Radio Clock: Add support for WWVB and display daylight savings

pull/968/head
Jon Beniston 2021-07-22 16:05:46 +01:00
rodzic 904c1f6add
commit 9535ecb547
4 zmienionych plików z 279 dodań i 18 usunięć

Wyświetl plik

@ -368,6 +368,11 @@
<string>TDF</string>
</property>
</item>
<item>
<property name="text">
<string>WWVB</string>
</property>
</item>
</widget>
</item>
<item>
@ -554,6 +559,32 @@
</property>
</widget>
</item>
<item>
<widget class="QLabel" name="dstLabel">
<property name="text">
<string>Daylight savings</string>
</property>
</widget>
</item>
<item>
<widget class="QLineEdit" name="dst">
<property name="minimumSize">
<size>
<width>100</width>
<height>0</height>
</size>
</property>
<property name="toolTip">
<string>Demodulator status</string>
</property>
<property name="text">
<string/>
</property>
<property name="readOnly">
<bool>true</bool>
</property>
</widget>
</item>
</layout>
</item>
</layout>

Wyświetl plik

@ -46,14 +46,16 @@ RadioClockSink::RadioClockSink(RadioClock *radioClock) :
m_periodCount(0),
m_gotMinuteMarker(false),
m_second(0),
m_dst(RadioClockSettings::UNKNOWN),
m_zeroCount(0),
m_sampleBufferIndex(0)
m_sampleBufferIndex(0),
m_gotMarker(false)
{
m_phaseDiscri.setFMScaling(RadioClockSettings::RADIOCLOCK_CHANNEL_SAMPLE_RATE / (2.0f * 20.0/M_PI));
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
for (int i = 0; i < 7; i++) {
for (int i = 0; i < RadioClockSettings::m_scopeStreams; i++) {
m_sampleBuffer[i].resize(m_sampleBufferSize);
}
}
@ -78,13 +80,14 @@ void RadioClockSink::sampleToScope(Complex sample)
m_sampleBuffer[4][m_sampleBufferIndex] = Complex(m_data, 0.0f);
m_sampleBuffer[5][m_sampleBufferIndex] = Complex(m_sample, 0.0f);
m_sampleBuffer[6][m_sampleBufferIndex] = Complex(m_gotMinuteMarker, 0.0f);
m_sampleBuffer[7][m_sampleBufferIndex] = Complex(m_gotMarker, 0.0f);
m_sampleBufferIndex++;
if (m_sampleBufferIndex == m_sampleBufferSize)
{
std::vector<ComplexVector::const_iterator> vbegin;
for (int i = 0; i < 7; i++) {
for (int i = 0; i < RadioClockSettings::m_scopeStreams; i++) {
vbegin.push_back(m_sampleBuffer[i].begin());
}
@ -139,17 +142,19 @@ int RadioClockSink::bcd(int firstBit, int lastBit)
}
// Extract binary-coded decimal from time code - MSB first
int RadioClockSink::bcdMSB(int firstBit, int lastBit)
int RadioClockSink::bcdMSB(int firstBit, int lastBit, int skipBit1, int skipBit2)
{
const int vals[] = {1, 2, 4, 8, 10, 20, 40, 80};
const int vals[] = {1, 2, 4, 8, 10, 20, 40, 80, 100, 200};
int idx = 0;
int val = 0;
for (int i = lastBit; i >= firstBit; i--)
{
if (m_timeCode[i]) {
val += vals[idx];
if ((i != skipBit1) && (i != skipBit2)) {
if (m_timeCode[i]) {
val += vals[idx];
}
idx++;
}
idx++;
}
return val;
}
@ -264,6 +269,19 @@ void RadioClockSink::dcf77()
parityError= "Data parity error";
}
// Daylight savings
if (m_timeCode[17] && m_timeCode[16]) {
m_dst = m_dst = RadioClockSettings::ENDING;
} else if (m_timeCode[17]) {
m_dst = m_dst = RadioClockSettings::IN_EFFECT;
} else if (m_timeCode[18] && m_timeCode[16]) {
m_dst = m_dst = RadioClockSettings::STARTING;
} else if (m_timeCode[18]) {
m_dst = RadioClockSettings::NOT_IN_EFFECT;
} else {
m_dst = RadioClockSettings::UNKNOWN;
}
if (parityError.isEmpty())
{
// Bit 17 indicates CEST rather than CET
@ -289,7 +307,7 @@ void RadioClockSink::dcf77()
if (getMessageQueueToChannel())
{
RadioClock::MsgDateTime *msg = RadioClock::MsgDateTime::create(m_dateTime);
RadioClock::MsgDateTime *msg = RadioClock::MsgDateTime::create(m_dateTime, m_dst);
getMessageQueueToChannel()->push(msg);
}
}
@ -406,6 +424,19 @@ void RadioClockSink::tdf(Complex &ci)
int month = bcd(45, 49);
int year = 2000 + bcd(50, 57);
// Daylight savings
if (m_timeCode[17] && m_timeCode[16]) {
m_dst = m_dst = RadioClockSettings::ENDING;
} else if (m_timeCode[17]) {
m_dst = m_dst = RadioClockSettings::IN_EFFECT;
} else if (m_timeCode[18] && m_timeCode[16]) {
m_dst = m_dst = RadioClockSettings::STARTING;
} else if (m_timeCode[18]) {
m_dst = RadioClockSettings::NOT_IN_EFFECT;
} else {
m_dst = RadioClockSettings::UNKNOWN;
}
QString parityError;
if (!evenParity(21, 27, m_timeCode[28])) {
parityError = "Minute parity error";
@ -442,7 +473,7 @@ void RadioClockSink::tdf(Complex &ci)
if (getMessageQueueToChannel())
{
RadioClock::MsgDateTime *msg = RadioClock::MsgDateTime::create(m_dateTime);
RadioClock::MsgDateTime *msg = RadioClock::MsgDateTime::create(m_dateTime, m_dst);
getMessageQueueToChannel()->push(msg);
}
}
@ -537,6 +568,17 @@ void RadioClockSink::msf60()
int month = bcdMSB(25, 29);
int year = 2000 + bcdMSB(17, 24);
// Daylight savings
if (m_timeCodeB[58] && m_timeCodeB[53]) {
m_dst = m_dst = RadioClockSettings::ENDING;
} else if (m_timeCodeB[58]) {
m_dst = m_dst = RadioClockSettings::IN_EFFECT;
} else if (m_timeCodeB[53]) {
m_dst = m_dst = RadioClockSettings::STARTING;
} else {
m_dst = RadioClockSettings::NOT_IN_EFFECT;
}
QString parityError;
if (!oddParity(39, 51, m_timeCodeB[57])) {
parityError = "Hour/minute parity error";
@ -573,7 +615,173 @@ void RadioClockSink::msf60()
if (getMessageQueueToChannel())
{
RadioClock::MsgDateTime *msg = RadioClock::MsgDateTime::create(m_dateTime);
RadioClock::MsgDateTime *msg = RadioClock::MsgDateTime::create(m_dateTime, m_dst);
getMessageQueueToChannel()->push(msg);
}
}
else if (m_periodCount == 1000)
{
m_periodCount = 0;
}
}
m_prevData = m_data;
}
// USA WWVB 60kHz
// https://en.wikipedia.org/wiki/WWVB
void RadioClockSink::wwvb()
{
// WWVB reduces carrier by -17dB
// 0.2s reduction is zero bit, 0.5s reduction is one bit
// 0.8s reduction is a marker. Seven markers per minute (0, 9, 19, 29, 39, 49, and 59s) and for leap second
m_threshold = m_thresholdMovingAverage.asDouble() * m_linearThreshold; // xdB below average
m_data = m_magsq > m_threshold;
// Look for minute marker - two consequtive markers
if ((m_data == 0) && (m_prevData == 1))
{
if ( (m_highCount <= RadioClockSettings::RADIOCLOCK_CHANNEL_SAMPLE_RATE * 0.3)
&& (m_lowCount >= RadioClockSettings::RADIOCLOCK_CHANNEL_SAMPLE_RATE * 0.7)
)
{
if (m_gotMarker && !m_gotMinuteMarker)
{
qDebug() << "RadioClockSink::wwvb - Minute marker: (low " << m_lowCount << " high " << m_highCount << ") prev period " << m_periodCount;
m_gotMinuteMarker = true;
m_second = 1;
m_secondMarkers = 1;
if (getMessageQueueToChannel()) {
getMessageQueueToChannel()->push(RadioClock::MsgStatus::create("Got minute marker"));
}
}
else
{
qDebug() << "RadioClockSink::wwvb - Marker: (low " << m_lowCount << " high " << m_highCount << ") prev period " << m_periodCount << " second " << m_second;
}
m_gotMarker = true;
m_periodCount = 0;
}
else
{
m_gotMarker = false;
}
m_lowCount = 0;
}
else if ((m_data == 1) && (m_prevData == 0))
{
m_highCount = 0;
}
else if (m_data == 1)
{
m_highCount++;
}
else if (m_data == 0)
{
m_lowCount++;
}
m_sample = false;
if (m_gotMinuteMarker)
{
m_periodCount++;
if (m_periodCount == 100)
{
// Check we get second marker
m_secondMarkers += m_data == 0;
// If we see too many 1s instead of 0s, assume we've lost the signal
if ((m_second > 10) && (m_secondMarkers / m_second < 0.7))
{
qDebug() << "RadioClockSink::wwvb - Lost lock: " << m_secondMarkers << m_second;
m_gotMinuteMarker = false;
if (getMessageQueueToChannel()) {
getMessageQueueToChannel()->push(RadioClock::MsgStatus::create("Looking for minute marker"));
}
}
m_sample = true;
}
else if (m_periodCount == 350)
{
// Get data bit A for timecode
m_timeCode[m_second] = !m_data; // No carrier = 1, carrier = 0
m_sample = true;
}
else if (m_periodCount == 950)
{
if (m_second == 59)
{
// Check markers are decoded as 1s
const QList<int> markerBits = {9, 19, 29, 39, 49, 59};
int missingMarkers = 0;
for (int i = 0; i < markerBits.size(); i++)
{
if (m_timeCode[markerBits[i]] != 1)
{
missingMarkers++;
qDebug() << "RadioClockSink::wwvb - Missing marker at bit " << markerBits[i];
}
}
if (missingMarkers >= 3)
{
m_gotMinuteMarker = false;
qDebug() << "RadioClockSink::wwvb - Lost lock: Missing markers: " << missingMarkers;
if (getMessageQueueToChannel()) {
getMessageQueueToChannel()->push(RadioClock::MsgStatus::create("Looking for minute marker"));
}
}
// Check 0s where expected
const QList<int> zeroBits = {4, 10, 11, 14, 20, 21, 24, 34, 35, 44, 54};
for (int i = 0; i < zeroBits.size(); i++)
{
if (m_timeCode[zeroBits[i]] != 0) {
qDebug() << "RadioClockSink::wwvb - Unexpected 1 at bit " << zeroBits[i];
}
}
// Decode timecode to time and date
int minute = bcdMSB(1, 8, 4);
int hour = bcdMSB(12, 18, 14);
int dayOfYear = bcdMSB(22, 33, 24, 29);
int year = 2000 + bcdMSB(45, 53, 49);
// Daylight savings
int dst = (m_timeCode[57] << 1) | m_timeCode[58];
switch (dst)
{
case 0:
m_dst = RadioClockSettings::NOT_IN_EFFECT;
break;
case 1:
m_dst = RadioClockSettings::ENDING;
break;
case 2:
m_dst = RadioClockSettings::STARTING;
break;
case 3:
m_dst = RadioClockSettings::IN_EFFECT;
break;
}
// Time is UTC
QDate date(year, 1, 1);
date = date.addDays(dayOfYear - 1);
m_dateTime = QDateTime(date, QTime(hour, minute), Qt::OffsetFromUTC, 0);
if (getMessageQueueToChannel()) {
getMessageQueueToChannel()->push(RadioClock::MsgStatus::create("OK"));
}
m_second = 0;
}
else
{
m_second++;
m_dateTime = m_dateTime.addSecs(1);
}
if (getMessageQueueToChannel())
{
RadioClock::MsgDateTime *msg = RadioClock::MsgDateTime::create(m_dateTime, m_dst);
getMessageQueueToChannel()->push(msg);
}
}
@ -609,6 +817,8 @@ void RadioClockSink::processOneSample(Complex &ci)
dcf77();
} else if (m_settings.m_modulation == RadioClockSettings::TDF) {
tdf(ci);
} else if (m_settings.m_modulation == RadioClockSettings::WWVB) {
wwvb();
} else {
msf60();
}
@ -667,6 +877,7 @@ void RadioClockSink::applySettings(const RadioClockSettings& settings, bool forc
m_highCount = 0;
m_zeroCount = 0;
m_second = 0;
m_dst = RadioClockSettings::UNKNOWN;
if (getMessageQueueToChannel()) {
getMessageQueueToChannel()->push(RadioClock::MsgStatus::create("Looking for minute marker"));
}

Wyświetl plik

@ -109,9 +109,9 @@ private:
MessageQueue *m_messageQueueToChannel;
MovingAverageUtil<Real, double, 40> m_movingAverage; //!< Moving average has sharpest step response of LPFs
MovingAverageUtil<Real, double, 80> m_movingAverage; //!< Moving average has sharpest step response of LPFs
MovingAverageUtil<Real, double, RadioClockSettings::RADIOCLOCK_CHANNEL_SAMPLE_RATE> m_thresholdMovingAverage; // Average over 1 second
MovingAverageUtil<Real, double, 10*RadioClockSettings::RADIOCLOCK_CHANNEL_SAMPLE_RATE> m_thresholdMovingAverage; // Average over 10 seconds (because VVWB markers are 80% off)
int m_data; //!< Demod data before clocking
int m_prevData; //!< Previous value of m_data
@ -129,6 +129,7 @@ private:
Real m_threshold; //!< Current threshold for display on scope
Real m_linearThreshold; //!< settings.m_threshold as a linear value rather than dB
RadioClockSettings::DST m_dst; //!< Daylight savings time status
// MSF demod state
int m_timeCodeB[61];
@ -138,15 +139,18 @@ private:
int m_zeroCount;
MovingAverageUtil<Real, double, 10> m_fmDemodMovingAverage;
int m_bits[4];
ComplexVector m_sampleBuffer[7];
ComplexVector m_sampleBuffer[RadioClockSettings::m_scopeStreams];
static const int m_sampleBufferSize = 60;
int m_sampleBufferIndex;
// WWVB state
bool m_gotMarker; //!< Marker in previous second
void processOneSample(Complex &ci);
MessageQueue *getMessageQueueToChannel() { return m_messageQueueToChannel; }
void sampleToScope(Complex sample);
int bcd(int firstBit, int lastBit);
int bcdMSB(int firstBit, int lastBit);
int bcdMSB(int firstBit, int lastBit, int skipBit1=0, int skipBit2=0);
int xorBits(int firstBit, int lastBit);
bool evenParity(int firstBit, int lastBit, int parityBit);
bool oddParity(int firstBit, int lastBit, int parityBit);
@ -154,6 +158,7 @@ private:
void dcf77();
void tdf(Complex &ci);
void msf60();
void wwvb();
};
#endif // INCLUDE_RADIOCLOCKSINK_H

Wyświetl plik

@ -7,8 +7,9 @@ This plugin can be used to receive the time and date as broadcast on Low Frequen
* [MSF](https://en.wikipedia.org/wiki/Time_from_NPL_(MSF)) - UK - 60kHz
* [DCF77](https://en.wikipedia.org/wiki/DCF77) - Germany - 77.5kHz
* [TDF](https://en.wikipedia.org/wiki/TDF_time_signal) - France - 162kHz
* [WWVB](https://en.wikipedia.org/wiki/WWVB) - USA - 60kHz
If you'd like other transmitters to be supported (such as WWVB), please upload a .sdriq file to SDRangel's [github issue tracker](https://github.com/f4exb/sdrangel/issues).
If you'd like other transmitters to be supported, please upload a .sdriq file to SDRangel's [github issue tracker](https://github.com/f4exb/sdrangel/issues).
Typically, it will take two minutes before the time is able to be displayed (up to one minute to find the minute marker, then another minute to receive the timecode).
@ -38,7 +39,7 @@ This specifies the bandwidth of a LPF that is applied to the input signal to lim
<h3>5: TH - Threshold</h3>
For MSF and DCF77, specifies the threshold in dB below the average carrier power level that determines a binary 0 or 1.
For MSF, DCF77 and WWVB, specifies the threshold in dB below the average carrier power level that determines a binary 0 or 1.
<h3>6: Modulation</h3>
@ -47,12 +48,13 @@ Specifies the modulation and timecode encoding used:
* MSF - OOK (On-off keying)
* DCF77 - OOK (On-off keying)
* TDF - PM (Phase modulation)
* WWVB - OOK (On-off keying)
<h3>7: Display Time Zone</h3>
Specifies the time zone used to display the received time. This can be:
* Broadcast - the time is displayed as broadcast (which is typically the time zone of the country the signal is broadcast from, adjusted for summer time).
* Broadcast - the time is displayed as broadcast (which is typically the time zone of the country the signal is broadcast from, adjusted for summer time. WWVB broadcasts UTC).
* Local - the time is converted to the local time (as determined by your operating system's time zone).
* UTC - the time is converted to Coordinated Universal Time.
@ -77,6 +79,17 @@ The date and time fields are only valid when the status indicates OK.
If while in the OK state several second markers are not detected, the status will return to Looking for minute marker.
<h3>11: Daylight Savings</h3>
Displays the daylight savings state:
* In effect
* Not in effect
* Starting
* Ending
For MSF, DCF77 and TDF, starting/ending is indicated one hour before the change. For WWVB it is set for the whole day.
<h3>Waveforms</h3>
The scope shows how various variables within the demodulator vary with time. These can be used to help debug operation of the demodulator.
@ -90,6 +103,7 @@ The signals available include:
- Data - Demodulated data. For MSF/DCF77, this data=MagSq>TH.
- Samp - Indicates when data is sampled (either for the second marker or for a timecode data bit).
- GotMM - Indicates whether the minute marker has been received. Cleared when synchronization to second marker is lost.
- GotM - Indicates when a marker is detected. For WWVB only.
As an example of how this can be used, we can plot the MagSq as X and the calculated TH as Y, which can help to set the value of the
TH setting to an approproate level.