/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016, 2018-2019 Edouard Griffiths, F4EXB // // // // Integer half-band FIR based interpolator and decimator // // This is the even/odd and I/Q stride with double buffering variant // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_INTHALFBANDFILTER_ST_H #define INCLUDE_INTHALFBANDFILTER_ST_H #include #include "dsp/dsptypes.h" #include "dsp/hbfiltertraits.h" #include "dsp/inthalfbandfiltersti.h" #include "export.h" template class SDRANGEL_API IntHalfbandFilterST { public: IntHalfbandFilterST(); // downsample by 2, return center part of original spectrum bool workDecimateCenter(Sample* sample) { // insert sample into ring-buffer storeSample((FixReal) sample->real(), (FixReal) sample->imag()); switch(m_state) { case 0: // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; default: // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // upsample by 2, return center part of original spectrum - double buffer variant bool workInterpolateCenter(Sample* sampleIn, Sample *SampleOut) { switch(m_state) { case 0: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(SampleOut); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we didn't consume the sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(SampleOut); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we consumed the sample return true; } } bool workDecimateCenter(int32_t *x, int32_t *y) { // insert sample into ring-buffer storeSample(*x, *y); switch(m_state) { case 0: // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; default: // save result doFIR(x, y); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // downsample by 2, return lower half of original spectrum bool workDecimateLowerHalf(Sample* sample) { switch(m_state) { case 0: // insert sample into ring-buffer storeSample((FixReal) -sample->imag(), (FixReal) sample->real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) -sample->real(), (FixReal) -sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we have a new sample return true; case 2: // insert sample into ring-buffer storeSample((FixReal) sample->imag(), (FixReal) -sample->real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we don't have a new sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sample->real(), (FixReal) sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // upsample by 2, from lower half of original spectrum - double buffer variant bool workInterpolateLowerHalf(Sample* sampleIn, Sample *sampleOut) { Sample s; switch(m_state) { case 0: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(s.imag()); sampleOut->setImag(-s.real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we didn't consume the sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(-s.real()); sampleOut->setImag(-s.imag()); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we consumed the sample return true; case 2: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(-s.imag()); sampleOut->setImag(s.real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we didn't consume the sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(s.real()); sampleOut->setImag(s.imag()); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we consumed the sample return true; } } // downsample by 2, return upper half of original spectrum bool workDecimateUpperHalf(Sample* sample) { switch(m_state) { case 0: // insert sample into ring-buffer storeSample((FixReal) sample->imag(), (FixReal) -sample->real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) -sample->real(), (FixReal) -sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we have a new sample return true; case 2: // insert sample into ring-buffer storeSample((FixReal) -sample->imag(), (FixReal) sample->real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we don't have a new sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sample->real(), (FixReal) sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // upsample by 2, move original spectrum to upper half - double buffer variant bool workInterpolateUpperHalf(Sample* sampleIn, Sample *sampleOut) { Sample s; switch(m_state) { case 0: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(-s.imag()); sampleOut->setImag(s.real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we didn't consume the sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(-s.real()); sampleOut->setImag(-s.imag()); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we consumed the sample return true; case 2: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(s.imag()); sampleOut->setImag(-s.real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we didn't consume the sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(s.real()); sampleOut->setImag(s.imag()); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we consumed the sample return true; } } void myDecimate(const Sample* sample1, Sample* sample2) { storeSample((FixReal) sample1->real(), (FixReal) sample1->imag()); advancePointer(); storeSample((FixReal) sample2->real(), (FixReal) sample2->imag()); doFIR(sample2); advancePointer(); } void myDecimate(int32_t x1, int32_t y1, int32_t *x2, int32_t *y2) { storeSample(x1, y1); advancePointer(); storeSample(*x2, *y2); doFIR(x2, y2); advancePointer(); } void myInterpolate(Sample* sample1, Sample* sample2) { storeSample((FixReal) sample1->real(), (FixReal) sample1->imag()); doFIR(sample1); advancePointer(); storeSample(0, 0); doFIR(sample2); advancePointer(); } void myInterpolate(int32_t *x1, int32_t *y1, int32_t *x2, int32_t *y2) { storeSample(*x1, *y1); doFIR(x1, y1); advancePointer(); storeSample(0, 0); doFIR(x2, y2); advancePointer(); } protected: int32_t m_samplesDB[2*HBFilterOrder][2]; // double buffer technique with even/odd amnd I/Q stride int32_t m_samplesAligned[HBFilterOrder][2] __attribute__ ((aligned (16))); int m_ptr; int m_size; int m_state; int32_t m_iEvenAcc; int32_t m_qEvenAcc; int32_t m_iOddAcc; int32_t m_qOddAcc; void storeSample(const FixReal& sampleI, const FixReal& sampleQ) { m_samplesDB[m_ptr][0] = sampleI; m_samplesDB[m_ptr][1] = sampleQ; m_samplesDB[m_ptr + m_size][0] = sampleI; m_samplesDB[m_ptr + m_size][1] = sampleQ; } void storeSample(int32_t x, int32_t y) { m_samplesDB[m_ptr][0] = x; m_samplesDB[m_ptr][1] = y; m_samplesDB[m_ptr + m_size][0] = x; m_samplesDB[m_ptr + m_size][1] = y; } void advancePointer() { m_ptr = m_ptr + 1 < m_size ? m_ptr + 1: 0; } void doFIR(Sample* sample) { // calculate on odd values if ((m_ptr % 2) == 1) { m_iEvenAcc = 0; m_qEvenAcc = 0; m_iOddAcc = 0; m_qOddAcc = 0; #ifdef USE_SSE4_1 // memcpy((void *) m_samplesAligned, (const void *) &(m_samplesDB[ m_ptr + 1][0]), HBFilterOrder*2*sizeof(int32_t)); IntHalfbandFilterSTIntrinsics::workNA( m_ptr + 1, m_samplesDB, m_iEvenAcc, m_qEvenAcc, m_iOddAcc, m_qOddAcc); #else int a = m_ptr + m_size; // tip pointer - odd int b = m_ptr + 1; // tail pointer - aven for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { m_iEvenAcc += (m_samplesDB[a-1][0] + m_samplesDB[b][0]) * HBFIRFilterTraits::hbCoeffs[i]; m_iOddAcc += (m_samplesDB[a][0] + m_samplesDB[b+1][0]) * HBFIRFilterTraits::hbCoeffs[i]; m_qEvenAcc += (m_samplesDB[a-1][1] + m_samplesDB[b][1]) * HBFIRFilterTraits::hbCoeffs[i]; m_qOddAcc += (m_samplesDB[a][1] + m_samplesDB[b+1][1]) * HBFIRFilterTraits::hbCoeffs[i]; a -= 2; b += 2; } #endif m_iEvenAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2][0]) << (HBFIRFilterTraits::hbShift - 1); m_qEvenAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2][1]) << (HBFIRFilterTraits::hbShift - 1); m_iOddAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2 + 1][0]) << (HBFIRFilterTraits::hbShift - 1); m_qOddAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2 + 1][1]) << (HBFIRFilterTraits::hbShift - 1); sample->setReal(m_iEvenAcc >> HBFIRFilterTraits::hbShift -1); sample->setImag(m_qEvenAcc >> HBFIRFilterTraits::hbShift -1); } else { sample->setReal(m_iOddAcc >> HBFIRFilterTraits::hbShift -1); sample->setImag(m_qOddAcc >> HBFIRFilterTraits::hbShift -1); } } void doFIR(int32_t *x, int32_t *y) { // calculate on odd values if ((m_ptr % 2) == 1) { m_iEvenAcc = 0; m_qEvenAcc = 0; m_iOddAcc = 0; m_qOddAcc = 0; #ifdef USE_SSE4_1 // memcpy((void *) m_samplesAligned, (const void *) &(m_samplesDB[ m_ptr + 1][0]), HBFilterOrder*2*sizeof(int32_t)); IntHalfbandFilterSTIntrinsics::workNA( m_ptr + 1, m_samplesDB, m_iEvenAcc, m_qEvenAcc, m_iOddAcc, m_qOddAcc); #else int a = m_ptr + m_size; // tip pointer - odd int b = m_ptr + 1; // tail pointer - aven for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { m_iEvenAcc += (m_samplesDB[a-1][0] + m_samplesDB[b][0]) * HBFIRFilterTraits::hbCoeffs[i]; m_iOddAcc += (m_samplesDB[a][0] + m_samplesDB[b+1][0]) * HBFIRFilterTraits::hbCoeffs[i]; m_qEvenAcc += (m_samplesDB[a-1][1] + m_samplesDB[b][1]) * HBFIRFilterTraits::hbCoeffs[i]; m_qOddAcc += (m_samplesDB[a][1] + m_samplesDB[b+1][1]) * HBFIRFilterTraits::hbCoeffs[i]; a -= 2; b += 2; } #endif m_iEvenAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2][0]) << (HBFIRFilterTraits::hbShift - 1); m_qEvenAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2][1]) << (HBFIRFilterTraits::hbShift - 1); m_iOddAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2 + 1][0]) << (HBFIRFilterTraits::hbShift - 1); m_qOddAcc += ((int32_t)m_samplesDB[m_ptr + m_size/2 + 1][1]) << (HBFIRFilterTraits::hbShift - 1); *x = m_iEvenAcc >> HBFIRFilterTraits::hbShift -1; *y = m_qEvenAcc >> HBFIRFilterTraits::hbShift -1; } else { *x = m_iOddAcc >> HBFIRFilterTraits::hbShift -1; *y = m_qOddAcc >> HBFIRFilterTraits::hbShift -1; } } }; template IntHalfbandFilterST::IntHalfbandFilterST() { m_size = HBFIRFilterTraits::hbOrder; for (int i = 0; i < m_size; i++) { m_samplesDB[i][0] = 0; m_samplesDB[i][1] = 0; } m_ptr = 0; m_state = 0; m_iEvenAcc = 0; m_qEvenAcc = 0; m_iOddAcc = 0; m_qOddAcc = 0; } #endif // INCLUDE_INTHALFBANDFILTER_DB_H