/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016-2019 Edouard Griffiths, F4EXB // // // // Float half-band FIR based interpolator and decimator // // This is the double buffer variant // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_INTHALFBANDFILTER_DBF_H #define INCLUDE_INTHALFBANDFILTER_DBF_H #include #include "dsp/dsptypes.h" #include "dsp/hbfiltertraits.h" #include "export.h" template class SDRBASE_API IntHalfbandFilterDBF { public: IntHalfbandFilterDBF(); void myDecimate(AccuType x1, AccuType y1, AccuType *x2, AccuType *y2) { storeSample(x1, y1); advancePointer(); storeSample(*x2, *y2); doFIR(x2, y2); advancePointer(); } /** Optimized upsampler by 2 not calculating FIR with inserted null samples */ void myInterpolate(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2) { // insert sample into ring double buffer m_samplesDB[m_ptr][0] = *x1; m_samplesDB[m_ptr][1] = *y1; m_samplesDB[m_ptr + HBFIRFilterTraits::hbOrder/2][0] = *x1; m_samplesDB[m_ptr + HBFIRFilterTraits::hbOrder/2][1] = *y1; // advance pointer if (m_ptr < (HBFIRFilterTraits::hbOrder/2) - 1) { m_ptr++; } else { m_ptr = 0; } // first output sample calculated with the middle peak *x1 = m_samplesDB[m_ptr + (HBFIRFilterTraits::hbOrder/4) - 1][0]; *y1 = m_samplesDB[m_ptr + (HBFIRFilterTraits::hbOrder/4) - 1][1]; // second sample calculated with the filter doInterpolateFIR(x2, y2); } void myInterpolateInf(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2, qint32 *x3, qint32 *y3, qint32 *x4, qint32 *y4) { myInterpolate(x1, y1, x2, y2); myInterpolate(x3, y3, x4, y4); // rotation qint32 x; x = *x1; *x1 = *y1; *y1 = -x; *x2 = -*x2; *y2 = -*y2; x = *x3; *x3 = -*y3; *y3 = x; } void myInterpolateSup(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2, qint32 *x3, qint32 *y3, qint32 *x4, qint32 *y4) { myInterpolate(x1, y1, x2, y2); myInterpolate(x3, y3, x4, y4); // rotation qint32 x; x = *x1; *x1 = -*y1; *y1 = x; *x2 = -*x2; *y2 = -*y2; x = *x3; *x3 = *y3; *y3 = -x; } protected: SampleType m_samplesDB[2*(HBFIRFilterTraits::hbOrder - 1)][2]; // double buffer technique int m_ptr; int m_size; int m_state; void storeSample(AccuType x, AccuType y) { m_samplesDB[m_ptr][0] = x; m_samplesDB[m_ptr][1] = y; m_samplesDB[m_ptr + m_size][0] = x; m_samplesDB[m_ptr + m_size][1] = y; } void advancePointer() { m_ptr = m_ptr + 1 < m_size ? m_ptr + 1: 0; } void doFIR(AccuType *x, AccuType *y) { int a = m_ptr + m_size; // tip pointer int b = m_ptr + 1; // tail pointer AccuType iAcc = 0; AccuType qAcc = 0; for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits::hbCoeffsF[i]; qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits::hbCoeffsF[i]; a -= 2; b += 2; } iAcc += m_samplesDB[b-1][0] / 2.0; qAcc += m_samplesDB[b-1][1] / 2.0; *x = iAcc; // HB_SHIFT incorrect do not loose the gained bit *y = qAcc; } void doInterpolateFIR(qint32 *x, qint32 *y) { qint16 a = m_ptr; qint16 b = m_ptr + (HBFIRFilterTraits::hbOrder / 2) - 1; // go through samples in buffer AccuType iAcc = 0; AccuType qAcc = 0; for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits::hbCoeffsF[i]; qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits::hbCoeffsF[i]; a++; b--; } *x = iAcc * SDR_RX_SCALED; *y = qAcc * SDR_RX_SCALED; } }; template IntHalfbandFilterDBF::IntHalfbandFilterDBF() { m_size = HBFIRFilterTraits::hbOrder - 1; for (int i = 0; i < m_size; i++) { m_samplesDB[i][0] = 0; m_samplesDB[i][1] = 0; } m_ptr = 0; m_state = 0; } #endif // INCLUDE_INTHALFBANDFILTER_DBF_H