/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015-2020 Edouard Griffiths, F4EXB // // // // Symbol synchronizer or symbol clock recovery mostly encapsulating // // liquid-dsp's symsync "object" // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "SWGGLSpectrum.h" #include "SWGSpectrumServer.h" #include "SWGSuccessResponse.h" #include "glspectruminterface.h" #include "dspcommands.h" #include "dspengine.h" #include "fftfactory.h" #include "util/messagequeue.h" #include "spectrumvis.h" #define MAX_FFT_SIZE 4096 #ifndef LINUX inline double log2f(double n) { return log(n) / log(2.0); } #endif MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureSpectrumVis, Message) MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureScalingFactor, Message) MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureWSpectrumOpenClose, Message) MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureWSpectrum, Message) MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgStartStop, Message) const Real SpectrumVis::m_mult = (10.0f / log2f(10.0f)); SpectrumVis::SpectrumVis(Real scalef) : BasebandSampleSink(), m_running(true), m_fft(nullptr), m_fftEngineSequence(0), m_fftBuffer(MAX_FFT_SIZE), m_powerSpectrum(MAX_FFT_SIZE), m_fftBufferFill(0), m_needMoreSamples(false), m_scalef(scalef), m_glSpectrum(nullptr), m_specMax(0.0f), m_centerFrequency(0), m_sampleRate(48000), m_ofs(0), m_powFFTDiv(1.0), m_mutex(QMutex::Recursive) { setObjectName("SpectrumVis"); applySettings(m_settings, true); //m_wsSpectrum.openSocket(); // FIXME: conditional } SpectrumVis::~SpectrumVis() { FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory(); fftFactory->releaseEngine(m_settings.m_fftSize, false, m_fftEngineSequence); } void SpectrumVis::setScalef(Real scalef) { MsgConfigureScalingFactor* cmd = new MsgConfigureScalingFactor(scalef); getInputMessageQueue()->push(cmd); } void SpectrumVis::configureWSSpectrum(const QString& address, uint16_t port) { MsgConfigureWSpectrum* cmd = new MsgConfigureWSpectrum(address, port); getInputMessageQueue()->push(cmd); } void SpectrumVis::feedTriggered(const SampleVector::const_iterator& triggerPoint, const SampleVector::const_iterator& end, bool positiveOnly) { feed(triggerPoint, end, positiveOnly); // normal feed from trigger point /* if (triggerPoint == end) { // the following piece of code allows to terminate the FFT that ends past the end of scope captured data // that is the spectrum will include the captured data // just do nothing if you want the spectrum to be included inside the scope captured data // that is to drop the FFT that dangles past the end of captured data if (m_needMoreSamples) { feed(begin, end, positiveOnly); m_needMoreSamples = false; // force finish } } else { feed(triggerPoint, end, positiveOnly); // normal feed from trigger point }*/ } void SpectrumVis::feed(const Complex *begin, unsigned int length) { if (!m_glSpectrum && !m_wsSpectrum.socketOpened()) { return; } if (!m_mutex.tryLock(0)) { // prevent conflicts with configuration process return; } Complex c; Real v; if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeNone) { for (unsigned int i = 0; i < m_settings.m_fftSize; i++) { if (i < length) { c = begin[i]; } else { c = Complex{0,0}; } v = c.real() * c.real() + c.imag() * c.imag(); v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs; m_powerSpectrum[i] = v; } // send new data to visualisation if (m_glSpectrum) { m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize); } // web socket spectrum connections if (m_wsSpectrum.socketOpened()) { m_wsSpectrum.newSpectrum( m_powerSpectrum, m_settings.m_fftSize, m_centerFrequency, m_sampleRate, m_settings.m_linear ); } } else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeMoving) { for (unsigned int i = 0; i < m_settings.m_fftSize; i++) { if (i < length) { c = begin[i]; } else { c = Complex{0,0}; } v = c.real() * c.real() + c.imag() * c.imag(); v = m_movingAverage.storeAndGetAvg(v, i); v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs; m_powerSpectrum[i] = v; } // send new data to visualisation if (m_glSpectrum) { m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize); } // web socket spectrum connections if (m_wsSpectrum.socketOpened()) { m_wsSpectrum.newSpectrum( m_powerSpectrum, m_settings.m_fftSize, m_centerFrequency, m_sampleRate, m_settings.m_linear ); } m_movingAverage.nextAverage(); } else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeFixed) { double avg; for (unsigned int i = 0; i < m_settings.m_fftSize; i++) { if (i < length) { c = begin[i]; } else { c = Complex{0,0}; } v = c.real() * c.real() + c.imag() * c.imag(); // result available if (m_fixedAverage.storeAndGetAvg(avg, v, i)) { avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2f(avg) + m_ofs; m_powerSpectrum[i] = avg; } } // result available if (m_fixedAverage.nextAverage()) { // send new data to visualisation if (m_glSpectrum) { m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize); } // web socket spectrum connections if (m_wsSpectrum.socketOpened()) { m_wsSpectrum.newSpectrum( m_powerSpectrum, m_settings.m_fftSize, m_centerFrequency, m_sampleRate, m_settings.m_linear ); } } } else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeMax) { double max; for (unsigned int i = 0; i < m_settings.m_fftSize; i++) { if (i < length) { c = begin[i]; } else { c = Complex{0,0}; } v = c.real() * c.real() + c.imag() * c.imag(); // result available if (m_max.storeAndGetMax(max, v, i)) { max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2f(max) + m_ofs; m_powerSpectrum[i] = max; } } // result available if (m_max.nextMax()) { // send new data to visualisation if (m_glSpectrum) { m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize); } // web socket spectrum connections if (m_wsSpectrum.socketOpened()) { m_wsSpectrum.newSpectrum( m_powerSpectrum, m_settings.m_fftSize, m_centerFrequency, m_sampleRate, m_settings.m_linear ); } } } m_mutex.unlock(); } void SpectrumVis::feed(const SampleVector::const_iterator& cbegin, const SampleVector::const_iterator& end, bool positiveOnly) { if (!m_running) { return; } // if no visualisation is set, send the samples to /dev/null if (!m_glSpectrum && !m_wsSpectrum.socketOpened()) { return; } if (!m_mutex.tryLock(0)) { // prevent conflicts with configuration process return; } SampleVector::const_iterator begin(cbegin); while (begin < end) { std::size_t todo = end - begin; std::size_t samplesNeeded = m_refillSize - m_fftBufferFill; if (todo >= samplesNeeded) { // fill up the buffer std::vector::iterator it = m_fftBuffer.begin() + m_fftBufferFill; for (std::size_t i = 0; i < samplesNeeded; ++i, ++begin) { *it++ = Complex(begin->real() / m_scalef, begin->imag() / m_scalef); } // apply fft window (and copy from m_fftBuffer to m_fftIn) m_window.apply(&m_fftBuffer[0], m_fft->in()); // calculate FFT m_fft->transform(); // extract power spectrum and reorder buckets const Complex* fftOut = m_fft->out(); Complex c; Real v; std::size_t halfSize = m_settings.m_fftSize / 2; if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeNone) { m_specMax = 0.0f; if ( positiveOnly ) { for (std::size_t i = 0; i < halfSize; i++) { c = fftOut[i]; v = c.real() * c.real() + c.imag() * c.imag(); m_specMax = v > m_specMax ? v : m_specMax; v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs; m_powerSpectrum[i * 2] = v; m_powerSpectrum[i * 2 + 1] = v; } } else { for (std::size_t i = 0; i < halfSize; i++) { c = fftOut[i + halfSize]; v = c.real() * c.real() + c.imag() * c.imag(); m_specMax = v > m_specMax ? v : m_specMax; v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs; m_powerSpectrum[i] = v; c = fftOut[i]; v = c.real() * c.real() + c.imag() * c.imag(); m_specMax = v > m_specMax ? v : m_specMax; v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs; m_powerSpectrum[i + halfSize] = v; } } // send new data to visualisation if (m_glSpectrum) { m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize); } // web socket spectrum connections if (m_wsSpectrum.socketOpened()) { m_wsSpectrum.newSpectrum( m_powerSpectrum, m_settings.m_fftSize, m_centerFrequency, m_sampleRate, m_settings.m_linear ); } } else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeMoving) { m_specMax = 0.0f; if ( positiveOnly ) { for (std::size_t i = 0; i < halfSize; i++) { c = fftOut[i]; v = c.real() * c.real() + c.imag() * c.imag(); v = m_movingAverage.storeAndGetAvg(v, i); m_specMax = v > m_specMax ? v : m_specMax; v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs; m_powerSpectrum[i * 2] = v; m_powerSpectrum[i * 2 + 1] = v; } } else { for (std::size_t i = 0; i < halfSize; i++) { c = fftOut[i + halfSize]; v = c.real() * c.real() + c.imag() * c.imag(); v = m_movingAverage.storeAndGetAvg(v, i+halfSize); m_specMax = v > m_specMax ? v : m_specMax; v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs; m_powerSpectrum[i] = v; c = fftOut[i]; v = c.real() * c.real() + c.imag() * c.imag(); v = m_movingAverage.storeAndGetAvg(v, i); m_specMax = v > m_specMax ? v : m_specMax; v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs; m_powerSpectrum[i + halfSize] = v; } } // send new data to visualisation if (m_glSpectrum) { m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize); } // web socket spectrum connections if (m_wsSpectrum.socketOpened()) { m_wsSpectrum.newSpectrum( m_powerSpectrum, m_settings.m_fftSize, m_centerFrequency, m_sampleRate, m_settings.m_linear ); } m_movingAverage.nextAverage(); } else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeFixed) { double avg; Real specMax = 0.0f; if ( positiveOnly ) { for (std::size_t i = 0; i < halfSize; i++) { c = fftOut[i]; v = c.real() * c.real() + c.imag() * c.imag(); // result available if (m_fixedAverage.storeAndGetAvg(avg, v, i)) { specMax = avg > specMax ? avg : specMax; avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2f(avg) + m_ofs; m_powerSpectrum[i * 2] = avg; m_powerSpectrum[i * 2 + 1] = avg; } } } else { for (std::size_t i = 0; i < halfSize; i++) { c = fftOut[i + halfSize]; v = c.real() * c.real() + c.imag() * c.imag(); // result available if (m_fixedAverage.storeAndGetAvg(avg, v, i+halfSize)) { specMax = avg > specMax ? avg : specMax; avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2f(avg) + m_ofs; m_powerSpectrum[i] = avg; } c = fftOut[i]; v = c.real() * c.real() + c.imag() * c.imag(); // result available if (m_fixedAverage.storeAndGetAvg(avg, v, i)) { specMax = avg > specMax ? avg : specMax; avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2f(avg) + m_ofs; m_powerSpectrum[i + halfSize] = avg; } } } // result available if (m_fixedAverage.nextAverage()) { m_specMax = specMax; // send new data to visualisation if (m_glSpectrum) { m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize); } // web socket spectrum connections if (m_wsSpectrum.socketOpened()) { m_wsSpectrum.newSpectrum( m_powerSpectrum, m_settings.m_fftSize, m_centerFrequency, m_sampleRate, m_settings.m_linear ); } } } else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeMax) { double max; Real specMax = 0.0f; if ( positiveOnly ) { for (std::size_t i = 0; i < halfSize; i++) { c = fftOut[i]; v = c.real() * c.real() + c.imag() * c.imag(); // result available if (m_max.storeAndGetMax(max, v, i)) { specMax = max > specMax ? max : specMax; max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2f(max) + m_ofs; m_powerSpectrum[i * 2] = max; m_powerSpectrum[i * 2 + 1] = max; } } } else { for (std::size_t i = 0; i < halfSize; i++) { c = fftOut[i + halfSize]; v = c.real() * c.real() + c.imag() * c.imag(); // result available if (m_max.storeAndGetMax(max, v, i+halfSize)) { specMax = max > specMax ? max : specMax; max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2f(max) + m_ofs; m_powerSpectrum[i] = max; } c = fftOut[i]; v = c.real() * c.real() + c.imag() * c.imag(); // result available if (m_max.storeAndGetMax(max, v, i)) { specMax = max > specMax ? max : specMax; max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2f(max) + m_ofs; m_powerSpectrum[i + halfSize] = max; } } } // result available if (m_max.nextMax()) { m_specMax = specMax; // send new data to visualisation if (m_glSpectrum) { m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize); } // web socket spectrum connections if (m_wsSpectrum.socketOpened()) { m_wsSpectrum.newSpectrum( m_powerSpectrum, m_settings.m_fftSize, m_centerFrequency, m_sampleRate, m_settings.m_linear ); } } } // advance buffer respecting the fft overlap factor std::copy(m_fftBuffer.begin() + m_refillSize, m_fftBuffer.end(), m_fftBuffer.begin()); // start over m_fftBufferFill = m_overlapSize; m_needMoreSamples = false; } else { // not enough samples for FFT - just fill in new data and return for(std::vector::iterator it = m_fftBuffer.begin() + m_fftBufferFill; begin < end; ++begin) { *it++ = Complex(begin->real() / m_scalef, begin->imag() / m_scalef); } m_fftBufferFill += todo; m_needMoreSamples = true; } } m_mutex.unlock(); } void SpectrumVis::start() { setRunning(true); if (getMessageQueueToGUI()) // propagate to GUI if any { MsgStartStop *msg = MsgStartStop::create(true); getMessageQueueToGUI()->push(msg); } } void SpectrumVis::stop() { setRunning(false); if (getMessageQueueToGUI()) // propagate to GUI if any { MsgStartStop *msg = MsgStartStop::create(false); getMessageQueueToGUI()->push(msg); } } bool SpectrumVis::handleMessage(const Message& message) { if (DSPSignalNotification::match(message)) { // This is coming from device engine and will apply to main spectrum DSPSignalNotification& notif = (DSPSignalNotification&) message; qDebug() << "SpectrumVis::handleMessage: DSPSignalNotification:" << " centerFrequency: " << notif.getCenterFrequency() << " sampleRate: " << notif.getSampleRate(); handleConfigureDSP(notif.getCenterFrequency(), notif.getSampleRate()); return true; } else if (MsgConfigureSpectrumVis::match(message)) { MsgConfigureSpectrumVis& cfg = (MsgConfigureSpectrumVis&) message; qDebug() << "SpectrumVis::handleMessage: MsgConfigureSpectrumVis"; applySettings(cfg.getSettings(), cfg.getForce()); return true; } else if (MsgConfigureScalingFactor::match(message)) { MsgConfigureScalingFactor& conf = (MsgConfigureScalingFactor&) message; handleScalef(conf.getScalef()); return true; } else if (MsgConfigureWSpectrumOpenClose::match(message)) { MsgConfigureWSpectrumOpenClose& conf = (MsgConfigureWSpectrumOpenClose&) message; handleWSOpenClose(conf.getOpenClose()); return true; } else if (MsgConfigureWSpectrum::match(message)) { MsgConfigureWSpectrum& conf = (MsgConfigureWSpectrum&) message; handleConfigureWSSpectrum(conf.getAddress(), conf.getPort()); return true; } else if (MsgStartStop::match(message)) { MsgStartStop& cmd = (MsgStartStop&) message; setRunning(cmd.getStartStop()); return true; } else { return false; } } void SpectrumVis::applySettings(const GLSpectrumSettings& settings, bool force) { QMutexLocker mutexLocker(&m_mutex); int fftSize = settings.m_fftSize > MAX_FFT_SIZE ? MAX_FFT_SIZE : settings.m_fftSize < 64 ? 64 : settings.m_fftSize; int overlapPercent = settings.m_fftOverlap > 100 ? 100 : settings.m_fftOverlap < 0 ? 0 : settings.m_fftOverlap; qDebug() << "SpectrumVis::applySettings:" << " m_fftSize: " << fftSize << " m_fftWindow: " << settings.m_fftWindow << " m_fftOverlap: " << overlapPercent << " m_averagingIndex: " << settings.m_averagingIndex << " m_averagingMode: " << settings.m_averagingMode << " m_refLevel: " << settings.m_refLevel << " m_powerRange: " << settings.m_powerRange << " m_linear: " << settings.m_linear << " m_wsSpectrumAddress: " << settings.m_wsSpectrumAddress << " m_wsSpectrumPort: " << settings.m_wsSpectrumPort << " force: " << force; if ((fftSize != m_settings.m_fftSize) || force) { FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory(); // release previous engine allocation if any if (m_fft) { fftFactory->releaseEngine(m_settings.m_fftSize, false, m_fftEngineSequence); } m_fftEngineSequence = fftFactory->getEngine(fftSize, false, &m_fft); m_ofs = 20.0f * log10f(1.0f / fftSize); m_powFFTDiv = fftSize * fftSize; } if ((fftSize != m_settings.m_fftSize) || (settings.m_fftWindow != m_settings.m_fftWindow) || force) { m_window.create(settings.m_fftWindow, fftSize); } if ((fftSize != m_settings.m_fftSize) || (overlapPercent != m_settings.m_fftOverlap) || force) { m_overlapSize = (fftSize * overlapPercent) / 100; m_refillSize = fftSize - m_overlapSize; m_fftBufferFill = m_overlapSize; } if ((fftSize != m_settings.m_fftSize) || (settings.m_averagingIndex != m_settings.m_averagingIndex) || (settings.m_averagingMode != m_settings.m_averagingMode) || force) { unsigned int averagingValue = GLSpectrumSettings::getAveragingValue(settings.m_averagingIndex, settings.m_averagingMode); m_movingAverage.resize(fftSize, averagingValue > 1000 ? 1000 : averagingValue); // Capping to avoid out of memory condition m_fixedAverage.resize(fftSize, averagingValue); m_max.resize(fftSize, averagingValue); } if ((settings.m_wsSpectrumAddress != m_settings.m_wsSpectrumAddress) || (settings.m_wsSpectrumPort != m_settings.m_wsSpectrumPort) || force) { handleConfigureWSSpectrum(settings.m_wsSpectrumAddress, settings.m_wsSpectrumPort); } m_settings = settings; m_settings.m_fftSize = fftSize; m_settings.m_fftOverlap = overlapPercent; } void SpectrumVis::handleConfigureDSP(uint64_t centerFrequency, int sampleRate) { QMutexLocker mutexLocker(&m_mutex); m_centerFrequency = centerFrequency; m_sampleRate = sampleRate; } void SpectrumVis::handleScalef(Real scalef) { QMutexLocker mutexLocker(&m_mutex); m_scalef = scalef; } void SpectrumVis::handleWSOpenClose(bool openClose) { QMutexLocker mutexLocker(&m_mutex); if (openClose) { m_wsSpectrum.openSocket(); } else { m_wsSpectrum.closeSocket(); } } void SpectrumVis::handleConfigureWSSpectrum(const QString& address, uint16_t port) { if (m_wsSpectrum.socketOpened()) { m_wsSpectrum.closeSocket(); m_wsSpectrum.setListeningAddress(address); m_wsSpectrum.setPort(port); m_wsSpectrum.openSocket(); } } int SpectrumVis::webapiSpectrumSettingsGet(SWGSDRangel::SWGGLSpectrum& response, QString& errorMessage) const { (void) errorMessage; response.init(); webapiFormatSpectrumSettings(response, m_settings); return 200; } int SpectrumVis::webapiSpectrumSettingsPutPatch( bool force, const QStringList& spectrumSettingsKeys, SWGSDRangel::SWGGLSpectrum& response, // query + response QString& errorMessage) { (void) errorMessage; GLSpectrumSettings settings = m_settings; webapiUpdateSpectrumSettings(settings, spectrumSettingsKeys, response); MsgConfigureSpectrumVis *msg = MsgConfigureSpectrumVis::create(settings, force); m_inputMessageQueue.push(msg); if (getMessageQueueToGUI()) // forward to GUI if any { MsgConfigureSpectrumVis *msgToGUI = MsgConfigureSpectrumVis::create(settings, force); getMessageQueueToGUI()->push(msgToGUI); } webapiFormatSpectrumSettings(response, settings); return 200; } int SpectrumVis::webapiSpectrumServerGet(SWGSDRangel::SWGSpectrumServer& response, QString& errorMessage) const { (void) errorMessage; bool serverRunning = m_wsSpectrum.socketOpened(); QList peerHosts; QList peerPorts; m_wsSpectrum.getPeers(peerHosts, peerPorts); response.init(); response.setRun(serverRunning ? 1 : 0); if (peerHosts.size() > 0) { response.setClients(new QList); for (int i = 0; i < peerHosts.size(); i++) { response.getClients()->push_back(new SWGSDRangel::SWGSpectrumServer_clients); response.getClients()->back()->setAddress(new QString(peerHosts.at(i).toString())); response.getClients()->back()->setPort(peerPorts.at(i)); } } return 200; } int SpectrumVis::webapiSpectrumServerPost(SWGSDRangel::SWGSuccessResponse& response, QString& errorMessage) { (void) errorMessage; MsgConfigureWSpectrumOpenClose *msg = MsgConfigureWSpectrumOpenClose::create(true); m_inputMessageQueue.push(msg); if (getMessageQueueToGUI()) // forward to GUI if any { MsgConfigureWSpectrumOpenClose *msgToGui = MsgConfigureWSpectrumOpenClose::create(true); getMessageQueueToGUI()->push(msgToGui); } response.setMessage(new QString("Websocket spectrum server started")); return 200; } int SpectrumVis::webapiSpectrumServerDelete(SWGSDRangel::SWGSuccessResponse& response, QString& errorMessage) { (void) errorMessage; MsgConfigureWSpectrumOpenClose *msg = MsgConfigureWSpectrumOpenClose::create(false); m_inputMessageQueue.push(msg); if (getMessageQueueToGUI()) // forward to GUI if any { MsgConfigureWSpectrumOpenClose *msgToGui = MsgConfigureWSpectrumOpenClose::create(false); getMessageQueueToGUI()->push(msgToGui); } response.setMessage(new QString("Websocket spectrum server stopped")); return 200; } void SpectrumVis::webapiFormatSpectrumSettings(SWGSDRangel::SWGGLSpectrum& response, const GLSpectrumSettings& settings) { response.setFftSize(settings.m_fftSize); response.setFftOverlap(settings.m_fftOverlap); response.setFftWindow((int) settings.m_fftWindow); response.setRefLevel(settings.m_refLevel); response.setPowerRange(settings.m_powerRange); response.setDecay(settings.m_decay); response.setDecayDivisor(settings.m_decayDivisor); response.setHistogramStroke(settings.m_histogramStroke); response.setDisplayGridIntensity(settings.m_displayGridIntensity); response.setDisplayTraceIntensity(settings.m_displayTraceIntensity); response.setDisplayWaterfall(settings.m_displayWaterfall ? 1 : 0); response.setInvertedWaterfall(settings.m_invertedWaterfall ? 1 : 0); response.setWaterfallShare(settings.m_waterfallShare); response.setDisplayMaxHold(settings.m_displayMaxHold ? 1 : 0); response.setDisplayCurrent(settings.m_displayCurrent ? 1 : 0); response.setDisplayHistogram(settings.m_displayHistogram ? 1 : 0); response.setDisplayGrid(settings.m_displayGrid ? 1 : 0); response.setAveragingMode((int) settings.m_averagingMode); response.setAveragingValue(GLSpectrumSettings::getAveragingValue(settings.m_averagingIndex, settings.m_averagingMode)); response.setLinear(settings.m_linear ? 1 : 0); response.setSsb(settings.m_ssb ? 1 : 0); response.setUsb(settings.m_usb ? 1 : 0); response.setWsSpectrumPort(settings.m_wsSpectrumPort); if (response.getWsSpectrumAddress()) { *response.getWsSpectrumAddress() = settings.m_wsSpectrumAddress; } else { response.setWsSpectrumAddress(new QString(settings.m_wsSpectrumAddress)); } } void SpectrumVis::webapiUpdateSpectrumSettings( GLSpectrumSettings& settings, const QStringList& spectrumSettingsKeys, SWGSDRangel::SWGGLSpectrum& response) { if (spectrumSettingsKeys.contains("fftSize")) { settings.m_fftSize = response.getFftSize(); } if (spectrumSettingsKeys.contains("fftOverlap")) { settings.m_fftOverlap = response.getFftOverlap(); } if (spectrumSettingsKeys.contains("fftWindow")) { settings.m_fftWindow = (FFTWindow::Function) response.getFftWindow(); } if (spectrumSettingsKeys.contains("refLevel")) { settings.m_refLevel = response.getRefLevel(); } if (spectrumSettingsKeys.contains("powerRange")) { settings.m_powerRange = response.getPowerRange(); } if (spectrumSettingsKeys.contains("decay")) { settings.m_decay = response.getDecay(); } if (spectrumSettingsKeys.contains("decayDivisor")) { settings.m_decayDivisor = response.getDecayDivisor(); } if (spectrumSettingsKeys.contains("histogramStroke")) { settings.m_histogramStroke = response.getHistogramStroke(); } if (spectrumSettingsKeys.contains("displayGridIntensity")) { settings.m_displayGridIntensity = response.getDisplayGridIntensity(); } if (spectrumSettingsKeys.contains("displayTraceIntensity")) { settings.m_displayTraceIntensity = response.getDisplayTraceIntensity(); } if (spectrumSettingsKeys.contains("displayWaterfall")) { settings.m_displayWaterfall = response.getDisplayWaterfall() != 0; } if (spectrumSettingsKeys.contains("invertedWaterfall")) { settings.m_invertedWaterfall = response.getInvertedWaterfall() != 0; } if (spectrumSettingsKeys.contains("waterfallShare")) { settings.m_waterfallShare = response.getWaterfallShare(); } if (spectrumSettingsKeys.contains("displayMaxHold")) { settings.m_displayMaxHold = response.getDisplayMaxHold() != 0; } if (spectrumSettingsKeys.contains("displayCurrent")) { settings.m_displayCurrent = response.getDisplayCurrent() != 0; } if (spectrumSettingsKeys.contains("displayHistogram")) { settings.m_displayHistogram = response.getDisplayHistogram() != 0; } if (spectrumSettingsKeys.contains("displayGrid")) { settings.m_displayGrid = response.getDisplayGrid() != 0; } if (spectrumSettingsKeys.contains("averagingMode")) { settings.m_averagingMode = (GLSpectrumSettings::AveragingMode) response.getAveragingMode(); } if (spectrumSettingsKeys.contains("averagingValue")) { qint32 tmp = response.getAveragingValue(); settings.m_averagingIndex = GLSpectrumSettings::getAveragingIndex(tmp, settings.m_averagingMode); settings.m_averagingValue = GLSpectrumSettings::getAveragingValue(settings.m_averagingIndex, settings.m_averagingMode); } if (spectrumSettingsKeys.contains("linear")) { settings.m_linear = response.getLinear() != 0; } if (spectrumSettingsKeys.contains("ssb")) { settings.m_ssb = response.getSsb() != 0; } if (spectrumSettingsKeys.contains("usb")) { settings.m_usb = response.getUsb() != 0; } if (spectrumSettingsKeys.contains("wsSpectrumAddress")) { settings.m_wsSpectrumAddress = *response.getWsSpectrumAddress(); } if (spectrumSettingsKeys.contains("wsSpectrumPort")) { settings.m_wsSpectrumPort = response.getWsSpectrumPort(); } }