HackRF: generalize hardware LO correction to output plugin

pull/826/head
f4exb 2021-03-29 05:59:00 +02:00
rodzic 3fafd22af1
commit e3e8249987
6 zmienionych plików z 105 dodań i 104 usunięć

Wyświetl plik

@ -17,6 +17,8 @@
#include <stdio.h>
#include <QtGlobal>
#include <QDebug>
#include "devicehackrf.h"
DeviceHackRF::DeviceHackRF()
@ -153,3 +155,92 @@ void DeviceHackRF::enumOriginDevices(const QString& hardwareId, PluginInterface:
hackrf_device_list_free(hackrf_devices);
}
void DeviceHackRF::setDevicePPMCorrection(hackrf_device *dev, qint32 loPPMTenths)
{
if (!dev) {
return;
}
hackrf_error rc = HACKRF_SUCCESS;
const uint32_t msnaRegBase = 26; // Multisynth NA config register base
const int32_t msnaFreq = 800000000; // Multisynth NA target frequency
int32_t xo = 25000000; //Crystal frequency
int32_t a; // Multisynth NA XTAL multiplier integer 32 * 25mhz = 800mhz
int32_t b; // Multisynth NA XTAL multiplier fractional numerator 0 to 1048575
int32_t c; // Multisynth NA XTAL multiplier fractional denominator 1048575 max resolution
int64_t rem;
int32_t p1, p2, p3; // raw register values
xo = xo - xo/1000000*loPPMTenths/10; //adjust crystal freq by ppm error
a = msnaFreq / xo; //multiplier integer
rem = msnaFreq % xo; // multiplier remainder
if (rem)
{ //fraction mode
b = ((rem * 10485750)/xo +5) /10; //multiplier fractional numerator with rounding
c = 1048575; //multiplier fractional divisor
rc = (hackrf_error) hackrf_si5351c_write(dev, 22, 128); // MSNA set fractional mode
qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA set to fraction mode.";
}
else
{ //integer mode
b = 0;
c = 1;
rc = (hackrf_error) hackrf_si5351c_write(dev, 22, 0); // MSNA set integer mode
qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA set to integer mode.";
}
qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA rem" << rem;
qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA xoppm" << loPPMTenths / 10.0f;
qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA xo" << xo;
qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA a" << a;
qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA b" << b;
qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA c" << c;
p1 = 128*a + (128 * b/c) - 512;
p2 = (128*b) % c;
p3 = c;
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(dev,msnaRegBase, (p3 >> 8) & 0xFF); // reg 26 MSNA_P3[15:8]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 1, p3 & 0xFF); // reg 27 MSNA_P3[7:0]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 2, (p1 >> 16) & 0x3); // reg28 bits 1:0 MSNA_P1[17:16]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 3, (p1 >> 8) & 0xFF); // reg 29 MSNA_P1[15:8]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 4, p1 & 0xFF); // reg 30 MSNA_P1[7:0]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 5, ((p3 & 0xF0000) >> 12) | ((p2 >> 16) & 0xF)); // bits 7:4 MSNA_P3[19:16], reg31 bits 3:0 MSNA_P2[19:16]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 6, (p2 >> 8) & 0xFF); // reg 32 MSNA_P2[15:8]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(dev, msnaRegBase + 7, p2 & 0xFF); // reg 33 MSNA_P2[7:0]
}
if (rc != HACKRF_SUCCESS)
{
qDebug("DeviceHackRF::setDevicePPMCorrection: XTAL error adjust failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "DeviceHackRF::setDevicePPMCorrection: si5351c MSNA registers"
<< msnaRegBase << "<-" << ((p3 >> 8) & 0xFF)
<< (msnaRegBase + 1) << "<-" << (p3 & 0xFF)
<< (msnaRegBase + 2) << "<-" << ((p1 >> 16) & 0x3)
<< (msnaRegBase + 3) << "<-" << ((p1 >> 8) & 0xFF)
<< (msnaRegBase + 4) << "<-" << (p1 & 0xFF)
<< (msnaRegBase + 5) << "<-" << (((p3 & 0xF0000) >> 12) | ((p2 >> 16) & 0xF))
<< (msnaRegBase + 6) << "<-" << ((p2 >> 8) & 0xFF)
<< (msnaRegBase + 7) << "<-" << (p2 & 0xFF);
qDebug() << "DeviceHackRF::setDevicePPMCorrection: XTAL error adjusted by" << (loPPMTenths / 10.0f) << "PPM.";
}
}

Wyświetl plik

@ -30,6 +30,7 @@ public:
static hackrf_device *open_hackrf(int sequence);
static hackrf_device *open_hackrf(const char * const serial);
static void enumOriginDevices(const QString& hardwareId, PluginInterface::OriginDevices& originDevices);
static void setDevicePPMCorrection(hackrf_device *dev, qint32 loPPMTenths);
protected:
DeviceHackRF();
DeviceHackRF(const DeviceHackRF&) {}

Wyświetl plik

@ -306,20 +306,19 @@ bool HackRFOutput::handleMessage(const Message& message)
}
}
void HackRFOutput::setDeviceCenterFrequency(quint64 freq_hz, qint32 LOppmTenths)
void HackRFOutput::setDeviceCenterFrequency(quint64 freq_hz)
{
if (!m_dev) {
return;
}
qint64 df = ((qint64)freq_hz * LOppmTenths) / 10000000LL;
hackrf_error rc = (hackrf_error) hackrf_set_freq(m_dev, static_cast<uint64_t>(freq_hz + df));
hackrf_error rc = (hackrf_error) hackrf_set_freq(m_dev, static_cast<uint64_t>(freq_hz));
if (rc != HACKRF_SUCCESS) {
qWarning("HackRFOutput::setDeviceCenterFrequency: could not frequency to %llu Hz", freq_hz + df);
} else {
qDebug("HackRFOutput::setDeviceCenterFrequency: frequency set to %llu Hz", freq_hz + df);
}
if (rc != HACKRF_SUCCESS) {
qWarning("HackRFInput::setDeviceCenterFrequency: could not frequency to %llu Hz", freq_hz);
} else {
qDebug("HackRFInput::setDeviceCenterFrequency: frequency set to %llu Hz", freq_hz);
}
}
bool HackRFOutput::applySettings(const HackRFOutputSettings& settings, bool force)
@ -413,8 +412,10 @@ bool HackRFOutput::applySettings(const HackRFOutputSettings& settings, bool forc
if ((m_settings.m_centerFrequency != settings.m_centerFrequency) || force) {
reverseAPIKeys.append("centerFrequency");
}
if ((m_settings.m_LOppmTenths != settings.m_LOppmTenths) || force) {
if ((m_settings.m_LOppmTenths != settings.m_LOppmTenths) || force)
{
reverseAPIKeys.append("LOppmTenths");
DeviceHackRF::setDevicePPMCorrection(m_dev, settings.m_LOppmTenths);
}
if ((m_settings.m_fcPos != settings.m_fcPos) || force) {
reverseAPIKeys.append("fcPos");
@ -428,7 +429,6 @@ bool HackRFOutput::applySettings(const HackRFOutputSettings& settings, bool forc
if ((m_settings.m_centerFrequency != settings.m_centerFrequency) ||
(m_settings.m_devSampleRate != settings.m_devSampleRate) ||
(m_settings.m_LOppmTenths != settings.m_LOppmTenths) ||
(m_settings.m_log2Interp != settings.m_log2Interp) ||
(m_settings.m_fcPos != settings.m_fcPos) ||
(m_settings.m_transverterMode != settings.m_transverterMode) ||
@ -441,7 +441,7 @@ bool HackRFOutput::applySettings(const HackRFOutputSettings& settings, bool forc
(DeviceSampleSink::fcPos_t) settings.m_fcPos,
settings.m_devSampleRate,
settings.m_transverterMode);
setDeviceCenterFrequency(deviceCenterFrequency, settings.m_LOppmTenths);
setDeviceCenterFrequency(deviceCenterFrequency);
if (m_deviceAPI->getSourceBuddies().size() > 0)
{

Wyświetl plik

@ -159,7 +159,7 @@ private:
void closeDevice();
bool applySettings(const HackRFOutputSettings& settings, bool force);
// hackrf_device *open_hackrf_from_sequence(int sequence);
void setDeviceCenterFrequency(quint64 freq_hz, qint32 LOppmTenths);
void setDeviceCenterFrequency(quint64 freq_hz);
void webapiReverseSendSettings(QList<QString>& deviceSettingsKeys, const HackRFOutputSettings& settings, bool force);
void webapiReverseSendStartStop(bool start);

Wyświetl plik

@ -331,96 +331,6 @@ void HackRFInput::setDeviceCenterFrequency(quint64 freq_hz)
}
}
void HackRFInput::setDevicePPMCorrection(qint32 loPPMTenths)
{
if (!m_dev) {
return;
}
hackrf_error rc = HACKRF_SUCCESS;
const uint32_t msnaRegBase = 26; // Multisynth NA config register base
const int32_t msnaFreq = 800000000; // Multisynth NA target frequency
int32_t xo = 25000000; //Crystal frequency
int32_t a; // Multisynth NA XTAL multiplier integer 32 * 25mhz = 800mhz
int32_t b; // Multisynth NA XTAL multiplier fractional numerator 0 to 1048575
int32_t c; // Multisynth NA XTAL multiplier fractional denominator 1048575 max resolution
int64_t rem;
int32_t p1, p2, p3; // raw register values
xo = xo - xo/1000000*loPPMTenths/10; //adjust crystal freq by ppm error
a = msnaFreq / xo; //multiplier integer
rem = msnaFreq % xo; // multiplier remainder
if (rem)
{ //fraction mode
b = ((rem * 10485750)/xo +5) /10; //multiplier fractional numerator with rounding
c = 1048575; //multiplier fractional divisor
rc = (hackrf_error) hackrf_si5351c_write(m_dev, 22, 128); // MSNA set fractional mode
qDebug() << "HackRFInput::setDevicePPMCorrection: si5351c MSNA set to fraction mode.";
}
else
{ //integer mode
b = 0;
c = 1;
rc = (hackrf_error) hackrf_si5351c_write(m_dev, 22, 0); // MSNA set integer mode
qDebug() << "HackRFInput::setDevicePPMCorrection: si5351c MSNA set to integer mode.";
}
qDebug() << "HackRFInput::setDevicePPMCorrection: si5351c MSNA rem" << rem;
qDebug() << "HackRFInput::setDevicePPMCorrection: si5351c MSNA xoppm" << loPPMTenths / 10.0f;
qDebug() << "HackRFInput::setDevicePPMCorrection: si5351c MSNA xo" << xo;
qDebug() << "HackRFInput::setDevicePPMCorrection: si5351c MSNA a" << a;
qDebug() << "HackRFInput::setDevicePPMCorrection: si5351c MSNA b" << b;
qDebug() << "HackRFInput::setDevicePPMCorrection: si5351c MSNA c" << c;
p1 = 128*a + (128 * b/c) - 512;
p2 = (128*b) % c;
p3 = c;
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(m_dev,msnaRegBase, (p3 >> 8) & 0xFF); // reg 26 MSNA_P3[15:8]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(m_dev, msnaRegBase + 1, p3 & 0xFF); // reg 27 MSNA_P3[7:0]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(m_dev, msnaRegBase + 2, (p1 >> 16) & 0x3); // reg28 bits 1:0 MSNA_P1[17:16]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(m_dev, msnaRegBase + 3, (p1 >> 8) & 0xFF); // reg 29 MSNA_P1[15:8]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(m_dev, msnaRegBase + 4, p1 & 0xFF); // reg 30 MSNA_P1[7:0]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(m_dev, msnaRegBase + 5, ((p3 & 0xF0000) >> 12) | ((p2 >> 16) & 0xF)); // bits 7:4 MSNA_P3[19:16], reg31 bits 3:0 MSNA_P2[19:16]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(m_dev, msnaRegBase + 6, (p2 >> 8) & 0xFF); // reg 32 MSNA_P2[15:8]
}
if (rc == HACKRF_SUCCESS) {
rc = (hackrf_error) hackrf_si5351c_write(m_dev, msnaRegBase + 7, p2 & 0xFF); // reg 33 MSNA_P2[7:0]
}
if (rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: XTAL error adjust failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput::applySettings: si5351c MSNA registers"
<< msnaRegBase << "<-" << ((p3 >> 8) & 0xFF)
<< (msnaRegBase + 1) << "<-" << (p3 & 0xFF)
<< (msnaRegBase + 2) << "<-" << ((p1 >> 16) & 0x3)
<< (msnaRegBase + 3) << "<-" << ((p1 >> 8) & 0xFF)
<< (msnaRegBase + 4) << "<-" << (p1 & 0xFF)
<< (msnaRegBase + 5) << "<-" << (((p3 & 0xF0000) >> 12) | ((p2 >> 16) & 0xF))
<< (msnaRegBase + 6) << "<-" << ((p2 >> 8) & 0xFF)
<< (msnaRegBase + 7) << "<-" << (p2 & 0xFF);
qDebug() << "HackRFInput::applySettings: XTAL error adjusted by" << (loPPMTenths / 10.0f) << "PPM.";
}
}
bool HackRFInput::applySettings(const HackRFInputSettings& settings, bool force)
{
// QMutexLocker mutexLocker(&m_mutex);
@ -502,7 +412,7 @@ bool HackRFInput::applySettings(const HackRFInputSettings& settings, bool force)
if ((m_settings.m_LOppmTenths != settings.m_LOppmTenths) || force)
{
reverseAPIKeys.append("LOppmTenths");
setDevicePPMCorrection(settings.m_LOppmTenths);
DeviceHackRF::setDevicePPMCorrection(m_dev, settings.m_LOppmTenths);
}
if ((m_settings.m_fcPos != settings.m_fcPos) || force) {

Wyświetl plik

@ -160,7 +160,6 @@ private:
void closeDevice();
bool applySettings(const HackRFInputSettings& settings, bool force);
void setDeviceCenterFrequency(quint64 freq);
void setDevicePPMCorrection(qint32 loPPMTenths);
void webapiReverseSendSettings(QList<QString>& deviceSettingsKeys, const HackRFInputSettings& settings, bool force);
void webapiReverseSendStartStop(bool start);