Benchmarking: added float->float decimators and corresponding benchmark test

pull/177/head
f4exb 2018-04-25 18:01:01 +02:00
rodzic b03e9c59cb
commit 17ea5f29b3
12 zmienionych plików z 2074 dodań i 25 usunięć

Wyświetl plik

@ -315,6 +315,7 @@ target_link_libraries(sdrangelbench
${QT_LIBRARIES}
)
target_compile_features(sdrangelbench PRIVATE cxx_generalized_initializers) # cmake >= 3.1.0
qt5_use_modules(sdrangelbench Multimedia)
##############################################################################

Wyświetl plik

@ -21,6 +21,7 @@ set(sdrbase_SOURCES
dsp/ctcssdetector.cpp
dsp/cwkeyer.cpp
dsp/cwkeyersettings.cpp
dsp/decimatorsff.cpp
dsp/decimatorsfi.cpp
dsp/dspcommands.cpp
dsp/dspengine.cpp
@ -104,6 +105,7 @@ set(sdrbase_HEADERS
dsp/cwkeyer.h
dsp/cwkeyersettings.h
dsp/decimators.h
dsp/decimatorsff.h
dsp/decimatorsfi.h
dsp/decimatorsu.h
dsp/interpolators.h
@ -125,7 +127,8 @@ set(sdrbase_HEADERS
dsp/hbfiltertraits.h
dsp/inthalfbandfilter.h
dsp/inthalfbandfilterdb.h
dsp/inthalfbandfilterdbf.h
dsp/inthalfbandfilterdbff.h
dsp/inthalfbandfilterdbfi.h
dsp/inthalfbandfiltereo1.h
dsp/inthalfbandfiltereo1i.h
dsp/inthalfbandfilterst.h

Plik diff jest za duży Load Diff

Wyświetl plik

@ -0,0 +1,59 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2018 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef SDRBASE_DSP_DECIMATORSFF_H_
#define SDRBASE_DSP_DECIMATORSFF_H_
#include "dsp/inthalfbandfilterdbff.h"
#include "export.h"
#define DECIMATORSFF_HB_FILTER_ORDER 64
/** Decimators with float input and float output */
class SDRBASE_API DecimatorsFF
{
public:
void decimate1(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate2_inf(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate2_sup(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate2_cen(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate4_inf(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate4_sup(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate4_cen(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate8_inf(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate8_sup(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate8_cen(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate16_inf(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate16_sup(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate16_cen(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate32_inf(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate32_sup(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate32_cen(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate64_inf(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate64_sup(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate64_cen(FSampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
IntHalfbandFilterDBFF<double, float, DECIMATORSFF_HB_FILTER_ORDER> m_decimator2; // 1st stages
IntHalfbandFilterDBFF<double, float, DECIMATORSFF_HB_FILTER_ORDER> m_decimator4; // 2nd stages
IntHalfbandFilterDBFF<double, float, DECIMATORSFF_HB_FILTER_ORDER> m_decimator8; // 3rd stages
IntHalfbandFilterDBFF<double, float, DECIMATORSFF_HB_FILTER_ORDER> m_decimator16; // 4th stages
IntHalfbandFilterDBFF<double, float, DECIMATORSFF_HB_FILTER_ORDER> m_decimator32; // 5th stages
IntHalfbandFilterDBFF<double, float, DECIMATORSFF_HB_FILTER_ORDER> m_decimator64; // 6th stages
};
#endif /* SDRBASE_DSP_DECIMATORSFF_H_ */

Wyświetl plik

@ -17,10 +17,10 @@
#ifndef SDRBASE_DSP_DECIMATORSFI_H_
#define SDRBASE_DSP_DECIMATORSFI_H_
#include "dsp/inthalfbandfilterdbf.h"
#include "dsp/inthalfbandfilterdbfi.h"
#include "export.h"
#define DECIMATORSF_HB_FILTER_ORDER 64
#define DECIMATORSFI_HB_FILTER_ORDER 64
/** Decimators with float input and integer output */
class SDRBASE_API DecimatorsFI
@ -46,12 +46,12 @@ public:
void decimate64_sup(SampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
void decimate64_cen(SampleVector::iterator* it, const float* buf, qint32 nbIAndQ);
IntHalfbandFilterDBF<double, float, DECIMATORSF_HB_FILTER_ORDER> m_decimator2; // 1st stages
IntHalfbandFilterDBF<double, float, DECIMATORSF_HB_FILTER_ORDER> m_decimator4; // 2nd stages
IntHalfbandFilterDBF<double, float, DECIMATORSF_HB_FILTER_ORDER> m_decimator8; // 3rd stages
IntHalfbandFilterDBF<double, float, DECIMATORSF_HB_FILTER_ORDER> m_decimator16; // 4th stages
IntHalfbandFilterDBF<double, float, DECIMATORSF_HB_FILTER_ORDER> m_decimator32; // 5th stages
IntHalfbandFilterDBF<double, float, DECIMATORSF_HB_FILTER_ORDER> m_decimator64; // 6th stages
IntHalfbandFilterDBFI<double, float, DECIMATORSFI_HB_FILTER_ORDER> m_decimator2; // 1st stages
IntHalfbandFilterDBFI<double, float, DECIMATORSFI_HB_FILTER_ORDER> m_decimator4; // 2nd stages
IntHalfbandFilterDBFI<double, float, DECIMATORSFI_HB_FILTER_ORDER> m_decimator8; // 3rd stages
IntHalfbandFilterDBFI<double, float, DECIMATORSFI_HB_FILTER_ORDER> m_decimator16; // 4th stages
IntHalfbandFilterDBFI<double, float, DECIMATORSFI_HB_FILTER_ORDER> m_decimator32; // 5th stages
IntHalfbandFilterDBFI<double, float, DECIMATORSFI_HB_FILTER_ORDER> m_decimator64; // 6th stages
};

Wyświetl plik

@ -64,6 +64,28 @@ struct Sample
FixReal m_imag;
};
struct FSample
{
FSample() : m_real(0), m_imag(0) {}
FSample(Real real) : m_real(real), m_imag(0) {}
FSample(Real real, Real imag) : m_real(real), m_imag(imag) {}
FSample(const FSample& other) : m_real(other.m_real), m_imag(other.m_imag) {}
inline FSample& operator=(const FSample& other) { m_real = other.m_real; m_imag = other.m_imag; return *this; }
inline FSample& operator+=(const FSample& other) { m_real += other.m_real; m_imag += other.m_imag; return *this; }
inline FSample& operator-=(const FSample& other) { m_real -= other.m_real; m_imag -= other.m_imag; return *this; }
inline FSample& operator/=(const Real& divisor) { m_real /= divisor; m_imag /= divisor; return *this; }
inline void setReal(Real v) { m_real = v; }
inline void setImag(Real v) { m_imag = v; }
inline Real real() const { return m_real; }
inline Real imag() const { return m_imag; }
Real m_real;
Real m_imag;
};
struct AudioSample {
qint16 l;
qint16 r;
@ -71,6 +93,7 @@ struct AudioSample {
#pragma pack(pop)
typedef std::vector<Sample> SampleVector;
typedef std::vector<FSample> FSampleVector;
typedef std::vector<AudioSample> AudioVector;
#endif // INCLUDE_DSPTYPES_H

Wyświetl plik

@ -0,0 +1,711 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2018 F4EXB //
// written by Edouard Griffiths //
// //
// Float half-band FIR based interpolator and decimator //
// This is the double buffer variant //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_INTHALFBANDFILTER_DBFF_H
#define INCLUDE_INTHALFBANDFILTER_DBFF_H
#include <stdint.h>
#include "dsp/dsptypes.h"
#include "dsp/hbfiltertraits.h"
#include "export.h"
template<typename AccuType, typename SampleType, uint32_t HBFilterOrder>
class SDRBASE_API IntHalfbandFilterDBFF {
public:
IntHalfbandFilterDBFF();
// downsample by 2, return center part of original spectrum
bool workDecimateCenter(FSample* sample)
{
// insert sample into ring-buffer
storeSampleReal((Real) sample->real(), (Real) sample->imag());
switch(m_state)
{
case 0:
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
default:
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, return center part of original spectrum - double buffer variant
bool workInterpolateCenterZeroStuffing(FSample* sampleIn, FSample *SampleOut)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSampleReal((Real) 0, (Real) 0);
// save result
doFIR(SampleOut);
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
storeSampleReal((Real) sampleIn->real(), (Real) sampleIn->imag());
// save result
doFIR(SampleOut);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
bool workInterpolateCenter(FSample* sampleIn, FSample *SampleOut)
{
switch(m_state)
{
case 0:
// return the middle peak
SampleOut->setReal(m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]);
SampleOut->setImag(m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]);
m_state = 1; // next state
return false; // tell caller we didn't consume the sample
default:
// calculate with non null samples
doInterpolateFIR(SampleOut);
// insert sample into ring double buffer
m_samplesDB[m_ptr][0] = sampleIn->real();
m_samplesDB[m_ptr][1] = sampleIn->imag();
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 0; // next state
return true; // tell caller we consumed the sample
}
}
// downsample by 2, return lower half of original spectrum
bool workDecimateLowerHalf(FSample* sample)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSampleReal((Real) -sample->imag(), (Real) sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
storeSampleReal((Real) -sample->real(), (Real) -sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
storeSampleReal((Real) sample->imag(), (Real) -sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
storeSampleReal((Real) sample->real(), (Real) sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
bool workInterpolateLowerHalf(FSample* sampleIn, FSample *sampleOut)
{
FSample s;
switch(m_state)
{
case 0:
// return the middle peak
sampleOut->setReal(m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // imag
sampleOut->setImag(-m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // - real
m_state = 1; // next state
return false; // tell caller we didn't consume the sample
case 1:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// insert sample into ring double buffer
m_samplesDB[m_ptr][0] = sampleIn->real();
m_samplesDB[m_ptr][1] = sampleIn->imag();
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 2; // next state
return true; // tell caller we consumed the sample
case 2:
// return the middle peak
sampleOut->setReal(-m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // - imag
sampleOut->setImag(m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // real
m_state = 3; // next state
return false; // tell caller we didn't consume the sample
default:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// insert sample into ring double buffer
m_samplesDB[m_ptr][0] = sampleIn->real();
m_samplesDB[m_ptr][1] = sampleIn->imag();
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 0; // next state
return true; // tell caller we consumed the sample
}
}
// upsample by 2, from lower half of original spectrum - double buffer variant
bool workInterpolateLowerHalfZeroStuffing(FSample* sampleIn, FSample *sampleOut)
{
FSample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSampleReal((Real) 0, (Real) 0);
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
storeSampleReal((Real) sampleIn->real(), (Real) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
storeSampleReal((Real) 0, (Real) 0);
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
storeSampleReal((Real) sampleIn->real(), (Real) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
// downsample by 2, return upper half of original spectrum
bool workDecimateUpperHalf(FSample* sample)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSampleReal((Real) sample->imag(), (Real) -sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
storeSampleReal((Real) -sample->real(), (Real) -sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
storeSampleReal((Real) -sample->imag(), (Real) sample->real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
storeSampleReal((Real) sample->real(), (Real) sample->imag());
// save result
doFIR(sample);
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
bool workInterpolateUpperHalf(FSample* sampleIn, FSample *sampleOut)
{
FSample s;
switch(m_state)
{
case 0:
// return the middle peak
sampleOut->setReal(-m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // - imag
sampleOut->setImag(m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // + real
m_state = 1; // next state
return false; // tell caller we didn't consume the sample
case 1:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// insert sample into ring double buffer
m_samplesDB[m_ptr][0] = sampleIn->real();
m_samplesDB[m_ptr][1] = sampleIn->imag();
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 2; // next state
return true; // tell caller we consumed the sample
case 2:
// return the middle peak
sampleOut->setReal(m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1]); // + imag
sampleOut->setImag(-m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0]); // - real
m_state = 3; // next state
return false; // tell caller we didn't consume the sample
default:
// calculate with non null samples
doInterpolateFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// insert sample into ring double buffer
m_samplesDB[m_ptr][0] = sampleIn->real();
m_samplesDB[m_ptr][1] = sampleIn->imag();
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = sampleIn->real();
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = sampleIn->imag();
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
m_state = 0; // next state
return true; // tell caller we consumed the sample
}
}
// upsample by 2, move original spectrum to upper half - double buffer variant
bool workInterpolateUpperHalfZeroStuffing(FSample* sampleIn, FSample *sampleOut)
{
FSample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
storeSampleReal((Real) 0, (Real) 0);
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
storeSampleReal((Real) sampleIn->real(), (Real) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
storeSampleReal((Real) 0, (Real) 0);
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
advancePointer();
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
storeSampleReal((Real) sampleIn->real(), (Real) sampleIn->imag());
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
advancePointer();
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
void myDecimate(const FSample* sample1, FSample* sample2)
{
storeSampleReal((Real) sample1->real(), (Real) sample1->imag());
advancePointer();
storeSampleReal((Real) sample2->real(), (Real) sample2->imag());
doFIR(sample2);
advancePointer();
}
void myDecimate(AccuType x1, AccuType y1, AccuType *x2, AccuType *y2)
{
storeSampleAccu(x1, y1);
advancePointer();
storeSampleAccu(*x2, *y2);
doFIRAccu(x2, y2);
advancePointer();
}
/** Simple zero stuffing and filter */
void myInterpolateZeroStuffing(FSample* sample1, FSample* sample2)
{
storeSampleReal((Real) sample1->real(), (Real) sample1->imag());
doFIR(sample1);
advancePointer();
storeSampleReal((Real) 0, (Real) 0);
doFIR(sample2);
advancePointer();
}
/** Optimized upsampler by 2 not calculating FIR with inserted null samples */
void myInterpolate(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2)
{
// insert sample into ring double buffer
m_samplesDB[m_ptr][0] = *x1;
m_samplesDB[m_ptr][1] = *y1;
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][0] = *x1;
m_samplesDB[m_ptr + HBFIRFilterTraits<HBFilterOrder>::hbOrder/2][1] = *y1;
// advance pointer
if (m_ptr < (HBFIRFilterTraits<HBFilterOrder>::hbOrder/2) - 1) {
m_ptr++;
} else {
m_ptr = 0;
}
// first output sample calculated with the middle peak
*x1 = m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][0];
*y1 = m_samplesDB[m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder/4) - 1][1];
// second sample calculated with the filter
doInterpolateFIR(x2, y2);
}
protected:
SampleType m_samplesDB[2*(HBFIRFilterTraits<HBFilterOrder>::hbOrder - 1)][2]; // double buffer technique
int m_ptr;
int m_size;
int m_state;
void storeSampleReal(const Real& sampleI, const Real& sampleQ)
{
m_samplesDB[m_ptr][0] = sampleI;
m_samplesDB[m_ptr][1] = sampleQ;
m_samplesDB[m_ptr + m_size][0] = sampleI;
m_samplesDB[m_ptr + m_size][1] = sampleQ;
}
void storeSampleAccu(AccuType x, AccuType y)
{
m_samplesDB[m_ptr][0] = x;
m_samplesDB[m_ptr][1] = y;
m_samplesDB[m_ptr + m_size][0] = x;
m_samplesDB[m_ptr + m_size][1] = y;
}
void advancePointer()
{
m_ptr = m_ptr + 1 < m_size ? m_ptr + 1: 0;
}
void doFIR(FSample* sample)
{
int a = m_ptr + m_size; // tip pointer
int b = m_ptr + 1; // tail pointer
AccuType iAcc = 0;
AccuType qAcc = 0;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffsF[i];
qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffsF[i];
a -= 2;
b += 2;
}
iAcc += m_samplesDB[b-1][0] << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
qAcc += m_samplesDB[b-1][1] << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
sample->setReal(iAcc);
sample->setImag(qAcc);
}
void doFIRAccu(AccuType *x, AccuType *y)
{
int a = m_ptr + m_size; // tip pointer
int b = m_ptr + 1; // tail pointer
AccuType iAcc = 0;
AccuType qAcc = 0;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffsF[i];
qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffsF[i];
a -= 2;
b += 2;
}
iAcc += m_samplesDB[b-1][0] / 2.0;
qAcc += m_samplesDB[b-1][1] / 2.0;
*x = iAcc; // HB_SHIFT incorrect do not loose the gained bit
*y = qAcc;
}
void doInterpolateFIR(FSample* sample)
{
qint16 a = m_ptr;
qint16 b = m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder / 2) - 1;
// go through samples in buffer
AccuType iAcc = 0;
AccuType qAcc = 0;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffsF[i];
qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffsF[i];
a++;
b--;
}
sample->setReal(iAcc);
sample->setImag(qAcc);
}
void doInterpolateFIR(Real *x, Real *y)
{
qint16 a = m_ptr;
qint16 b = m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder / 2) - 1;
// go through samples in buffer
AccuType iAcc = 0;
AccuType qAcc = 0;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffsF[i];
qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffsF[i];
a++;
b--;
}
*x = iAcc;
*y = qAcc;
}
};
template<typename AccuType, typename SampleType, uint32_t HBFilterOrder>
IntHalfbandFilterDBFF<AccuType, SampleType, HBFilterOrder>::IntHalfbandFilterDBFF()
{
m_size = HBFIRFilterTraits<HBFilterOrder>::hbOrder - 1;
for (int i = 0; i < m_size; i++)
{
m_samplesDB[i][0] = 0;
m_samplesDB[i][1] = 0;
}
m_ptr = 0;
m_state = 0;
}
#endif // INCLUDE_INTHALFBANDFILTER_DBFF_H

Wyświetl plik

@ -18,8 +18,8 @@
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_INTHALFBANDFILTER_DBF_H
#define INCLUDE_INTHALFBANDFILTER_DBF_H
#ifndef INCLUDE_INTHALFBANDFILTER_DBFI_H
#define INCLUDE_INTHALFBANDFILTER_DBFI_H
#include <stdint.h>
#include "dsp/dsptypes.h"
@ -27,9 +27,9 @@
#include "export.h"
template<typename AccuType, typename SampleType, uint32_t HBFilterOrder>
class SDRBASE_API IntHalfbandFilterDBF {
class SDRBASE_API IntHalfbandFilterDBFI {
public:
IntHalfbandFilterDBF();
IntHalfbandFilterDBFI();
// downsample by 2, return center part of original spectrum
bool workDecimateCenter(Sample* sample)
@ -694,7 +694,7 @@ protected:
};
template<typename AccuType, typename SampleType, uint32_t HBFilterOrder>
IntHalfbandFilterDBF<AccuType, SampleType, HBFilterOrder>::IntHalfbandFilterDBF()
IntHalfbandFilterDBFI<AccuType, SampleType, HBFilterOrder>::IntHalfbandFilterDBFI()
{
m_size = HBFIRFilterTraits<HBFilterOrder>::hbOrder - 1;

Wyświetl plik

@ -26,7 +26,8 @@ MainBench *MainBench::m_instance = 0;
MainBench::MainBench(qtwebapp::LoggerWithFile *logger, const ParserBench& parser, QObject *parent) :
QObject(parent),
m_logger(logger),
m_parser(parser)
m_parser(parser),
m_uniform_distribution(-1.0, 1.0)
{
qDebug() << "MainBench::MainBench: start";
m_instance = this;
@ -49,6 +50,10 @@ void MainBench::run()
testDecimateII();
} else if (m_parser.getTestType() == ParserBench::TestDecimatorsFI) {
testDecimateFI();
} else if (m_parser.getTestType() == ParserBench::TestDecimatorsFF) {
testDecimateFF();
} else {
qDebug() << "MainBench::run: unknown test type: " << m_parser.getTestType();
}
emit finished();
@ -73,13 +78,9 @@ void MainBench::testDecimateII()
}
nsecs = timer.nsecsElapsed();
QDebug debug = qDebug();
debug.noquote();
debug << tr("MainBench::testDecimateII: ran test in %L1 ns").arg(nsecs);
printResults("MainBench::testDecimateII", nsecs);
qDebug() << "MainBench::testDecimateII: cleanup test data";
delete[] buf;
}
@ -92,6 +93,8 @@ void MainBench::testDecimateFI()
float *buf = new float[m_parser.getNbSamples()*2];
m_convertBuffer.resize(m_parser.getNbSamples()/(1<<m_parser.getLog2Factor()));
auto my_rand = std::bind(m_uniform_distribution, m_generator);
std::generate(buf, buf + m_parser.getNbSamples()*2 - 1, my_rand); // make sure data is in [-1.0..1.0] range
qDebug() << "MainBench::testDecimateFI: run test";
timer.start();
@ -102,13 +105,36 @@ void MainBench::testDecimateFI()
}
nsecs = timer.nsecsElapsed();
QDebug debug = qDebug();
debug.noquote();
debug << tr("MainBench::testDecimateFI: ran test in %L1 ns").arg(nsecs);
printResults("MainBench::testDecimateFI", nsecs);
qDebug() << "MainBench::testDecimateFI: cleanup test data";
delete[] buf;
}
void MainBench::testDecimateFF()
{
QElapsedTimer timer;
qint64 nsecs;
qDebug() << "MainBench::testDecimateFF: create test data";
float *buf = new float[m_parser.getNbSamples()*2];
m_convertBufferF.resize(m_parser.getNbSamples()/(1<<m_parser.getLog2Factor()));
auto my_rand = std::bind(m_uniform_distribution, m_generator);
std::generate(buf, buf + m_parser.getNbSamples()*2 - 1, my_rand); // make sure data is in [-1.0..1.0] range
qDebug() << "MainBench::testDecimateFF: run test";
timer.start();
for (uint32_t i = 0; i < m_parser.getRepetition(); i++)
{
decimateFF(buf, m_parser.getNbSamples()*2);
}
nsecs = timer.nsecsElapsed();
printResults("MainBench::testDecimateFF", nsecs);
qDebug() << "MainBench::testDecimateFF: cleanup test data";
delete[] buf;
}
@ -175,3 +201,43 @@ void MainBench::decimateFI(const float *buf, int len)
break;
}
}
void MainBench::decimateFF(const float *buf, int len)
{
FSampleVector::iterator it = m_convertBufferF.begin();
switch (m_parser.getLog2Factor())
{
case 0:
m_decimatorsFF.decimate1(&it, buf, len);
break;
case 1:
m_decimatorsFF.decimate2_cen(&it, buf, len);
break;
case 2:
m_decimatorsFF.decimate4_cen(&it, buf, len);
break;
case 3:
m_decimatorsFF.decimate8_cen(&it, buf, len);
break;
case 4:
m_decimatorsFF.decimate16_cen(&it, buf, len);
break;
case 5:
m_decimatorsFF.decimate32_cen(&it, buf, len);
break;
case 6:
m_decimatorsFF.decimate64_cen(&it, buf, len);
break;
default:
break;
}
}
void MainBench::printResults(const QString& prefix, qint64 nsecs)
{
double ratekSs = (m_parser.getNbSamples()*m_parser.getRepetition() / (double) nsecs) * 1e6;
QDebug debug = qDebug();
debug.noquote();
debug << tr("%1: ran test in %L2 ns - sample rate: %3 kS/s").arg(prefix).arg(nsecs).arg(ratekSs);
}

Wyświetl plik

@ -20,9 +20,12 @@
#define SDRBENCH_MAINBENCH_H_
#include <QObject>
#include <random>
#include <functional>
#include "dsp/decimators.h"
#include "dsp/decimatorsfi.h"
#include "dsp/decimatorsff.h"
#include "parserbench.h"
namespace qtwebapp {
@ -45,12 +48,17 @@ signals:
private:
void testDecimateII();
void testDecimateFI();
void testDecimateFF();
void decimateII(const qint16 *buf, int len);
void decimateFI(const float *buf, int len);
void decimateFF(const float *buf, int len);
void printResults(const QString& prefix, qint64 nsecs);
static MainBench *m_instance;
qtwebapp::LoggerWithFile *m_logger;
const ParserBench& m_parser;
std::mt19937 m_generator;
std::uniform_real_distribution<float> m_uniform_distribution;
#ifdef SDR_RX_SAMPLE_24BIT
Decimators<qint64, qint16, SDR_RX_SAMP_SZ, 12> m_decimatorsII;
@ -58,8 +66,10 @@ private:
Decimators<qint32, qint16, SDR_RX_SAMP_SZ, 12> m_decimatorsII;
#endif
DecimatorsFI m_decimatorsFI;
DecimatorsFF m_decimatorsFF;
SampleVector m_convertBuffer;
FSampleVector m_convertBufferF;
};
#endif // SDRBENCH_MAINBENCH_H_

Wyświetl plik

@ -116,6 +116,8 @@ ParserBench::TestType ParserBench::getTestType() const
{
if (m_testStr == "decimatefi") {
return TestDecimatorsFI;
} else if (m_testStr == "decimateff") {
return TestDecimatorsFF;
} else {
return TestDecimatorsII;
}

Wyświetl plik

@ -27,7 +27,8 @@ public:
typedef enum
{
TestDecimatorsII,
TestDecimatorsFI
TestDecimatorsFI,
TestDecimatorsFF
} TestType;
ParserBench();