = waterfallTop + m_waterfallHeight + 1; histogramTop = waterfallTop + m_waterfallHeight + m_frequencyScaleHeight + 1; m_histogramHeight = height() - m_topMargin - m_waterfallHeight - m_frequencyScaleHeight - m_bottomMargin; } m_timeScale.setSize(m_waterfallHeight); if (m_sampleRate > 0) { float scaleDiv = ((float)m_sampleRate / (float)m_timingRate) * (m_ssbSpectrum ? 2 : 1); float halfFFTSize = m_fftSize / 2; if (halfFFTSize > m_fftOverlap) { scaleDiv *= halfFFTSize / (halfFFTSize - m_fftOverlap); } if (!m_invertedWaterfall) { m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, (m_waterfallHeight * m_fftSize) / scaleDiv, 0); } else { m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, (m_waterfallHeight * m_fftSize) / scaleDiv); } } else { m_timeScale.setRange(Unit::Time, 0, 1); } m_leftMargin = m_timeScale.getScaleWidth(); setPowerScale(m_histogramHeight); m_leftMargin += 2 * M; setFrequencyScale(); m_glWaterfallBoxMatrix.setToIdentity(); m_glWaterfallBoxMatrix.translate( -1.0f + ((float)(2*m_leftMargin) / (float) width()), 1.0f - ((float)(2*waterfallTop) / (float) height()) ); m_glWaterfallBoxMatrix.scale( ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(), (float) (-2*m_waterfallHeight) / (float) height() ); m_glHistogramBoxMatrix.setToIdentity(); m_glHistogramBoxMatrix.translate( -1.0f + ((float)(2*m_leftMargin) / (float) width()), 1.0f - ((float)(2*histogramTop) / (float) height()) ); m_glHistogramBoxMatrix.scale( ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(), (float) (-2*m_histogramHeight) / (float) height() ); m_glHistogramSpectrumMatrix.setToIdentity(); m_glHistogramSpectrumMatrix.translate( -1.0f + ((float)(2*m_leftMargin) / (float) width()), 1.0f - ((float)(2*histogramTop) / (float) height()) ); m_glHistogramSpectrumMatrix.scale( ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / ((float) width() * (float)(m_nbBins)), ((float) 2*m_histogramHeight / height()) / m_powerRange ); // m_frequencyScaleRect = QRect( // 0, // frequencyScaleTop, // width(), // m_frequencyScaleHeight // ); m_glFrequencyScaleBoxMatrix.setToIdentity(); m_glFrequencyScaleBoxMatrix.translate ( -1.0f, 1.0f - ((float) 2*frequencyScaleTop / (float) height()) ); m_glFrequencyScaleBoxMatrix.scale ( 2.0f, (float) -2*m_frequencyScaleHeight / (float) height() ); m_glLeftScaleBoxMatrix.setToIdentity(); m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f); m_glLeftScaleBoxMatrix.scale( (float)(2*(m_leftMargin - 1)) / (float) width(), -2.0f ); } // displays waterfall/3D spectrogram only else if (m_displayWaterfall || m_display3DSpectrogram) { m_histogramHeight = 0; histogramTop = 0; m_bottomMargin = m_frequencyScaleHeight; m_waterfallHeight = height() - m_topMargin - m_frequencyScaleHeight; waterfallTop = m_topMargin; frequencyScaleTop = m_topMargin + m_waterfallHeight + 1; m_timeScale.setSize(m_waterfallHeight); if (m_sampleRate > 0) { float scaleDiv = ((float)m_sampleRate / (float)m_timingRate) * (m_ssbSpectrum ? 2 : 1); float halfFFTSize = m_fftSize / 2; if (halfFFTSize > m_fftOverlap) { scaleDiv *= halfFFTSize / (halfFFTSize - m_fftOverlap); } if (!m_invertedWaterfall) { m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, (m_waterfallHeight * m_fftSize) / scaleDiv, 0); } else { m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, (m_waterfallHeight * m_fftSize) / scaleDiv); } } else { if (!m_invertedWaterfall) { m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 10, 0); } else { m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, 10); } } m_leftMargin = m_timeScale.getScaleWidth(); setPowerScale((height() - m_topMargin - m_bottomMargin) / 2.0); m_leftMargin += 2 * M; setFrequencyScale(); m_glWaterfallBoxMatrix.setToIdentity(); m_glWaterfallBoxMatrix.translate( -1.0f + ((float)(2*m_leftMargin) / (float) width()), 1.0f - ((float)(2*m_topMargin) / (float) height()) ); m_glWaterfallBoxMatrix.scale( ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(), (float) (-2*m_waterfallHeight) / (float) height() ); // m_frequencyScaleRect = QRect( // 0, // frequencyScaleTop, // width(), // m_frequencyScaleHeight // ); m_glFrequencyScaleBoxMatrix.setToIdentity(); m_glFrequencyScaleBoxMatrix.translate ( -1.0f, 1.0f - ((float) 2*frequencyScaleTop / (float) height()) ); m_glFrequencyScaleBoxMatrix.scale ( 2.0f, (float) -2*m_frequencyScaleHeight / (float) height() ); m_glLeftScaleBoxMatrix.setToIdentity(); m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f); m_glLeftScaleBoxMatrix.scale( (float)(2*(m_leftMargin - 1)) / (float) width(), -2.0f ); } // displays histogram only else if (m_displayHistogram || m_displayMaxHold || m_displayCurrent) { m_bottomMargin = m_frequencyScaleHeight; frequencyScaleTop = height() - m_bottomMargin; histogramTop = m_topMargin - 1; m_waterfallHeight = 0; m_histogramHeight = height() - m_topMargin - m_frequencyScaleHeight; m_leftMargin = 0; setPowerScale(m_histogramHeight); m_leftMargin += 2 * M; setFrequencyScale(); m_glHistogramSpectrumMatrix.setToIdentity(); m_glHistogramSpectrumMatrix.translate( -1.0f + ((float)(2*m_leftMargin) / (float) width()), 1.0f - ((float)(2*histogramTop) / (float) height()) ); m_glHistogramSpectrumMatrix.scale( ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / ((float) width() * (float)(m_nbBins)), ((float) 2*(height() - m_topMargin - m_frequencyScaleHeight)) / (height()*m_powerRange) ); m_glHistogramBoxMatrix.setToIdentity(); m_glHistogramBoxMatrix.translate( -1.0f + ((float)(2*m_leftMargin) / (float) width()), 1.0f - ((float)(2*histogramTop) / (float) height()) ); m_glHistogramBoxMatrix.scale( ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(), (float) (-2*(height() - m_topMargin - m_frequencyScaleHeight)) / (float) height() ); // m_frequencyScaleRect = QRect( // 0, // frequencyScaleTop, // width(), // m_frequencyScaleHeight // ); m_glFrequencyScaleBoxMatrix.setToIdentity(); m_glFrequencyScaleBoxMatrix.translate ( -1.0f, 1.0f - ((float) 2*frequencyScaleTop / (float) height()) ); m_glFrequencyScaleBoxMatrix.scale ( 2.0f, (float) -2*m_frequencyScaleHeight / (float) height() ); m_glLeftScaleBoxMatrix.setToIdentity(); m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f); m_glLeftScaleBoxMatrix.scale( (float)(2*(m_leftMargin - 1)) / (float) width(), -2.0f ); } else { m_leftMargin = 2; m_waterfallHeight = 0; } m_glShaderSpectrogram.setScaleX(((width() - m_leftMargin - m_rightMargin) / (float)m_waterfallHeight)); m_glShaderSpectrogram.setScaleZ((m_histogramHeight != 0 ? m_histogramHeight : m_waterfallHeight / 4) / (float)(width() - m_leftMargin - m_rightMargin)); // bounding boxes m_frequencyScaleRect = QRect( 0, frequencyScaleTop, width(), m_frequencyScaleHeight ); if ((m_invertedWaterfall) || (m_waterfallHeight == 0)) { m_histogramRect = QRectF( (float) m_leftMargin / (float) width(), (float) m_topMargin / (float) height(), (float) (width() - m_leftMargin - m_rightMargin) / (float) width(), (float) (m_histogramHeight) / (float) height() ); } else { m_histogramRect = QRectF( (float) m_leftMargin / (float) width(), (float) (waterfallTop + m_waterfallHeight + m_frequencyScaleHeight) / (float) height(), (float) (width() - m_leftMargin - m_rightMargin) / (float) width(), (float) m_histogramHeight / (float) height() ); } if (!m_invertedWaterfall || (m_histogramHeight == 0)) { m_waterfallRect = QRectF( (float) m_leftMargin / (float) width(), (float) m_topMargin / (float) height(), (float) (width() - m_leftMargin - m_rightMargin) / (float) width(), (float) m_waterfallHeight / (float) height() ); } else { m_waterfallRect = QRectF( (float) m_leftMargin / (float) width(), (float) (m_topMargin + m_histogramHeight + m_frequencyScaleHeight) / (float) height(), (float) (width() - m_leftMargin - m_rightMargin) / (float) width(), (float) (m_waterfallHeight) / (float) height() ); } m_glShaderSpectrogram.setAspectRatio((width() - m_leftMargin - m_rightMargin) / (float)m_waterfallHeight); m_3DSpectrogramBottom = m_bottomMargin; if (!m_invertedWaterfall) { m_3DSpectrogramBottom += m_histogramHeight + m_frequencyScaleHeight + 1; } // channel overlays int64_t centerFrequency; int frequencySpan; if (m_frequencyZoomFactor == 1.0f) { centerFrequency = m_centerFrequency; frequencySpan = m_sampleRate; } else { getFrequencyZoom(centerFrequency, frequencySpan); } for (int i = 0; i < m_channelMarkerStates.size(); ++i) { ChannelMarkerState* dv = m_channelMarkerStates[i]; qreal xc, pw, nw, dsbw; ChannelMarker::sidebands_t sidebands = dv->m_channelMarker->getSidebands(); xc = m_centerFrequency + dv->m_channelMarker->getCenterFrequency(); // marker center frequency dsbw = dv->m_channelMarker->getBandwidth(); if (sidebands == ChannelMarker::usb) { nw = dv->m_channelMarker->getLowCutoff(); // negative bandwidth int bw = dv->m_channelMarker->getBandwidth() / 2; pw = (qreal) bw; // positive bandwidth } else if (sidebands == ChannelMarker::lsb) { pw = dv->m_channelMarker->getLowCutoff(); int bw = dv->m_channelMarker->getBandwidth() / 2; nw = (qreal) bw; } else if (sidebands == ChannelMarker::vusb) { nw = -dv->m_channelMarker->getOppositeBandwidth(); // negative bandwidth pw = dv->m_channelMarker->getBandwidth(); // positive bandwidth } else if (sidebands == ChannelMarker::vlsb) { pw = dv->m_channelMarker->getOppositeBandwidth(); // positive bandwidth nw = -dv->m_channelMarker->getBandwidth(); // negative bandwidth } else { pw = dsbw / 2; nw = -pw; } // draw the DSB rectangle QMatrix4x4 glMatrixDsb; glMatrixDsb.setToIdentity(); glMatrixDsb.translate( -1.0f + 2.0f * ((m_leftMargin + m_frequencyScale.getPosFromValue(xc - (dsbw/2))) / (float) width()), 1.0f ); glMatrixDsb.scale( 2.0f * (dsbw / (float) frequencySpan), -2.0f ); dv->m_glMatrixDsbWaterfall = glMatrixDsb; dv->m_glMatrixDsbWaterfall.translate( 0.0f, (float) waterfallTop / (float) height() ); dv->m_glMatrixDsbWaterfall.scale( (float) (width() - m_leftMargin - m_rightMargin) / (float) width(), (float) m_waterfallHeight / (float) height() ); dv->m_glMatrixDsbHistogram = glMatrixDsb; dv->m_glMatrixDsbHistogram.translate( 0.0f, (float) histogramTop / (float) height() ); dv->m_glMatrixDsbHistogram.scale( (float) (width() - m_leftMargin - m_rightMargin) / (float) width(), (float) m_histogramHeight / (float) height() ); dv->m_glMatrixDsbFreqScale = glMatrixDsb; dv->m_glMatrixDsbFreqScale.translate( 0.0f, (float) frequencyScaleTop / (float) height() ); dv->m_glMatrixDsbFreqScale.scale( (float) (width() - m_leftMargin - m_rightMargin) / (float) width(), (float) m_frequencyScaleHeight / (float) height() ); // draw the effective BW rectangle QMatrix4x4 glMatrix; glMatrix.setToIdentity(); glMatrix.translate( -1.0f + 2.0f * ((m_leftMargin + m_frequencyScale.getPosFromValue(xc + nw)) / (float) width()), 1.0f ); glMatrix.scale( 2.0f * ((pw-nw) / (float) frequencySpan), -2.0f ); dv->m_glMatrixWaterfall = glMatrix; dv->m_glMatrixWaterfall.translate( 0.0f, (float) waterfallTop / (float) height() ); dv->m_glMatrixWaterfall.scale( (float) (width() - m_leftMargin - m_rightMargin) / (float) width(), (float) m_waterfallHeight / (float) height() ); dv->m_glMatrixHistogram = glMatrix; dv->m_glMatrixHistogram.translate( 0.0f, (float) histogramTop / (float) height() ); dv->m_glMatrixHistogram.scale( (float) (width() - m_leftMargin - m_rightMargin) / (float) width(), (float) m_histogramHeight / (float) height() ); dv->m_glMatrixFreqScale = glMatrix; dv->m_glMatrixFreqScale.translate( 0.0f, (float) frequencyScaleTop / (float) height() ); dv->m_glMatrixFreqScale.scale( (float) (width() - m_leftMargin - m_rightMargin) / (float) width(), (float) m_frequencyScaleHeight / (float) height() ); /* dv->m_glRect.setRect( m_frequencyScale.getPosFromValue(m_centerFrequency + dv->m_channelMarker->getCenterFrequency() - dv->m_channelMarker->getBandwidth() / 2) / (float)(width() - m_leftMargin - m_rightMargin), 0, (dv->m_channelMarker->getBandwidth() / (float)m_sampleRate), 1); */ if (m_displayHistogram || m_displayMaxHold || m_displayCurrent || m_displayWaterfall) { dv->m_rect.setRect(m_frequencyScale.getPosFromValue(xc) + m_leftMargin - 1, m_topMargin, 5, height() - m_topMargin - m_bottomMargin); } /* if(m_displayHistogram || m_displayMaxHold || m_displayWaterfall) { dv->m_rect.setRect(m_frequencyScale.getPosFromValue(m_centerFrequency + dv->m_channelMarker->getCenterFrequency()) + m_leftMargin - 1, m_topMargin, 5, height() - m_topMargin - m_bottomMargin); } */ } // prepare left scales (time and power) { m_leftMarginPixmap = QPixmap(m_leftMargin - 1, height()); m_leftMarginPixmap.fill(Qt::transparent); { QPainter painter(&m_leftMarginPixmap); painter.setPen(QColor(0xf0, 0xf0, 0xff)); painter.setFont(font()); const ScaleEngine::TickList* tickList; const ScaleEngine::Tick* tick; if (m_displayWaterfall) { tickList = &m_timeScale.getTickList(); for (int i = 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) painter.drawText(QPointF(m_leftMargin - M - tick->textSize, waterfallTop + fm.ascent() + tick->textPos), tick->text); } } } if (m_displayHistogram || m_displayMaxHold || m_displayCurrent) { tickList = &m_powerScale.getTickList(); for (int i = 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) painter.drawText(QPointF(m_leftMargin - M - tick->textSize, histogramTop + m_histogramHeight - tick->textPos - 1), tick->text); } } } } m_glShaderLeftScale.initTexture(m_leftMarginPixmap.toImage()); } // prepare frequency scale if (m_displayWaterfall || m_display3DSpectrogram || m_displayHistogram || m_displayMaxHold || m_displayCurrent) { m_frequencyPixmap = QPixmap(width(), m_frequencyScaleHeight); m_frequencyPixmap.fill(Qt::transparent); { QPainter painter(&m_frequencyPixmap); painter.setPen(Qt::NoPen); painter.setBrush(Qt::black); painter.setBrush(Qt::transparent); painter.drawRect(m_leftMargin, 0, width() - m_leftMargin, m_frequencyScaleHeight); painter.setPen(QColor(0xf0, 0xf0, 0xff)); painter.setFont(font()); const ScaleEngine::TickList* tickList = &m_frequencyScale.getTickList(); const ScaleEngine::Tick* tick; for (int i = 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) painter.drawText(QPointF(m_leftMargin + tick->textPos, fm.height() + fm.ascent() / 2 - 1), tick->text); } } // Frequency overlay on highlighted marker for (int i = 0; i < m_channelMarkerStates.size(); ++i) { ChannelMarkerState* dv = m_channelMarkerStates[i]; if (dv->m_channelMarker->getHighlighted() && (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink) && dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex)) { qreal xc; int shift; //ChannelMarker::sidebands_t sidebands = dv->m_channelMarker->getSidebands(); xc = m_centerFrequency + dv->m_channelMarker->getCenterFrequency(); // marker center frequency QString ftext; switch (dv->m_channelMarker->getFrequencyScaleDisplayType()) { case ChannelMarker::FScaleDisplay_freq: ftext = QString::number((m_centerFrequency + dv->m_channelMarker->getCenterFrequency())/1e6, 'f', 6); break; case ChannelMarker::FScaleDisplay_title: ftext = dv->m_channelMarker->getTitle(); break; case ChannelMarker::FScaleDisplay_addressSend: ftext = dv->m_channelMarker->getDisplayAddressSend(); break; case ChannelMarker::FScaleDisplay_addressReceive: ftext = dv->m_channelMarker->getDisplayAddressReceive(); break; default: ftext = QString::number((m_centerFrequency + dv->m_channelMarker->getCenterFrequency())/1e6, 'f', 6); break; } if (dv->m_channelMarker->getCenterFrequency() < 0) { // left half of scale ftext = " " + ftext; shift = 0; } else { // right half of scale ftext = ftext + " "; shift = - fm.horizontalAdvance(ftext); } painter.drawText(QPointF(m_leftMargin + m_frequencyScale.getPosFromValue(xc) + shift, 2*fm.height() + fm.ascent() / 2 - 1), ftext); } } } m_glShaderFrequencyScale.initTexture(m_frequencyPixmap.toImage()); } // prepare left scale for spectrogram (time) { m_spectrogramTimePixmap = QPixmap(m_leftMargin - 1, fm.ascent() + m_waterfallHeight); m_spectrogramTimePixmap.fill(Qt::transparent); { QPainter painter(&m_spectrogramTimePixmap); painter.setPen(QColor(0xf0, 0xf0, 0xff)); painter.setFont(font()); const ScaleEngine::TickList* tickList; const ScaleEngine::Tick* tick; if (m_display3DSpectrogram) { tickList = &m_timeScale.getTickList(); for (int i = 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) painter.drawText(QPointF(m_leftMargin - M - tick->textSize, fm.height() + tick->textPos), tick->text); } } } } m_glShaderSpectrogramTimeScale.initTexture(m_spectrogramTimePixmap.toImage()); } // prepare vertical scale for spectrogram (power) { int h = m_histogramHeight != 0 ? m_histogramHeight : m_waterfallHeight / 4; m_spectrogramPowerPixmap = QPixmap(m_leftMargin - 1, m_topMargin + h); m_spectrogramPowerPixmap.fill(Qt::transparent); { QPainter painter(&m_spectrogramPowerPixmap); painter.setPen(QColor(0xf0, 0xf0, 0xff)); painter.setFont(font()); const ScaleEngine::TickList* tickList; const ScaleEngine::Tick* tick; if (m_display3DSpectrogram) { tickList = &m_powerScale.getTickList(); for (int i = 0; i < tickList->count(); i++) { tick = &(*tickList)[i]; if (tick->major) { if (tick->textSize > 0) painter.drawText(QPointF(m_leftMargin - M - tick->textSize, m_topMargin + h - tick->textPos - 1), tick->text); } } } } m_glShaderSpectrogramPowerScale.initTexture(m_spectrogramPowerPixmap.toImage()); } // Top info line m_glInfoBoxMatrix.setToIdentity(); m_glInfoBoxMatrix.translate ( -1.0f, 1.0f ); m_glInfoBoxMatrix.scale ( 2.0f, (float) -2*m_infoHeight / (float) height() ); m_infoRect = QRect( 0, 0, width(), m_infoHeight ); QString infoText; formatTextInfo(infoText); m_infoPixmap = QPixmap(width(), m_infoHeight); m_infoPixmap.fill(Qt::transparent); { QPainter painter(&m_infoPixmap); painter.setPen(Qt::NoPen); painter.setBrush(Qt::black); painter.setBrush(Qt::transparent); painter.drawRect(m_leftMargin, 0, width() - m_leftMargin, m_infoHeight); painter.setPen(QColor(0xf0, 0xf0, 0xff)); painter.setFont(font()); painter.drawText(QPointF(m_leftMargin, fm.height() + fm.ascent() / 2 - 2), infoText); } m_glShaderInfo.initTexture(m_infoPixmap.toImage()); // Peak details in top info line QString minFrequencyStr = displayFull(m_centerFrequency - m_sampleRate/2); // This can be wider if negative, while max is positive QString maxFrequencyStr = displayFull(m_centerFrequency + m_sampleRate/2); m_peakFrequencyMaxStr = minFrequencyStr.size() > maxFrequencyStr.size() ? minFrequencyStr : maxFrequencyStr; m_peakFrequencyMaxStr = m_peakFrequencyMaxStr.append("Hz"); m_peakPowerMaxStr = m_linear ? "8.000e-10" : "-100.0"; m_peakPowerUnits = m_linear ? "" : "dB"; bool waterfallFFTSizeChanged = true; if (m_waterfallBuffer) { waterfallFFTSizeChanged = m_waterfallBuffer->width() != m_nbBins; } bool windowSizeChanged = m_waterfallTextureHeight != m_waterfallHeight; if (waterfallFFTSizeChanged || windowSizeChanged) { if (m_waterfallBuffer) { delete m_waterfallBuffer; } m_waterfallBuffer = new QImage(m_nbBins, m_waterfallHeight, QImage::Format_ARGB32); m_waterfallBuffer->fill(qRgb(0x00, 0x00, 0x00)); if (m_waterfallHeight > 0) { m_glShaderWaterfall.initTexture(*m_waterfallBuffer); } m_waterfallBufferPos = 0; if (m_3DSpectrogramBuffer) { delete m_3DSpectrogramBuffer; } m_3DSpectrogramBuffer = new QImage(m_nbBins, m_waterfallHeight, QImage::Format_Grayscale8); m_3DSpectrogramBuffer->fill(qRgb(0x00, 0x00, 0x00)); if (m_waterfallHeight > 0) { m_glShaderSpectrogram.initTexture(*m_3DSpectrogramBuffer); } m_3DSpectrogramBufferPos = 0; m_waterfallTextureHeight = m_waterfallHeight; m_waterfallTexturePos = 0; m_3DSpectrogramTextureHeight = m_waterfallHeight; m_3DSpectrogramTexturePos = 0; } m_glShaderSpectrogram.initColorMapTexture(m_colorMapName); m_glShaderColorMap.initColorMapTexture(m_colorMapName); m_colorMap = ColorMap::getColorMap(m_colorMapName); // Why only 240 entries in the palette? for (int i = 0; i <= 239; i++) { ((quint8*)&m_waterfallPalette[i])[0] = (quint8)(m_colorMap[i*3] * 255.0); ((quint8*)&m_waterfallPalette[i])[1] = (quint8)(m_colorMap[i*3+1] * 255.0); ((quint8*)&m_waterfallPalette[i])[2] = (quint8)(m_colorMap[i*3+2] * 255.0); ((quint8*)&m_waterfallPalette[i])[3] = 255; } bool histogramFFTSizeChanged = true; if (m_histogramBuffer) { histogramFFTSizeChanged = m_histogramBuffer->width() != m_nbBins; } if (histogramFFTSizeChanged) { if (m_histogramBuffer) { delete m_histogramBuffer; } m_histogramBuffer = new QImage(m_nbBins, 100, QImage::Format_RGB32); m_histogramBuffer->fill(qRgb(0x00, 0x00, 0x00)); m_glShaderHistogram.initTexture(*m_histogramBuffer, QOpenGLTexture::ClampToEdge); if (m_histogram) { delete[] m_histogram; } m_histogram = new quint8[100 * m_nbBins]; memset(m_histogram, 0x00, 100 * m_nbBins); m_q3FFT.allocate(2*(m_nbBins+1)); m_q3ColorMap.allocate(4*(m_nbBins+1)); std::fill(m_q3ColorMap.m_array, m_q3ColorMap.m_array+4*(m_nbBins+1), 0.0f); } m_q3TickTime.allocate(4*m_timeScale.getTickList().count()); m_q3TickFrequency.allocate(4*m_frequencyScale.getTickList().count()); m_q3TickPower.allocate(6*m_powerScale.getTickList().count()); // 6 as we need 3d points for 3D spectrogram updateHistogramMarkers(); updateWaterfallMarkers(); updateSortedAnnotationMarkers(); } // applyChanges void GLSpectrumView::updateHistogramMarkers() { int64_t centerFrequency; int frequencySpan; getFrequencyZoom(centerFrequency, frequencySpan); int effFftSize = m_fftSize * ((float) frequencySpan / (float) m_sampleRate); for (int i = 0; i < m_histogramMarkers.size(); i++) { float powerI = m_linear ? m_histogramMarkers.at(i).m_power * (m_useCalibration ? m_calibrationGain : 1.0f) : CalcDb::dbPower(m_histogramMarkers.at(i).m_power) + (m_useCalibration ? m_calibrationShiftdB : 0.0f); m_histogramMarkers[i].m_point.rx() = (m_histogramMarkers[i].m_frequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange(); m_histogramMarkers[i].m_point.ry() = (m_powerScale.getRangeMax() - powerI) / m_powerScale.getRange(); // m_histogramMarkers[i].m_fftBin = // (((m_histogramMarkers[i].m_frequency - m_centerFrequency) / (float) m_sampleRate) + 0.5) * m_fftSize; m_histogramMarkers[i].m_fftBin = (((m_histogramMarkers[i].m_frequency - centerFrequency) / (float) frequencySpan) + 0.5) * effFftSize; m_histogramMarkers[i].m_point.rx() = m_histogramMarkers[i].m_point.rx() < 0 ? 0 : m_histogramMarkers[i].m_point.rx() > 1 ? 1 : m_histogramMarkers[i].m_point.rx(); m_histogramMarkers[i].m_point.ry() = m_histogramMarkers[i].m_point.ry() < 0 ? 0 : m_histogramMarkers[i].m_point.ry() > 1 ? 1 : m_histogramMarkers[i].m_point.ry(); m_histogramMarkers[i].m_fftBin = m_histogramMarkers[i].m_fftBin < 0 ? 0 : m_histogramMarkers[i].m_fftBin > m_fftSize - 1 ? m_fftSize - 1 : m_histogramMarkers[i].m_fftBin; m_histogramMarkers[i].m_frequencyStr = displayScaled( m_histogramMarkers[i].m_frequency, 'f', getPrecision((m_centerFrequency*1000)/m_sampleRate), false); m_histogramMarkers[i].m_powerStr = displayPower( powerI, m_linear ? 'e' : 'f', m_linear ? 3 : 1); if (i > 0) { int64_t deltaFrequency = m_histogramMarkers.at(i).m_frequency - m_histogramMarkers.at(0).m_frequency; m_histogramMarkers[i].m_deltaFrequencyStr = displayScaled( deltaFrequency, 'f', getPrecision(deltaFrequency/m_sampleRate), true); float power0 = m_linear ? m_histogramMarkers.at(0).m_power * (m_useCalibration ? m_calibrationGain : 1.0f) : CalcDb::dbPower(m_histogramMarkers.at(0).m_power) + (m_useCalibration ? m_calibrationShiftdB : 0.0f); m_histogramMarkers[i].m_deltaPowerStr = displayPower( powerI - power0, m_linear ? 'e' : 'f', m_linear ? 3 : 1); } } } void GLSpectrumView::updateHistogramPeaks() { int j = 0; for (int i = 0; i < m_histogramMarkers.size(); i++) { if (j >= (int) m_peakFinder.getPeaks().size()) { break; } int fftBin = m_peakFinder.getPeaks()[j].second; Real power = m_peakFinder.getPeaks()[j].first; // qDebug("GLSpectrumView::updateHistogramPeaks: %d %d %f", j, fftBin, power); if ((m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower) || ((m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax) && (m_histogramMarkers.at(i).m_holdReset || (power > m_histogramMarkers.at(i).m_powerMax)))) { float binSize = m_frequencyScale.getRange() / m_nbBins; m_histogramMarkers[i].m_fftBin = fftBin; m_histogramMarkers[i].m_frequency = m_frequencyScale.getRangeMin() + binSize*fftBin; m_histogramMarkers[i].m_point.rx() = binSize*fftBin / m_frequencyScale.getRange(); if (i == 0) { m_histogramMarkers[i].m_frequencyStr = displayScaled( m_histogramMarkers[i].m_frequency, 'f', getPrecision((m_centerFrequency*1000)/m_sampleRate), false ); } else { int64_t deltaFrequency = m_histogramMarkers.at(i).m_frequency - m_histogramMarkers.at(0).m_frequency; m_histogramMarkers[i].m_deltaFrequencyStr = displayScaled( deltaFrequency, 'f', getPrecision(deltaFrequency/m_sampleRate), true ); } } else { continue; } j++; } } void GLSpectrumView::updateWaterfallMarkers() { for (int i = 0; i < m_waterfallMarkers.size(); i++) { m_waterfallMarkers[i].m_point.rx() = (m_waterfallMarkers[i].m_frequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange(); m_waterfallMarkers[i].m_point.ry() = (m_waterfallMarkers[i].m_time - m_timeScale.getRangeMin()) / m_timeScale.getRange(); m_waterfallMarkers[i].m_point.rx() = m_waterfallMarkers[i].m_point.rx() < 0 ? 0 : m_waterfallMarkers[i].m_point.rx() > 1 ? 1 : m_waterfallMarkers[i].m_point.rx(); m_waterfallMarkers[i].m_point.ry() = m_waterfallMarkers[i].m_point.ry() < 0 ? 0 : m_waterfallMarkers[i].m_point.ry() > 1 ? 1 : m_waterfallMarkers[i].m_point.ry(); m_waterfallMarkers[i].m_frequencyStr = displayScaled( m_waterfallMarkers[i].m_frequency, 'f', getPrecision((m_centerFrequency*1000)/m_sampleRate), false); m_waterfallMarkers[i].m_timeStr = displayScaledF( m_waterfallMarkers[i].m_time, 'f', 3, true); if (i > 0) { int64_t deltaFrequency = m_waterfallMarkers.at(i).m_frequency - m_waterfallMarkers.at(0).m_frequency; m_waterfallMarkers.back().m_deltaFrequencyStr = displayScaled( deltaFrequency, 'f', getPrecision(deltaFrequency/m_sampleRate), true); m_waterfallMarkers.back().m_deltaTimeStr = displayScaledF( m_waterfallMarkers.at(i).m_time - m_waterfallMarkers.at(0).m_time, 'f', 3, true); } } } void GLSpectrumView::updateAnnotationMarkers() { if (!(m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations)) { return; } m_sortedAnnotationMarkers.clear(); for (auto &marker : m_annotationMarkers) { m_sortedAnnotationMarkers.push_back(&marker); } std::sort(m_sortedAnnotationMarkers.begin(), m_sortedAnnotationMarkers.end(), annotationDisplayLessThan); updateSortedAnnotationMarkers(); } void GLSpectrumView::updateSortedAnnotationMarkers() { if (!(m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations)) { return; } m_visibleAnnotationMarkers.clear(); for (auto &marker : m_sortedAnnotationMarkers) { float startPos = (marker->m_startFrequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange(); float stopPos = ((marker->m_startFrequency + marker->m_bandwidth) - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange(); if ((startPos > 1.0f) || (stopPos < 0.0f)) // out of range { continue; } m_visibleAnnotationMarkers.push_back(marker); m_visibleAnnotationMarkers.back()->m_startPos = startPos < 0.0f ? 0.0f : startPos; m_visibleAnnotationMarkers.back()->m_stopPos = stopPos > 1.0f ? 1.0f : stopPos; } } void GLSpectrumView::updateMarkersDisplay() { if (m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations) { updateAnnotationMarkers(); } } void GLSpectrumView::updateCalibrationPoints() { if (m_calibrationPoints.size() == 0) { m_calibrationGain = 1.0; m_calibrationShiftdB = 0.0; } else if (m_calibrationPoints.size() == 1) { m_calibrationGain = m_calibrationPoints.first().m_powerCalibratedReference / m_calibrationPoints.first().m_powerRelativeReference; m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain); } else { QList sortedCalibrationPoints = m_calibrationPoints; std::sort(sortedCalibrationPoints.begin(), sortedCalibrationPoints.end(), calibrationPointsLessThan); if (m_centerFrequency <= sortedCalibrationPoints.first().m_frequency) { m_calibrationGain = m_calibrationPoints.first().m_powerCalibratedReference / m_calibrationPoints.first().m_powerRelativeReference; m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain); } else if (m_centerFrequency >= sortedCalibrationPoints.last().m_frequency) { m_calibrationGain = m_calibrationPoints.last().m_powerCalibratedReference / m_calibrationPoints.last().m_powerRelativeReference; m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain); } else { int lowIndex = 0; int highIndex = sortedCalibrationPoints.size() - 1; for (int index = 0; index < sortedCalibrationPoints.size(); index++) { if (m_centerFrequency < sortedCalibrationPoints[index].m_frequency) { highIndex = index; break; } else { lowIndex = index; } } // frequency interpolation is always linear double deltaFrequency = sortedCalibrationPoints[highIndex].m_frequency - sortedCalibrationPoints[lowIndex].m_frequency; double shiftFrequency = m_centerFrequency - sortedCalibrationPoints[lowIndex].m_frequency; double interpolationRatio = shiftFrequency / deltaFrequency; // calculate low and high gains in linear mode double gainLow = sortedCalibrationPoints[lowIndex].m_powerCalibratedReference / sortedCalibrationPoints[lowIndex].m_powerRelativeReference; double gainHigh = sortedCalibrationPoints[highIndex].m_powerCalibratedReference / sortedCalibrationPoints[highIndex].m_powerRelativeReference; // power interpolation depends on interpolation options if (m_calibrationInterpMode == SpectrumSettings::CalibInterpLinear) { m_calibrationGain = gainLow + interpolationRatio*(gainHigh - gainLow); // linear driven m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain); } else if (m_calibrationInterpMode == SpectrumSettings::CalibInterpLog) { m_calibrationShiftdB = CalcDb::dbPower(gainLow) + interpolationRatio*(CalcDb::dbPower(gainHigh) - CalcDb::dbPower(gainLow)); // log driven m_calibrationGain = CalcDb::powerFromdB(m_calibrationShiftdB); } } } updateHistogramMarkers(); if (m_messageQueueToGUI && m_useCalibration) { m_messageQueueToGUI->push(new MsgReportCalibrationShift(m_calibrationShiftdB)); } m_changesPending = true; } void GLSpectrumView::mouseMoveEvent(QMouseEvent* event) { if (m_rotate3DSpectrogram) { // Rotate 3D Spectrogram QPointF delta = m_mousePrevLocalPos - event->localPos(); m_mousePrevLocalPos = event->localPos(); m_glShaderSpectrogram.rotateZ(-delta.x()/2.0f); m_glShaderSpectrogram.rotateX(-delta.y()/2.0f); repaint(); // Force repaint in case acquisition is stopped return; } if (m_pan3DSpectrogram) { // Pan 3D Spectrogram QPointF delta = m_mousePrevLocalPos - event->localPos(); m_mousePrevLocalPos = event->localPos(); m_glShaderSpectrogram.translateX(-delta.x()/2.0f/500.0f); m_glShaderSpectrogram.translateY(delta.y()/2.0f/500.0f); repaint(); // Force repaint in case acquisition is stopped return; } if (m_scaleZ3DSpectrogram) { // Scale 3D Spectrogram in Z dimension QPointF delta = m_mousePrevLocalPos - event->localPos(); m_mousePrevLocalPos = event->localPos(); m_glShaderSpectrogram.userScaleZ(1.0+(float)delta.y()/20.0); repaint(); // Force repaint in case acquisition is stopped return; } if (m_scrollFrequency) { // Request containing widget to adjust center frequency // Not all containers will support this - mainly for MainSpectrumGUI // This can be a little slow on some SDRs, so we use delta from where // button was originally pressed rather than do it incrementally QPointF delta = m_mousePrevLocalPos - event->localPos(); float histogramWidth = width() - m_leftMargin - m_rightMargin; qint64 frequency = (qint64)(m_scrollStartCenterFreq + delta.x()/histogramWidth * m_frequencyScale.getRange()); emit requestCenterFrequency(frequency); return; } if (m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent) { if (m_frequencyScaleRect.contains(event->pos())) { if (m_cursorState == CSNormal) { setCursor(Qt::SizeVerCursor); m_cursorState = CSSplitter; return; } } else { if (m_cursorState == CSSplitter) { setCursor(Qt::ArrowCursor); m_cursorState = CSNormal; return; } } } if (m_cursorState == CSSplitterMoving) { QMutexLocker mutexLocker(&m_mutex); float newShare; if (!m_invertedWaterfall) { newShare = (float) (event->y() - m_frequencyScaleRect.height()) / (float) height(); } else { newShare = 1.0 - (float) (event->y() + m_frequencyScaleRect.height()) / (float) height(); } if (newShare < 0.1) { newShare = 0.1f; } else if (newShare > 0.8) { newShare = 0.8f; } m_waterfallShare = newShare; m_changesPending = true; if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportWaterfallShare(m_waterfallShare)); } update(); return; } else if (m_cursorState == CSChannelMoving) { // Determine if user is trying to move the channel outside of the current frequency range // and if so, request an adjustment to the center frequency Real freqAbs = m_frequencyScale.getValueFromPos(event->x() - m_leftMarginPixmap.width() - 1); Real freqMin = m_centerFrequency - m_sampleRate / 2.0f; Real freqMax = m_centerFrequency + m_sampleRate / 2.0f; if (freqAbs < freqMin) { emit requestCenterFrequency(m_centerFrequency - (freqMin - freqAbs)); } else if (freqAbs > freqMax) { emit requestCenterFrequency(m_centerFrequency + (freqAbs - freqMax)); } Real freq = freqAbs - m_centerFrequency; if (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getMovable() && (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink) && m_channelMarkerStates[m_cursorChannel]->m_channelMarker->streamIndexApplies(m_displayStreamIndex)) { m_channelMarkerStates[m_cursorChannel]->m_channelMarker->setCenterFrequencyByCursor(freq); channelMarkerChanged(); } } if (m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent) { for (int i = 0; i < m_channelMarkerStates.size(); ++i) { if ((m_channelMarkerStates[i]->m_channelMarker->getSourceOrSinkStream() != m_displaySourceOrSink) || !m_channelMarkerStates[i]->m_channelMarker->streamIndexApplies(m_displayStreamIndex)) { continue; } if (m_channelMarkerStates[i]->m_rect.contains(event->pos())) { if (m_cursorState == CSNormal) { setCursor(Qt::SizeHorCursor); m_cursorState = CSChannel; m_cursorChannel = i; m_channelMarkerStates[i]->m_channelMarker->setHighlightedByCursor(true); channelMarkerChanged(); return; } else if (m_cursorState == CSChannel) { return; } } else if (m_channelMarkerStates[i]->m_channelMarker->getHighlighted()) { m_channelMarkerStates[i]->m_channelMarker->setHighlightedByCursor(false); channelMarkerChanged(); } } } if (m_cursorState == CSChannel) { setCursor(Qt::ArrowCursor); m_cursorState = CSNormal; return; } event->setAccepted(false); } void GLSpectrumView::mousePressEvent(QMouseEvent* event) { const QPointF& ep = event->localPos(); if ((event->button() == Qt::MiddleButton) && (m_displayMaxHold || m_displayCurrent || m_displayHistogram) && pointInHistogram(ep)) { m_scrollFrequency = true; m_scrollStartCenterFreq = m_centerFrequency; m_mousePrevLocalPos = ep; return; } if ((event->button() == Qt::MiddleButton) && m_display3DSpectrogram && pointInWaterfallOrSpectrogram(ep)) { m_pan3DSpectrogram = true; m_mousePrevLocalPos = ep; return; } if ((event->button() == Qt::RightButton) && m_display3DSpectrogram && pointInWaterfallOrSpectrogram(ep)) { m_scaleZ3DSpectrogram = true; m_mousePrevLocalPos = ep; return; } if (event->button() == Qt::RightButton) { QPointF pHis = ep; bool doUpdate = false; pHis.rx() = (ep.x()/width() - m_histogramRect.left()) / m_histogramRect.width(); pHis.ry() = (ep.y()/height() - m_histogramRect.top()) / m_histogramRect.height(); if (event->modifiers() & Qt::ShiftModifier) { if ((pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1)) { m_histogramMarkers.clear(); doUpdate = true; if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange()); } } } else { if ((m_histogramMarkers.size() > 0) && (pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1)) { m_histogramMarkers.pop_back(); doUpdate = true; if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange()); } } } QPointF pWat = ep; pWat.rx() = (ep.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width(); pWat.ry() = (ep.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height(); if (event->modifiers() & Qt::ShiftModifier) { if ((pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1)) { m_waterfallMarkers.clear(); doUpdate = true; if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange()); } } } else { if ((m_waterfallMarkers.size() > 0) && (pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1)) { m_waterfallMarkers.pop_back(); doUpdate = true; if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange()); } } } if (doUpdate) { update(); } } else if (event->button() == Qt::LeftButton) { if (event->modifiers() & Qt::ShiftModifier) { QPointF pHis = ep; bool doUpdate = false; pHis.rx() = (ep.x()/width() - m_histogramRect.left()) / m_histogramRect.width(); pHis.ry() = (ep.y()/height() - m_histogramRect.top()) / m_histogramRect.height(); float frequency = m_frequencyScale.getRangeMin() + pHis.x()*m_frequencyScale.getRange(); float powerVal = m_powerScale.getRangeMax() - pHis.y()*m_powerScale.getRange(); float power = m_linear ? powerVal : CalcDb::powerFromdB(powerVal); int fftBin = (((frequency - m_centerFrequency) / (float) m_sampleRate) * m_fftSize) + (m_fftSize / 2); if ((pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1)) { if (m_histogramMarkers.size() < SpectrumHistogramMarker::m_maxNbOfMarkers) { m_histogramMarkers.push_back(SpectrumHistogramMarker()); m_histogramMarkers.back().m_point = pHis; m_histogramMarkers.back().m_frequency = frequency; m_histogramMarkers.back().m_fftBin = fftBin; m_histogramMarkers.back().m_frequencyStr = displayScaled( frequency, 'f', getPrecision((m_centerFrequency*1000)/m_sampleRate), false); m_histogramMarkers.back().m_power = power; m_histogramMarkers.back().m_powerStr = displayPower( powerVal, m_linear ? 'e' : 'f', m_linear ? 3 : 1); if (m_histogramMarkers.size() > 1) { int64_t deltaFrequency = frequency - m_histogramMarkers.at(0).m_frequency; m_histogramMarkers.back().m_deltaFrequencyStr = displayScaled( deltaFrequency, 'f', getPrecision(deltaFrequency/m_sampleRate), true); float power0 = m_linear ? m_histogramMarkers.at(0).m_power : CalcDb::dbPower(m_histogramMarkers.at(0).m_power); m_histogramMarkers.back().m_deltaPowerStr = displayPower( power - power0, m_linear ? 'e' : 'f', m_linear ? 3 : 1); } if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange()); } doUpdate = true; } } QPointF pWat = ep; pWat.rx() = (ep.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width(); pWat.ry() = (ep.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height(); frequency = m_frequencyScale.getRangeMin() + pWat.x()*m_frequencyScale.getRange(); float time = m_timeScale.getRangeMin() + pWat.y()*m_timeScale.getRange(); if ((pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1) && !m_display3DSpectrogram) { if (m_waterfallMarkers.size() < SpectrumWaterfallMarker::m_maxNbOfMarkers) { m_waterfallMarkers.push_back(SpectrumWaterfallMarker()); m_waterfallMarkers.back().m_point = pWat; m_waterfallMarkers.back().m_frequency = frequency; m_waterfallMarkers.back().m_frequencyStr = displayScaled( frequency, 'f', getPrecision((m_centerFrequency*1000)/m_sampleRate), false); m_waterfallMarkers.back().m_time = time; m_waterfallMarkers.back().m_timeStr = displayScaledF( time, 'f', 3, true); if (m_waterfallMarkers.size() > 1) { int64_t deltaFrequency = frequency - m_waterfallMarkers.at(0).m_frequency; m_waterfallMarkers.back().m_deltaFrequencyStr = displayScaled( deltaFrequency, 'f', getPrecision(deltaFrequency/m_sampleRate), true); m_waterfallMarkers.back().m_deltaTimeStr = displayScaledF( time - m_waterfallMarkers.at(0).m_time, 'f', 3, true); } if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange()); } doUpdate = true; } } if (doUpdate) { update(); } } else if (event->modifiers() & Qt::AltModifier) { frequencyPan(event); } else if (m_display3DSpectrogram) { // Detect click and drag to rotate 3D spectrogram if (pointInWaterfallOrSpectrogram(ep)) { m_rotate3DSpectrogram = true; m_mousePrevLocalPos = ep; return; } } if ((m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations) && (ep.y() <= m_histogramRect.top()*height() + m_annotationMarkerHeight + 2.0f)) { QPointF pHis; pHis.rx() = (ep.x()/width() - m_histogramRect.left()) / m_histogramRect.width(); qint64 selectedFrequency = m_frequencyScale.getRangeMin() + pHis.x() * m_frequencyScale.getRange(); bool selected = false; for (auto iMarker = m_visibleAnnotationMarkers.rbegin(); iMarker != m_visibleAnnotationMarkers.rend(); ++iMarker) { if ((*iMarker)->m_show == SpectrumAnnotationMarker::Hidden) { continue; } qint64 stopFrequency = (*iMarker)->m_startFrequency + ((*iMarker)->m_bandwidth == 0 ? m_frequencyScale.getRange()*0.01f : (*iMarker)->m_bandwidth); if (((*iMarker)->m_startFrequency < selectedFrequency) && (selectedFrequency <= stopFrequency) && !selected) { switch ((*iMarker)->m_show) { case SpectrumAnnotationMarker::ShowTop: (*iMarker)->m_show = SpectrumAnnotationMarker::ShowText; break; case SpectrumAnnotationMarker::ShowText: (*iMarker)->m_show = SpectrumAnnotationMarker::ShowFull; break; case SpectrumAnnotationMarker::ShowFull: (*iMarker)->m_show = SpectrumAnnotationMarker::ShowTop; break; case SpectrumAnnotationMarker::Hidden: break; } selected = true; } } } if (m_cursorState == CSSplitter) { grabMouse(); m_cursorState = CSSplitterMoving; return; } else if (m_cursorState == CSChannel) { grabMouse(); m_cursorState = CSChannelMoving; return; } else if ((m_cursorState == CSNormal) && (m_channelMarkerStates.size() == 1) && !(event->modifiers() & Qt::ShiftModifier) && !(event->modifiers() & Qt::AltModifier) && !(event->modifiers() & Qt::ControlModifier) && (ep.y() > m_histogramRect.top()*height() + m_annotationMarkerHeight + 2.0f)) // out of annotation selection zone { grabMouse(); setCursor(Qt::SizeHorCursor); m_cursorState = CSChannelMoving; m_cursorChannel = 0; Real freq = m_frequencyScale.getValueFromPos(event->x() - m_leftMarginPixmap.width() - 1) - m_centerFrequency; if (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getMovable() && (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink) && m_channelMarkerStates[m_cursorChannel]->m_channelMarker->streamIndexApplies(m_displayStreamIndex)) { m_channelMarkerStates[m_cursorChannel]->m_channelMarker->setCenterFrequencyByCursor(freq); channelMarkerChanged(); } return; } } } void GLSpectrumView::mouseReleaseEvent(QMouseEvent*) { m_scrollFrequency = false; m_pan3DSpectrogram = false; m_rotate3DSpectrogram = false; m_scaleZ3DSpectrogram = false; if (m_cursorState == CSSplitterMoving) { releaseMouse(); m_cursorState = CSSplitter; } else if (m_cursorState == CSChannelMoving) { releaseMouse(); m_cursorState = CSChannel; } } void GLSpectrumView::wheelEvent(QWheelEvent *event) { #if QT_VERSION >= QT_VERSION_CHECK(5, 14, 0) const QPointF& ep = event->position(); #else const QPointF& ep = event->pos(); #endif if (m_display3DSpectrogram && pointInWaterfallOrSpectrogram(ep)) { // Scale 3D spectrogram when mouse wheel moved // Some mice use delta in steps of 120 for 15 degrees // for one step of mouse wheel // Other mice/trackpads use smaller values int delta = event->angleDelta().y(); if (delta != 0) { m_glShaderSpectrogram.verticalAngle(-5.0*delta/120.0); } repaint(); // Force repaint in case acquisition is stopped } else { if (event->modifiers() & Qt::ShiftModifier) { channelMarkerMove(event, 100); } else if (event->modifiers() & Qt::ControlModifier) { channelMarkerMove(event, 10); } else { channelMarkerMove(event, 1); } } } void GLSpectrumView::zoom(QWheelEvent *event) { #if QT_VERSION >= QT_VERSION_CHECK(5, 14, 0) const QPointF& p = event->position(); #else const QPointF& p = event->pos(); #endif float pwx = (p.x() - m_leftMargin) / (width() - m_leftMargin - m_rightMargin); // x position in window if ((pwx >= 0.0f) && (pwx <= 1.0f)) { // When we zoom, we want the frequency under the cursor to remain the same // Determine frequency at cursor position float zoomFreq = m_frequencyScale.getRangeMin() + pwx*m_frequencyScale.getRange(); // Calculate current centre frequency float currentCF = (m_frequencyZoomFactor == 1) ? m_centerFrequency : ((m_frequencyZoomPos - 0.5) * m_sampleRate + m_centerFrequency); // Calculate difference from frequency under cursor to centre frequency float freqDiff = (currentCF - zoomFreq); // Calculate what that difference would be if there was no zoom float freqDiffZoom1 = freqDiff * m_frequencyZoomFactor; if (event->angleDelta().y() > 0) // zoom in { if (m_frequencyZoomFactor < m_maxFrequencyZoom) { m_frequencyZoomFactor += 0.5f; } else { return; } } else { if (m_frequencyZoomFactor > 1.0f) { m_frequencyZoomFactor -= 0.5f; } else { return; } } // Calculate what frequency difference should be at new zoom float zoomedFreqDiff = freqDiffZoom1 / m_frequencyZoomFactor; // Then calculate what the center frequency should be float zoomedCF = zoomFreq + zoomedFreqDiff; // Calculate zoom position which will set the desired center frequency float zoomPos = (zoomedCF - m_centerFrequency) / m_sampleRate + 0.5; zoomPos = std::max(0.0f, zoomPos); zoomPos = std::min(1.0f, zoomPos); frequencyZoom(zoomPos); } else { float pwyh, pwyw; if (m_invertedWaterfall) // histo on top { pwyh = (p.y() - m_topMargin) / m_histogramHeight; pwyw = (p.y() - m_topMargin - m_histogramHeight - m_frequencyScaleHeight) / m_waterfallHeight; } else // waterfall on top { pwyw = (p.y() - m_topMargin) / m_waterfallHeight; pwyh = (p.y() - m_topMargin - m_waterfallHeight - m_frequencyScaleHeight) / m_histogramHeight; } //qDebug("GLSpectrumView::zoom: pwyh: %f pwyw: %f", pwyh, pwyw); if ((pwyw >= 0.0f) && (pwyw <= 1.0f)) { timeZoom(event->angleDelta().y() > 0); } if ((pwyh >= 0.0f) && (pwyh <= 1.0f) && !m_linear) { powerZoom(pwyh, event->angleDelta().y() > 0); } } } void GLSpectrumView::frequencyZoom(float zoomPos) { m_frequencyZoomPos = zoomPos; updateFFTLimits(); } void GLSpectrumView::frequencyPan(QMouseEvent *event) { if (m_frequencyZoomFactor == 1.0f) { return; } const QPointF& p = event->pos(); float pw = (p.x() - m_leftMargin) / (width() - m_leftMargin - m_rightMargin); // position in window pw = pw < 0.0f ? 0.0f : pw > 1.0f ? 1.0 : pw; float dw = pw - 0.5f; m_frequencyZoomPos += dw * (1.0f / m_frequencyZoomFactor); float lim = 0.5f / m_frequencyZoomFactor; m_frequencyZoomPos = m_frequencyZoomPos < lim ? lim : m_frequencyZoomPos > 1 - lim ? 1 - lim : m_frequencyZoomPos; qDebug("GLSpectrumView::frequencyPan: pw: %f p: %f", pw, m_frequencyZoomPos); updateFFTLimits(); } void GLSpectrumView::timeZoom(bool zoomInElseOut) { if ((m_fftOverlap == 0) && !zoomInElseOut) { return; } if (zoomInElseOut && (m_fftOverlap == m_fftSize/2 - 1)) { return; } m_fftOverlap = m_fftOverlap + (zoomInElseOut ? 1 : -1); m_changesPending = true; if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportFFTOverlap(m_fftOverlap)); } } void GLSpectrumView::powerZoom(float pw, bool zoomInElseOut) { m_powerRange = m_powerRange + (zoomInElseOut ? -2 : 2); if (pw > 2.0/3.0) { // bottom m_referenceLevel = m_referenceLevel + (zoomInElseOut ? -2 : 2); } else if (pw > 1.0/3.0) { // middle m_referenceLevel = m_referenceLevel + (zoomInElseOut ? -1 : 1); } // top m_powerRange = m_powerRange < 1 ? 1 : m_powerRange > 100 ? 100 : m_powerRange; m_referenceLevel = m_referenceLevel < -110 ? -110 : m_referenceLevel > 0 ? 0 : m_referenceLevel; m_changesPending = true; if (m_messageQueueToGUI) { m_messageQueueToGUI->push(new MsgReportPowerScale(m_referenceLevel, m_powerRange)); } } void GLSpectrumView::resetFrequencyZoom() { m_frequencyZoomFactor = 1.0f; m_frequencyZoomPos = 0.5f; updateFFTLimits(); } void GLSpectrumView::updateFFTLimits() { if (!m_spectrumVis) { return; } SpectrumVis::MsgFrequencyZooming *msg = SpectrumVis::MsgFrequencyZooming::create( m_frequencyZoomFactor, m_frequencyZoomPos ); m_spectrumVis->getInputMessageQueue()->push(msg); m_changesPending = true; } void GLSpectrumView::setFrequencyScale() { int frequencySpan; int64_t centerFrequency; getFrequencyZoom(centerFrequency, frequencySpan); m_frequencyScale.setSize(width() - m_leftMargin - m_rightMargin); m_frequencyScale.setRange(Unit::Frequency, centerFrequency - frequencySpan / 2.0, centerFrequency + frequencySpan / 2.0); m_frequencyScale.setMakeOpposite(m_lsbDisplay); } void GLSpectrumView::setPowerScale(int height) { m_powerScale.setSize(height); if (m_linear) { Real referenceLevel = m_useCalibration ? m_referenceLevel * m_calibrationGain : m_referenceLevel; m_powerScale.setRange(Unit::Scientific, 0.0f, referenceLevel); } else { Real referenceLevel = m_useCalibration ? m_referenceLevel + m_calibrationShiftdB : m_referenceLevel; m_powerScale.setRange(Unit::Decibel, referenceLevel - m_powerRange, referenceLevel); } if (m_powerScale.getScaleWidth() > m_leftMargin) { m_leftMargin = m_powerScale.getScaleWidth(); } } void GLSpectrumView::getFrequencyZoom(int64_t& centerFrequency, int& frequencySpan) { frequencySpan = (m_frequencyZoomFactor == 1) ? m_sampleRate : m_sampleRate * (1.0 / m_frequencyZoomFactor); centerFrequency = (m_frequencyZoomFactor == 1) ? m_centerFrequency : (m_frequencyZoomPos - 0.5) * m_sampleRate + m_centerFrequency; } // void GLSpectrumView::updateFFTLimits() // { // m_fftMin = m_frequencyZoomFactor == 1 ? 0 : (m_frequencyZoomPos - (0.5f / m_frequencyZoomFactor)) * m_fftSize; // m_fftMax = m_frequencyZoomFactor == 1 ? m_fftSize : (m_frequencyZoomPos - (0.5f / m_frequencyZoomFactor)) * m_fftSize; // } void GLSpectrumView::channelMarkerMove(QWheelEvent *event, int mul) { for (int i = 0; i < m_channelMarkerStates.size(); ++i) { if ((m_channelMarkerStates[i]->m_channelMarker->getSourceOrSinkStream() != m_displaySourceOrSink) || !m_channelMarkerStates[i]->m_channelMarker->streamIndexApplies(m_displayStreamIndex)) { continue; } if (m_channelMarkerStates[i]->m_rect.contains(event->position())) { int freq = m_channelMarkerStates[i]->m_channelMarker->getCenterFrequency(); if (event->angleDelta().y() > 0) { freq += 10 * mul; } else if (event->angleDelta().y() < 0) { freq -= 10 * mul; } // calculate scale relative cursor position for new frequency float x_pos = m_frequencyScale.getPosFromValue(m_centerFrequency + freq); if ((x_pos >= 0.0) && (x_pos < m_frequencyScale.getSize())) // cursor must be in scale { m_channelMarkerStates[i]->m_channelMarker->setCenterFrequencyByCursor(freq); m_channelMarkerStates[i]->m_channelMarker->setCenterFrequency(freq); // cursor follow-up int xd = x_pos + m_leftMargin; QCursor c = cursor(); QPoint cp_a = c.pos(); QPoint cp_w = mapFromGlobal(cp_a); cp_w.setX(xd); cp_a = mapToGlobal(cp_w); c.setPos(cp_a); setCursor(c); } return; } } zoom(event); } // Return if specified point is within the bounds of the waterfall / 3D spectrogram screen area bool GLSpectrumView::pointInWaterfallOrSpectrogram(const QPointF &point) const { // m_waterfallRect is normalised to [0,1] QPointF pWat = point; pWat.rx() = (point.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width(); pWat.ry() = (point.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height(); return (pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1); } // Return if specified point is within the bounds of the histogram screen area bool GLSpectrumView::pointInHistogram(const QPointF &point) const { // m_histogramRect is normalised to [0,1] QPointF p = point; p.rx() = (point.x()/width() - m_histogramRect.left()) / m_histogramRect.width(); p.ry() = (point.y()/height() - m_histogramRect.top()) / m_histogramRect.height(); return (p.x() >= 0) && (p.x() <= 1) && (p.y() >= 0) && (p.y() <= 1); } void GLSpectrumView::enterEvent(EnterEventType* event) { m_mouseInside = true; update(); QOpenGLWidget::enterEvent(event); } void GLSpectrumView::leaveEvent(QEvent* event) { m_mouseInside = false; update(); QOpenGLWidget::leaveEvent(event); } void GLSpectrumView::tick() { if (m_displayChanged) { m_displayChanged = false; update(); } } void GLSpectrumView::channelMarkerChanged() { QMutexLocker mutexLocker(&m_mutex); m_changesPending = true; update(); } void GLSpectrumView::channelMarkerDestroyed(QObject* object) { removeChannelMarker((ChannelMarker*)object); } void GLSpectrumView::setWaterfallShare(Real waterfallShare) { QMutexLocker mutexLocker(&m_mutex); if (waterfallShare < 0.1f) { m_waterfallShare = 0.1f; } else if (waterfallShare > 0.8f) { m_waterfallShare = 0.8f; } else { m_waterfallShare = waterfallShare; } m_changesPending = true; } void GLSpectrumView::setFPSPeriodMs(int fpsPeriodMs) { if (fpsPeriodMs == 0) { disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(tick())); m_timer.stop(); } else { connect(&m_timer, SIGNAL(timeout()), this, SLOT(tick())); m_timer.start(fpsPeriodMs); } m_fpsPeriodMs = fpsPeriodMs; } void GLSpectrumView::cleanup() { //makeCurrent(); m_glShaderSimple.cleanup(); m_glShaderFrequencyScale.cleanup(); m_glShaderHistogram.cleanup(); m_glShaderLeftScale.cleanup(); m_glShaderWaterfall.cleanup(); m_glShaderTextOverlay.cleanup(); m_glShaderInfo.cleanup(); m_glShaderSpectrogram.cleanup(); m_glShaderSpectrogramTimeScale.cleanup(); m_glShaderSpectrogramPowerScale.cleanup(); //doneCurrent(); } // Display number with full precision, group separators and eng. unit suffixes // E.g: // -1.505,123,304G // 456.034,123M // 300.345k // 789 QString GLSpectrumView::displayFull(int64_t value) { if (value == 0) { return "0"; } int64_t absValue = std::abs(value); QString digits = QString::number(absValue); int cnt = digits.size(); QString point = QLocale::system().decimalPoint(); QString group = QLocale::system().groupSeparator(); int i; for (i = cnt - 3; i >= 4; i -= 3) { digits = digits.insert(i, group); } if (absValue >= 1000) { digits = digits.insert(i, point); } if (cnt > 9) { digits = digits.append("G"); } else if (cnt > 6) { digits = digits.append("M"); } else if (cnt > 3) { digits = digits.append("k"); } if (value < 0) { digits = digits.insert(0, "-"); } return digits; } QString GLSpectrumView::displayScaled(int64_t value, char type, int precision, bool showMult) { int64_t posValue = (value < 0) ? -value : value; if (posValue < 1000) { return tr("%1").arg(QString::number(value, type, precision)); } else if (posValue < 1000000) { return tr("%1%2").arg(QString::number(value / 1000.0, type, precision)).arg(showMult ? "k" : ""); } else if (posValue < 1000000000) { return tr("%1%2").arg(QString::number(value / 1000000.0, type, precision)).arg(showMult ? "M" : ""); } else if (posValue < 1000000000000) { return tr("%1%2").arg(QString::number(value / 1000000000.0, type, precision)).arg(showMult ? "G" : ""); } else { return tr("%1").arg(QString::number(value, 'e', precision)); } } QString GLSpectrumView::displayPower(float value, char type, int precision) { return tr("%1").arg(QString::number(value, type, precision)); } QString GLSpectrumView::displayScaledF(float value, char type, int precision, bool showMult) { float posValue = (value < 0) ? -value : value; if (posValue == 0) { return tr("%1").arg(QString::number(value, 'f', precision)); } else if (posValue < 1) { if (posValue > 0.001) { return tr("%1%2").arg(QString::number(value * 1000.0, type, precision)).arg(showMult ? "m" : ""); } else if (posValue > 0.000001) { return tr("%1%2").arg(QString::number(value * 1000000.0, type, precision)).arg(showMult ? "u" : ""); } else if (posValue > 1e-9) { return tr("%1%2").arg(QString::number(value * 1e9, type, precision)).arg(showMult ? "n" : ""); } else if (posValue > 1e-12) { return tr("%1%2").arg(QString::number(value * 1e12, type, precision)).arg(showMult ? "p" : ""); } else { return tr("%1").arg(QString::number(value, 'e', precision)); } } else { if (posValue < 1e3) { return tr("%1").arg(QString::number(value, type, precision)); } else if (posValue < 1e6) { return tr("%1%2").arg(QString::number(value / 1000.0, type, precision)).arg(showMult ? "k" : ""); } else if (posValue < 1e9) { return tr("%1%2").arg(QString::number(value / 1000000.0, type, precision)).arg(showMult ? "M" : ""); } else if (posValue < 1e12) { return tr("%1%2").arg(QString::number(value / 1000000000.0, type, precision)).arg(showMult ? "G" : ""); } else { return tr("%1").arg(QString::number(value, 'e', precision)); } } } int GLSpectrumView::getPrecision(int value) { int posValue = (value < 0) ? -value : value; if (posValue < 1000) { return 3; } else if (posValue < 10000) { return 4; } else if (posValue < 100000) { return 5; } else { return 6; } } // Draw text right justified in top info bar - currently unused void GLSpectrumView::drawTextRight(const QString &text, const QString &value, const QString &max, const QString &units) { drawTextsRight({text}, {value}, {max}, {units}); } void GLSpectrumView::drawTextsRight(const QStringList &text, const QStringList &value, const QStringList &max, const QStringList &units) { QFontMetrics fm(font()); m_infoPixmap.fill(Qt::transparent); QPainter painter(&m_infoPixmap); painter.setPen(Qt::NoPen); painter.setBrush(Qt::black); painter.setBrush(Qt::transparent); painter.drawRect(m_leftMargin, 0, width() - m_leftMargin, m_infoHeight); painter.setPen(QColor(0xf0, 0xf0, 0xff)); painter.setFont(font()); int x = width() - m_rightMargin; int y = fm.height() + fm.ascent() / 2 - 2; int textWidth, maxWidth; for (int i = text.length() - 1; i >= 0; i--) { textWidth = fm.horizontalAdvance(units[i]); painter.drawText(QPointF(x - textWidth, y), units[i]); x -= textWidth; textWidth = fm.horizontalAdvance(value[i]); maxWidth = fm.horizontalAdvance(max[i]); painter.drawText(QPointF(x - textWidth, y), value[i]); x -= maxWidth; textWidth = fm.horizontalAdvance(text[i]); painter.drawText(QPointF(x - textWidth, y), text[i]); x -= textWidth; } m_glShaderTextOverlay.initTexture(m_infoPixmap.toImage()); GLfloat vtx1[] = { 0, 1, 1, 1, 1, 0, 0, 0 }; GLfloat tex1[] = { 0, 1, 1, 1, 1, 0, 0, 0 }; m_glShaderTextOverlay.drawSurface(m_glInfoBoxMatrix, tex1, vtx1, 4); } void GLSpectrumView::drawTextOverlayCentered ( const QString &text, const QColor &color, const QFont& font, float shiftX, float shiftY, const QRectF &glRect) { if (text.isEmpty()) { return; } QFontMetricsF metrics(font); QRectF textRect = metrics.boundingRect(text); QRectF overlayRect(0, 0, textRect.width() * 1.05f + 4.0f, textRect.height()); QPixmap channelOverlayPixmap = QPixmap(overlayRect.width(), overlayRect.height()); channelOverlayPixmap.fill(Qt::transparent); QPainter painter(&channelOverlayPixmap); painter.setRenderHints(QPainter::Antialiasing | QPainter::TextAntialiasing, false); painter.fillRect(overlayRect, QColor(0, 0, 0, 0x80)); QColor textColor(color); textColor.setAlpha(0xC0); painter.setPen(textColor); painter.setFont(font); painter.drawText(QPointF(2.0f, overlayRect.height() - 4.0f), text); painter.end(); m_glShaderTextOverlay.initTexture(channelOverlayPixmap.toImage()); { GLfloat vtx1[] = { 0, 1, 1, 1, 1, 0, 0, 0}; GLfloat tex1[] = { 0, 1, 1, 1, 1, 0, 0, 0}; float rectX = glRect.x() + shiftX - ((overlayRect.width()/2)/width()); float rectY = glRect.y() + shiftY + (4.0f / height()) - ((overlayRect.height()+5)/height()); float rectW = overlayRect.width() / (float) width(); float rectH = overlayRect.height() / (float) height(); QMatrix4x4 mat; mat.setToIdentity(); mat.translate(-1.0f + 2.0f * rectX, 1.0f - 2.0f * rectY); mat.scale(2.0f * rectW, -2.0f * rectH); m_glShaderTextOverlay.drawSurface(mat, tex1, vtx1, 4); } } void GLSpectrumView::drawTextOverlay( const QString &text, const QColor &color, const QFont& font, float shiftX, float shiftY, bool leftHalf, bool topHalf, const QRectF &glRect) { if (text.isEmpty()) { return; } QFontMetricsF metrics(font); QRectF textRect = metrics.boundingRect(text); QRectF overlayRect(0, 0, textRect.width() * 1.05f + 4.0f, textRect.height()); QPixmap channelOverlayPixmap = QPixmap(overlayRect.width(), overlayRect.height()); channelOverlayPixmap.fill(Qt::transparent); QPainter painter(&channelOverlayPixmap); painter.setRenderHints(QPainter::Antialiasing | QPainter::TextAntialiasing, false); painter.fillRect(overlayRect, QColor(0, 0, 0, 0x80)); QColor textColor(color); textColor.setAlpha(0xC0); painter.setPen(textColor); painter.setFont(font); painter.drawText(QPointF(2.0f, overlayRect.height() - 4.0f), text); painter.end(); m_glShaderTextOverlay.initTexture(channelOverlayPixmap.toImage()); { GLfloat vtx1[] = { 0, 1, 1, 1, 1, 0, 0, 0}; GLfloat tex1[] = { 0, 1, 1, 1, 1, 0, 0, 0}; // float shiftX = glRect.width() - ((overlayRect.width() + 4.0f) / width()); // float shiftY = 4.0f / height(); float rectX = glRect.x() + shiftX - (leftHalf ? 0 : (overlayRect.width()+1)/width()); float rectY = glRect.y() + shiftY + (4.0f / height()) - (topHalf ? 0 : (overlayRect.height()+5)/height()); float rectW = overlayRect.width() / (float) width(); float rectH = overlayRect.height() / (float) height(); QMatrix4x4 mat; mat.setToIdentity(); mat.translate(-1.0f + 2.0f * rectX, 1.0f - 2.0f * rectY); mat.scale(2.0f * rectW, -2.0f * rectH); m_glShaderTextOverlay.drawSurface(mat, tex1, vtx1, 4); } } void GLSpectrumView::formatTextInfo(QString& info) { if (m_useCalibration) { info.append(tr("CAL:%1dB ").arg(QString::number(m_calibrationShiftdB, 'f', 1))); } if (m_frequencyZoomFactor != 1.0f) { info.append(tr("%1x ").arg(QString::number(m_frequencyZoomFactor, 'f', 1))); } if (m_sampleRate == 0) { info.append(tr("CF:%1 SP:%2").arg(m_centerFrequency).arg(m_sampleRate)); } else { int64_t centerFrequency; int frequencySpan; getFrequencyZoom(centerFrequency, frequencySpan); info.append(tr("CF:%1 ").arg(displayScaled(centerFrequency, 'f', getPrecision(centerFrequency/frequencySpan), true))); info.append(tr("SP:%1 ").arg(displayScaled(frequencySpan, 'f', 3, true))); } } bool GLSpectrumView::eventFilter(QObject *object, QEvent *event) { if (event->type() == QEvent::KeyPress) { QKeyEvent *keyEvent = static_cast(event); switch (keyEvent->key()) { case Qt::Key_Up: if (keyEvent->modifiers() & Qt::ShiftModifier) { m_glShaderSpectrogram.lightRotateX(-5.0f); } else if (keyEvent->modifiers() & Qt::AltModifier) { m_glShaderSpectrogram.lightTranslateY(0.05); } else if (keyEvent->modifiers() & Qt::ControlModifier) { m_glShaderSpectrogram.translateY(0.05); } else { m_glShaderSpectrogram.rotateX(-5.0f); } break; case Qt::Key_Down: if (keyEvent->modifiers() & Qt::ShiftModifier) { m_glShaderSpectrogram.lightRotateX(5.0f); } else if (keyEvent->modifiers() & Qt::AltModifier) { m_glShaderSpectrogram.lightTranslateY(-0.05); } else if (keyEvent->modifiers() & Qt::ControlModifier) { m_glShaderSpectrogram.translateY(-0.05); } else { m_glShaderSpectrogram.rotateX(5.0f); } break; case Qt::Key_Left: if (keyEvent->modifiers() & Qt::ShiftModifier) { m_glShaderSpectrogram.lightRotateZ(5.0f); } else if (keyEvent->modifiers() & Qt::AltModifier) { m_glShaderSpectrogram.lightTranslateX(-0.05); } else if (keyEvent->modifiers() & Qt::ControlModifier) { m_glShaderSpectrogram.translateX(-0.05); } else { m_glShaderSpectrogram.rotateZ(5.0f); } break; case Qt::Key_Right: if (keyEvent->modifiers() & Qt::ShiftModifier) { m_glShaderSpectrogram.lightRotateZ(-5.0f); } else if (keyEvent->modifiers() & Qt::AltModifier) { m_glShaderSpectrogram.lightTranslateX(0.05); } else if (keyEvent->modifiers() & Qt::ControlModifier) { m_glShaderSpectrogram.translateX(0.05); } else { m_glShaderSpectrogram.rotateZ(-5.0f); } break; case Qt::Key_Equal: // So you don't need to press shift case Qt::Key_Plus: if (keyEvent->modifiers() & Qt::ControlModifier) { m_glShaderSpectrogram.userScaleZ(1.1f); } else { m_glShaderSpectrogram.verticalAngle(-1.0f); } break; case Qt::Key_Minus: if (keyEvent->modifiers() & Qt::ControlModifier) { m_glShaderSpectrogram.userScaleZ(0.9f); } else { m_glShaderSpectrogram.verticalAngle(1.0f); } break; case Qt::Key_R: m_glShaderSpectrogram.reset(); break; case Qt::Key_F: // Project straight down and scale to view, so it's a bit like 2D m_glShaderSpectrogram.reset(); m_glShaderSpectrogram.rotateX(45.0f); m_glShaderSpectrogram.verticalAngle(-9.0f); m_glShaderSpectrogram.userScaleZ(0.0f); break; } repaint(); // Force repaint in case acquisition is stopped return true; } else { return QOpenGLWidget::eventFilter(object, event); } }