
SANE Standard Version 1.06

2008-05-03

Contents

1 Preface 6

1.1 About This Document . 6

1.1.1 Typographic Conventions . 6

2 Introduction 7

2.1 Terminology . 7

3 The SANE Environment 8

3.1 Attaching to a SANE backend . 8

3.2 Image Data Format . 10

3.2.1 Image Transmission . 10

4 The SANE Application Programmer Interface (API) 13

4.1 Version Control . 13

4.2 Data Types . 14

4.2.1 Base Types . 14

4.2.2 Boolean Type . 15

4.2.3 Integer Type . 15

4.2.4 Fixed-point Type . 15

4.2.5 Text . 16

4.2.6 Scanner Handle Type . 17

4.2.7 Status Type . 17

4.2.8 Device Descriptor Type . 17

4.2.9 Option Descriptor Type . 18

1

4.3 Operations . 21

4.3.1 sane init . 21

4.3.2 sane exit . 24

4.3.3 sane get devices . 25

4.3.4 sane open . 25

4.3.5 sane close . 25

4.3.6 sane get option descriptor . 26

4.3.7 sane control option . 26

4.3.8 sane get parameters . 28

4.3.9 sane start . 29

4.3.10 sane read . 30

4.3.11 sane cancel . 30

4.3.12 sane set io mode . 31

4.3.13 sane get select fd . 31

4.3.14 sane strstatus . 32

4.4 Code Flow . 32

4.5 Well-Known Options . 33

4.5.1 Option Number Count . 34

4.5.2 Scan Resolution Option . 34

4.5.3 Preview Mode Option . 34

4.5.4 Scan Area Options . 34

5 Network Protocol 36

5.1 Data Type Encoding . 37

5.1.1 Primitive Data Types . 37

5.1.2 Type Constructors . 37

5.2 Remote Procedure Call Requests . 38

5.2.1 SANE NET INIT . 38

5.2.2 SANE NET GET DEVICES . 39

5.2.3 SANE NET OPEN . 39

5.2.4 SANE NET CLOSE . 40

2

5.2.5 SANE NET GET OPTION DESCRIPTORS . 40

5.2.6 SANE NET CONTROL OPTION . 40

5.2.7 SANE NET GET PARAMETERS . 41

5.2.8 SANE NET START . 41

5.2.9 SANE NET CANCEL . 42

5.2.10 SANE NET AUTHORIZE . 43

5.2.11 SANE NET EXIT . 43

6 Contact Information 44

3

List of Figures

3.1 Example SANE Hiearchy . 9

3.2 Transfer order of image data bytes . 11

3.3 Bit and byte order or image data . 11

4.1 Code flow . 32

4.2 Scan area options . 35

4

List of Tables

4.1 Status Codes . 17

4.2 Predefined Device Information Strings . 18

4.3 Option Value Types (SANE Value Type) . 20

4.4 Physical Units (SANE Unit) . 20

4.5 Option Capabilities . 22

4.6 Option Value Constraints . 23

4.7 Action Values (SANE Action) . 26

4.8 Additional Information Returned When Setting an Option 27

4.9 Frame Format (SANE Frame) . 28

5

Chapter 1

Preface

The SANE standard is being developed by a group of free-software developers. The process is open to the
public and comments as well as suggestions for improvements are welcome. Information on how to join the
SANE development process can be found in Chapter 6.

The SANE standard is intended to streamline software development by providing a standard application
programming interface to access raster scanner hardware. This should reduce the number of different driver
implementations, thereby reducing the need for reimplementing similar code.

1.1 About This Document

This document is intended for developers who are creating either an application that requires access to
raster scanner hardware and for developers who are implementing a SANE driver. It does not cover specific
implementations of SANE components. Its sole purpose is to describe and define the SANE application
interface that will enable any application on any platform to interoperate with any SANE backend for that
platform.

The remainder of this document is organized as follows. Chapter 2 provides introductional material. Chap-
ter 3 presents the environment SANE is designed for. Chapter 4 details the SANE Application Programmer
Interface. Chapter 5 specifies the network protocol that can be used to implement the SANE API in a
network transparent fashion. Finally, Chapter 6 gives information on how to join the SANE development
process.

1.1.1 Typographic Conventions

Changes since the last revision of this document are highlighted like this:

6

Chapter 2

Introduction

SANE is an application programming interface (API) that provides standardized access to any raster image
scanner hardware. The standardized interface allows to write just one driver for each scanner device instead
of one driver for each scanner and application. The reduction in the number of required drivers provides
significant savings in development time. More importantly, SANE raises the level at which applications can
work. As such, it will enable applications that were previously unheard of in the UNIX world. While SANE
is primarily targeted at a UNIX environment, the standard has been carefully designed to make it possible
to implement the API on virtually any hardware or operating system.

SANE is an acronym for “Scanner Access Now Easy.” Also, the hope is that SANE is sane in the sense that
it will allow easy implementation of the API while accommodating all features required by today’s scanner
hardware and applications. Specifically, SANE should be broad enough to accommodate devices such as
scanners, digital still and video cameras, as well as virtual devices like image file filters.

2.1 Terminology

An application that uses the SANE interface is called a SANE frontend. A driver that implements the SANE
interface is called a SANE backend. A meta backend provides some means to manage one or more other
backends.

7

Chapter 3

The SANE Environment

SANE is defined as a C-callable library interface. Accessing a raster scanner device typically consists of
two phases: first, various controls of the scanner need to be setup or queried. In the second phase, one or
more images are acquired.

Since the device controls are widely different from device to device, SANE provides a generic interface
that makes it easy for a frontend to give a user access to all controls without having to understand each and
every device control. The design principle used here is to abstract each device control into a SANE option.
An option is a self-describing name/value pair. For example, the brightness control of a camera might be
represented by an option called brightness whose value is an integer in the range from 0 to 255.

With self-describing options, a backend need not be concerned with presentation issues: the backend simply
provides a list of options that describe all the controls available in the device. Similarly, there are benefits to
the frontend: it need not be concerned with the meaning of each option. It simply provides means to present
and alter the options defined by the backend.

3.1 Attaching to a SANE backend

The process through which a SANE frontend connects to a backend is platform dependent. Several possi-
bilities exist:

• Static linking: A SANE backend may be linked directly into a frontend. While the simplest method
of attaching to a backend, it is somewhat limited in functionality since the available devices is limited
to the ones for which support has been linked in when the frontend was built. But even so static
linking can be quite useful, particularly when combined with a backend that can access scanners
via a network. Also, it is possible to support multiple backends simultaneously by implementing a
meta backend that manages several backends that have been compiled in such a manner that they
export unique function names. For example, a backend called be would normally export a function
called sane read(). If each backend would provide such a function, static linking would fail due
to multiple conflicting definitions of the same symbol. This can be resolved by having backend be
include a header file that has lines of the form:

8

#define sane_read be_sane_read

With definitions of this kind, backend be will export function name be sane read(). Thus, all
backends will export unique names. As long as a meta backend knows about these names, it is possible
to combine several backends at link time and select and use them dynamically at runtime.

• Dynamic linking: A simpler yet more powerful way to support multiple backends is to exploit dy-
namic linking on platforms that support it. In this case, a frontend is linked against a shared library
that implements any SANE backend. Since each dynamically linked backend exports the same set of
global symbols (all starting with the prefix sane), the dynamic library that gets loaded at runtime
does not necessarily have to be the same one as one the frontend got linked against. In other words, it
is possible to switch the backend by installing the appropriate backend dynamic library.

More importantly, dynamic linking makes it easy to implement a meta backend that loads other back-
ends on demand. This is a powerful mechanism since it allows adding new backends merely by
installing a shared library and updating a configuration file.

• Network connection: Arguably the ultimate way to attach to a scanner is by using the network to
connect to a backend on a remote machine. This makes it possible to scan images from any host in
the universe, as long as there is a network connection to that host and provided the user is permitted
to access that scanner.

qcamhp

pnm mustek

pnm files scanner

scanner 1 scanner 2 video camera

machine A machine B

network connection

dll

net

saned

dll

autolum

Figure 3.1: Example SANE Hiearchy

The above discussion lists just a few ways for frontends to attach to a backend. It is of course possible to
combine these solutions to provide an entire hierarchy of SANE backends. Such a hierarchy is depicted in
Figure 3.1. The figure shows that machine A uses a dynamic-linking based meta backend called dll to

9

access the backends called pnm, mustek, and net. The first two are real backends, whereas the last one
is a meta backend that provides network transparent access to remote scanners. In the figure, machine B
provides non-local access to its scanners through the SANE frontend called saned. The saned in turn
has access to the hp and autolum backends through another instance of the dll backend. The autolum
meta backend is used to automatically adjust the luminance (brightness) of the image data acquired by the
camera backend called qcam.

Note that a meta backend really is both a frontend and a backend at the same time. It is a frontend from the
viewpoint of the backends that it manages and a backend from the viewpoint of the frontends that access it.
The name “meta backend” was chosen primarily because the SANE standard describes the interface from
the viewpoint of a (real) frontend.

3.2 Image Data Format

Arguably the most important aspect of an image acquisition system is how images are represented. The
SANE approach is to define a simple yet powerful representation that is sufficient for vast majority of
applications and devices. While the representation is simple, the interface has been defined carefully to
allow extending it in the future without breaking backwards compatibility. Thus, it will be possible to
accommodate future applications or devices that were not anticipated at the time this standard was created.

A SANE image is a rectangular area. The rectangular area is subdivided into a number of rows and columns.
At the intersection of each row and column is a quadratic pixel. A pixel consists of one or more sample
values. Each sample value represents one channel (e.g., the red channel). Each sample value has a certain
bit depth. The bit depth is fixed for the entire image and can be as small as one bit. Valid bit depths are 1,
8, or 16 bits per sample. If a device’s natural bit depth is something else, it is up to the driver to scale the
sample values appropriately (e.g., a 4 bit sample could be scaled by a factor of four to represent a sample
value of depth 8).

3.2.1 Image Transmission

The SANE API transmits an image as a sequence of frames. Each frame covers the same rectangular area
as the entire image, but may contain only a subset of the channels in the final image. For example, a
red/green/blue image could either be transmitted as a single frame that contains the sample values for all
three channels or it could be transmitted as a sequence of three frames: the first frame containing the red
channel, the second the green channel, and the third the blue channel.

Conceptually, each frame is transmitted a byte at a time. Each byte may contain 8 sample values (for an
image bit depth of 1), one full sample value (for an image bit depth of 8), or a partial sample value (for an
image bit depth of 16 or bigger). In the latter case, the bytes of each sample value are transmitted in the
machine’s native byte order. For depth 1, the leftmost pixel is stored in the most significant bit, and the
rightmost pixel in the least significant bit.

Backend Implementation Note
A network-based meta backend will have to ensure that the byte order in image data is adjusted
appropriately if necessary. For example, when the meta backend attaches to the server proxy,

10

the proxy may inform the backend of the server’s byte order. The backend can then apply the
adjustment if necessary. In essence, this implements a “receiver-makes-right” approach.

Figure 3.2: Transfer order of image data bytes

The order in which the sample values in a frame are transmitted is illustrated in Figure 3.2. As can be seen,
the values are transmitted row by row and each row is transmitted from left-most to right-most column. The
left-to-right, top-to-bottom transmission order applies when the image is viewed in its normal orientation
(as it would be displayed on a screen, for example).

If a frame contains multiple channels, then the channels are transmitted in an interleaved fashion. Figure 3.3
illustrates this for the case where a frame contains a complete red/green/blue image with a bit-depth of 8.
For a bit depth of 1, each byte contains 8 sample values of a single channel. In other words, a bit depth 1
frame is transmitted in a byte interleaved fashion.

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

r g b

pixel 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

r g b

pixel 1

byte 5byte 4byte 3byte 2byte1byte0

....
bit:

Figure 3.3: Bit and byte order or image data

When transmitting an image frame by frame, the frontend needs to know what part of the image a frame
represents (and how many frames it should expect). For that purpose, the SANE API tags every frame with
a type. This version of the SANE standard supports the following frame types:

SANE FRAME GRAY: The frame contains a single channel of data that represents sample val-
ues from a spectral band that covers the human visual range. The image consists of this
frame only.

SANE FRAME RGB: The frame contains three channels of data that represent sample values
from the red, green, and blue spectral bands. The sample values are interleaved in the
order red, green, and blue. The image consists of this frame only.

11

SANE FRAME RED: The frame contains one channel of data that represents sample values
from the red spectral band. The complete image consists of three frames: SANE -
FRAME RED, SANE FRAME GREEN, and SANE FRAME BLUE. The order in which the
frames are transmitted chosen by the backend.

SANE FRAME GREEN: The frame contains one channel of data that represents sample values
from the green spectral band. The complete image consists of three frames: SANE -
FRAME RED, SANE FRAME GREEN, and SANE FRAME BLUE. The order in which the
frames are transmitted chosen by the backend.

SANE FRAME BLUE: The frame contains one channel of data that represents sample values
from the blue spectral band. The complete image consists of three frames: SANE -
FRAME RED, SANE FRAME GREEN, and SANE FRAME BLUE. The order in which the
frames are transmitted chosen by the backend.

In frames of type SANE FRAME GRAY, when the bit depth is 1 there are only two sample values possible,
1 represents minimum intensity (black) and 0 represents maximum intensity (white). For all other bit depth
and frame type combinations, a sample value of 0 represents minimum intensity and larger values represent
increasing intensity.

The combination of bit depth 1 and SANE FRAME RGB (or SANE FRAME RED, SANE FRAME GREEN,
SANE FRAME BLUE) is rarely used and may not be supported by every frontend.

12

Chapter 4

The SANE Application Programmer
Interface (API)

This Section defines version 1 of the SANE application programmer interface (API). Any SANE frontend
must depend on the interface defined in this section only. Converseley, any SANE backend must implement
its functionality in accordance with this specification. The interface as documented here is declared as a
C callable interface in a file called sane/sane.h. This file should normally be included via a C pre-
processor directive of the form:

#include <sane/sane.h>

4.1 Version Control

The SANE standard is expected to evolve over time. Whenever a change to the SANE standard is made that
may render an existing frontend or backend incompatible with the new standard, the major version number
must be increased. Thus, any frontend/backend pair is compatible provided the major version number of
the SANE standard they implement is the same. A frontend may implement backwards compatiblity by
allowing major numbers that are smaller than the expected major number (provided the frontend really can
cope with the older version). In contrast, a backend always provides support for one and only one version
of the standard. If a specific application does require that two different versions of the same backend are
accessible at the same time, it is possible to do so by installing the two versions under different names.

SANE version control also includes a minor version number and a build revision. While control of these
numbers remains with the implementor of a backend, the recommended use is as follows. The minor version
is incremented with each official release of a backend. The build revision is increased with each build of a
backend.

The SANE API provides the following five macros to manage version numbers.

SANE CURRENT MAJOR: The value of this macro is the number of the SANE standard that
the interface implements.

13

SANE VERSION CODE(maj,min,bld): This macro can be used to build a monotonically
increasing version code. A SANE version code consists of the SANE standard major
version number (maj), the minor version number min, and the build revision of a backend
(bld). The major and minor version numbers must be in the range 0. . . 255 and the build
revision must be in the range 0. . . 65535.
Version codes are monotonic in the sense that it is possible to apply relational operators
(e.g., equality or less-than test) directly on the version code rather than individually on the
three components of the version code.
Note that the major version number alone determines whether a frontend/backend pair
is compatible. The minor version and the build revision are used for informational and
bug-fixing purposes only.

SANE VERSION MAJOR(vc): This macro returns the major version number component of
the version code passed in argument vc.

SANE VERSION MINOR(vc): This macro returns the minor version number component of
the version code passed in argument vc.

SANE VERSION BUILD(vc): This macro returns the build revision component of the version
code passed in argument vc.

4.2 Data Types

4.2.1 Base Types

The SANE standard is based on just two SANE-specific base types: the SANE byte and word.

typedef some-scalar-type SANE Byte;
typedef some-scalar-type SANE Word;

SANE_Byte must correspond to some scalar C type that is capable of holding values in the range 0 to 255.
SANE_Word must be capable of holding any of the following:

• the truth values SANE_FALSE and SANE_TRUE

• signed integers in the range −231 . . . 231 − 1

• fixed point values in the range −32768 . . . 32767.9999 with a resolution of 1/65536

• 32 bits (for bit sets)

Note that the SANE standard does not define what C type SANE_Byte and SANE_Word map to. For
example, on some platforms, the latter may map to long int whereas on others it may map to int. A
portable SANE frontend or backend must therefore not depend on a particular mapping.

14

4.2.2 Boolean Type

SANE Bool is used for variables that can take one of the two truth values SANE FALSE and SANE TRUE.
The former value is defined to be 0, whereas the latter is 1.1 The C declarations for this type are given below.

#define SANE_FALSE 0
#define SANE_TRUE 1
typedef SANE_Word SANE_Bool;

Note that SANE_Bool is simply an alias of SANE_Word. It is therefore always legal to use the latter
type in place of the former. However, for clarity, it is recommended to use SANE_Bool whenever a given
variable or formal argument has a fixed interpretation as a boolean object.

4.2.3 Integer Type

SANE Int is used for variables that can take integer values in the range −232 to 231 − 1. Its C declaration
is given below.

typedef SANE_Word SANE_Int;

Note that SANE_Int is simply an alias of SANE_Word. It is therefore always legal to use the latter type in
place of the former. However, for clarity, it is recommended to use SANE_Int whenever a given variable
or formal argument has a fixed interpretation as an integer object.

4.2.4 Fixed-point Type

SANE Fixed is used for variables that can take fixed point values in the range−32768 to 32767.9999 with
a resolution of 1/65535. The C declarations relating to this type are given below.

#define SANE_FIXED_SCALE_SHIFT 16
typedef SANE_Word SANE_Fixed;

The macro SANE FIXED SCALE SHIFT gives the location of the fixed binary point. This standard defines
that value to be 16, which yields a resolution of 1/65536.

Note that SANE_Fixed is simply an alias of SANE_Word. It is therefore always legal to use the latter
type in place of the former. However, for clarity, it is recommended to use SANE_Fixed whenever a given
variable or formal argument has a fixed interpretation as a fixed-point object.

For convenience, SANE also defines two macros that convert fixed-point values to and from C double
floating point values.

1This is different from ANSI C where any non-zero integer value represents logical TRUE.

15

SANE FIX(d): Returns the largest SANE fixed-point value that is smaller than the double
value d. No range checking is performed. If the value of d is out of range, the result is
undefined.

SANE UNFIX(w): Returns the nearest double machine number that corresponds to fixed-
point value w.

SANE does not require that the following two expressions hold true (even if the values of w and d are in
range):

SANE_UNFIX(SANE_FIX(d)) == d
SANE_FIX(SANE_UNFIX(w)) == w

In other words, conversion between fixed and double values may be lossy. It is therefore recommended to
avoid repeated conversions between the two representations.

4.2.5 Text

Character Type

Type SANE Char represents a single text character or symbol. At present, this type maps directly to the
underlying C char type (typically one byte). The encoding for such characters is currently fixed as ISO
LATIN-1. Future versions of this standard may map this type to a wider type and allow multi-byte encod-
ings to support internationalization. As a result of this, care should be taken to avoid the assumption that
sizeof(SANE_Char)==sizeof(char).

typedef char SANE_Char;

String Type

Type SANE String represents a text string as a sequence of C char values. The end of the sequence is
indicated by a ’\0’ (NUL) character.

typedef SANE_Char *SANE_String;
typedef const SANE_Char *SANE_String_Const;

The type SANE String Const is provided by SANE to enable declaring strings whose contents is un-
changable. Note that in ANSI C, the declaration

const SANE_String str;

declares a string pointer that is constant (not a string pointer that points to a constant value).

16

4.2.6 Scanner Handle Type

Access to a scanner is provided through an opaque type called SANE Handle. The C declaration of this
type is given below.

typedef void *SANE_Handle;

While this type is declared to be a void pointer, an application must not attempt to interpret the value of a
SANE_Handle. In particular, SANE does not require that a value of this type is a legal pointer value.

4.2.7 Status Type

Most SANE operations return a value of type SANE Status to indicate whether the completion status of
the operation. If an operation completes successfully, SANE_STATUS_GOOD is returned. In case of an
error, a value is returned that indicates the nature of the problem. The complete list of available status codes
is listed in Table 4.1. It is recommended to use function sane strstatus() to convert status codes into
a legible string.

Symbol Code Description
SANE STATUS GOOD 0 Operation completed succesfully.
SANE STATUS UNSUPPORTED 1 Operation is not supported.
SANE STATUS CANCELLED 2 Operation was cancelled.
SANE STATUS DEVICE BUSY 3 Device is busy—retry later.
SANE STATUS INVAL 4 Data or argument is invalid.
SANE STATUS EOF 5 No more data available (end-of-file).
SANE STATUS JAMMED 6 Document feeder jammed.
SANE STATUS NO DOCS 7 Document feeder out of documents.
SANE STATUS COVER OPEN 8 Scanner cover is open.
SANE STATUS IO ERROR 9 Error during device I/O.
SANE STATUS NO MEM 10 Out of memory.
SANE STATUS ACCESS DENIED 11 Access to resource has been denied.

Table 4.1: Status Codes

4.2.8 Device Descriptor Type

Each SANE device is represented by a structure of type SANE Device. The C declaration of this type is
given below.

typedef struct
{

SANE_String_Const name;

17

SANE_String_Const vendor;
SANE_String_Const model;
SANE_String_Const type;

}
SANE_Device;

The structure provides the unique name of the scanner in member name. It is this unique name that should
be passed in a call to sane open(). The format of this name is completely up to the backend. The only
constraints are that the name is unique among all devices supported by the backend and that the name is a
legal SANE text string. To simplify presentation of unique names, their length should not be excessive. It is
recommended that backends keep unique names below 32 characters in length. However, applications must
be able to cope with arbitrary length unique names.

The remaining members in the device structure provide additional information on the device corresponding
to the unique name. Specifically, members vendor, model, and type are single-line strings that give
information on the vendor (manufacturer), model, and the type of the device. For consistency’s sake, the
following strings should be used when appropriate (the lists will be expanded as need arises):

Vendor Strings
AGFA Microtek
Abaton Minolta
Acer Mitsubishi
Apple Mustek
Artec NEC
Avision Nikon
CANON Plustek
Connectix Polaroid
Epson Relisys
Fujitsu Ricoh
Hewlett-Packard Sharp
IBM Siemens
Kodak Tamarack
Lexmark UMAX
Logitech Noname

Type Strings
film scanner
flatbed scanner
frame grabber
handheld scanner
multi-function peripheral
sheetfed scanner
still camera
video camera
virtual device

Table 4.2: Predefined Device Information Strings

Note that vendor string Noname can be used for virtual devices that have no physical vendor associated.
Also, there are no predefined model name strings since those are vendor specific and therefore completely
under control of the respective backends.

4.2.9 Option Descriptor Type

Option descriptors are at the same time the most intricate and powerful type in the SANE standard. Options
are used to control virtually all aspects of device operation. Much of the power of the SANE API stems

18

from the fact that most device controls are completely described by their respective option descriptor. Thus,
a frontend can control a scanner abstractly, without requiring knowledge as to what the purpose of any given
option is. Conversely, a scanner can describe its controls without requiring knowledge of how the frontend
operates. The C declaration of the SANE Option Descriptor type is given below.

typedef struct
{

SANE_String_Const name;
SANE_String_Const title;
SANE_String_Const desc;
SANE_Value_Type type;
SANE_Unit unit;
SANE_Int size;
SANE_Int cap;
SANE_Constraint_Type constraint_type;
union
{

const SANE_String_Const *string_list;
const SANE_Word *word_list;
const SANE_Range *range;

}
constraint;

}
SANE_Option_Descriptor;

Option Name

Member name is a string that uniquely identifies the option. The name must be unique for a given device
(i.e., the option names across different backends or devices need not be unique). The option name must
consist of lower-case ASCII letters (a–z), digits (0–9), or the dash character (-) only. The first character
must be a lower-case ASCII character (i.e., not a digit or a dash).

Option Title

Member title is a single-line string that can be used by the frontend as a title string. This should typically
be a short (one or two-word) string that is chosen based on the function of the option.

Option Description

Member desc is a (potentially very) long string that can be used as a help text to describe the option. It is
the responsibility of the frontend to break the string into managable-length lines. Newline characters in this
string should be interpreted as paragraph breaks.

19

Option Value Type

Member type specifies the type of the option value. The possible values for type SANE Value Type are
described in Table 4.3.

Symbol Code Description
SANE TYPE BOOL 0 Option value is of type SANE_Bool.
SANE TYPE INT 1 Option value is of type SANE_Int.
SANE TYPE FIXED 2 Option value is of type SANE_Fixed.
SANE TYPE STRING 3 Option value is of type SANE_String.
SANE TYPE BUTTON 4 An option of this type has no value. Instead, setting an option

of this type has an option-specific side-effect. For example, a
button-typed option could be used by a backend to provide a
means to select default values or to the tell an automatic doc-
ument feeder to advance to the next sheet of paper.

SANE TYPE GROUP 5 An option of this type has no value. This type is used to group
logically related options. A group option is in effect up to the
point where another group option is encountered (or up to the
end of the option list, if there are no other group options). For
group options, only members title and type are valid in the
option descriptor.

Table 4.3: Option Value Types (SANE Value Type)

Option Value Unit

Member unit specifies what the physical unit of the option value is. The possible values for type SANE U-
nit are described in Table 4.4. Note that the specified unit is what the SANE backend expects. It is entirely
up to a frontend as to how these units a presented to the user. For example, SANE expresses all lengths in
millimeters. A frontend is generally expected to provide appropriate conversion routines so that a user can
express quantities in a customary unit (e.g., inches or centimeters).

Symbol Code Description
SANE UNIT NONE 0 Value is unit-less (e.g., page count).
SANE UNIT PIXEL 1 Value is in number of pixels.
SANE UNIT BIT 2 Value is in number of bits.
SANE UNIT MM 3 Value is in millimeters.
SANE UNIT DPI 4 Value is a resolution in dots/inch.
SANE UNIT PERCENT 5 Value is a percentage.
SANE UNIT MICROSECOND 6 Value is time in µ-seconds.

Table 4.4: Physical Units (SANE Unit)

20

Option Value Size

Member size specifies the size of the option value (in bytes). This member has a slightly different inter-
pretation depending on the type of the option value:

SANE TYPE STRING: The size is the maximum size of the string. For the purpose of string
size calcuations, the terminating NUL character is considered to be part of the string. Note
that the terminating NUL character must always be present in string option values.

SANE TYPE INT, SANE TYPE FIXED: The size must be a positive integer multiple of the
size of a SANE_Word. The option value is a vector of length

size/sizeof(SANE Word).

SANE TYPE BOOL: The size must be set to sizeof(SANE Word).

SANE TYPE BUTTON, SANE TYPE GROUP: The option size is ignored.

Option Capabilities

Member cap describes what capabilities the option posseses. This is a bitset that is formed as the inclusive
logical OR of the capabilities described in Table 4.5. The SANE API provides the following to macros to
test certain features of a given capability bitset:

SANE OPTION IS ACTIVE(cap): This macro returns SANE TRUE if and only if the option
with the capability set cap is currently active.

SANE OPTION IS SETTABLE(cap): This macro returns SANE TRUE if and only if the op-
tion with the capability set cap is software settable.

Option Value Constraints

It is often useful to constrain the values that an option can take. For example, constraints can be used by a
frontend to determine how to represent a given option. Member constraint type indicates what con-
straint is in effect for the option. The constrained values that are allowed for the option are described by one
of the union members of member constraint. The possible values of type SANE Constraint Type
and the interpretation of the constraint union is described in Table 4.6.

4.3 Operations

4.3.1 sane init

This function must be called before any other SANE function can be called. The behavior of a SANE
backend is undefined if this function is not called first or if the status code returned by sane init is

21

Symbol Code Description
SANE CAP SOFT SELECT 1 The option value can be set by a call to sane control opt-

ion().
SANE CAP HARD SELECT 2 The option value can be set by user-intervention (e.g., by flip-

ping a switch). The user-interface should prompt the user to
execute the appropriate action to set such an option. This capa-
bility is mutually exclusive with SANE CAP SOFT SELECT
(either one of them can be set, but not both simultaneously).

SANE CAP SOFT DETECT 4 The option value can be detected by software. If SANE -
CAP SOFT SELECT is set, this capability must be set. If
SANE CAP HARD SELECT is set, this capability may or may
not be set. If this capability is set but neither SANE CAP SO-
FT SELECT nor SANE CAP HARD SELECT are, then there is
no way to control the option. That is, the option provides read-
out of the current value only.

SANE CAP EMULATED 8 If set, this capability indicates that an option is not directly sup-
ported by the device and is instead emulated in the backend.
A sophisticated frontend may elect to use its own (presumably
better) emulation in lieu of an emulated option.

SANE CAP AUTOMATIC 16 If set, this capability indicates that the backend (or the device)
is capable to picking a reasonable option value automatically.
For such options, it is possible to select automatic operation by
calling sane control option() with an action value of
SANE ACTION SET AUTO.

SANE CAP INACTIVE 32 If set, this capability indicates that the option is not currently
active (e.g., because it’s meaningful only if another option is set
to some other value).

SANE CAP ADVANCED 64 If set, this capability indicates that the option should be con-
sidered an “advanced user option.” A frontend typically dis-
plays such options in a less conspicuous way than regular op-
tions (e.g., a command line interface may list such options last
or a graphical interface may make them available in a seperate
“advanced settings” dialog).

Table 4.5: Option Capabilities

22

Symbol Code Description
SANE CONSTRAINT NONE 0 The value is unconstrained. The option can take any

of the values possible for the option’s type.
SANE CONSTRAINT RANGE 1 This constraint is applicable to integer and fixed-point

valued options only. It constrains the option value to a
possibly quantized range of numbers. Option descrip-
tor member constraint.range points to a range
of the type SANE Range. This type is illustrated be-
low:

typedef struct
{

SANE_Word min;
SANE_Word max;
SANE_Word quant;

}
SANE_Range;

All three members in this structure are interpreted ac-
cording to the option value type (SANE_TYPE_INT
or SANE_TYPE_FIXED). Members min and max
specify the minimum and maximum values, respec-
tively. If member quant is non-zero, it specifies the
quantization value. If l is the minimum value, u the
maximum value and q the (non-zero) quantization of
a range, then the legal values are v = k · q + l for all
non-negative integer values of k such that v <= u.

SANE CONSTRAINT WORD LIST 2 This constraint is applicable to integer and fixed-point
valued options only. It constrains the option value to
a list of numeric values. Option descriptor member
constraint.word list points to a list of words
that enumerates the legal values. The first element in
that list is an integer (SANE_Int) that specifies the
length of the list (not counting the length itself). The
remaining elements in the list are interpreted accord-
ing to the type of the option value (SANE_TYPE_INT
or SANE_TYPE_FIXED).

SANE CONSTRAINT STRING LIST 3 This constraint is applicable to string-valued options
only. It constrains the option value to a list of strings.
The option descriptor member constraint.str-
ing list points to a NULL terminated list of strings
that enumerate the legal values for the option value.

Table 4.6: Option Value Constraints

23

different from SANE STATUS GOOD. The version code of the backend is returned in the value pointed to
by version code. If that pointer is NULL, no version code is returned. Argument authorize is either
a pointer to a function that is invoked when the backend requires authentication for a specific resource or
NULL if the frontend does not support authentication.

SANE_Status sane_init (SANE_Int * version_code,
SANE_Authorization_Callback authorize);

The authorization function may be called by a backend in response to any of the following calls:

sane open, sane control option, sane start

If a backend was initialized without authorization function, then authorization requests that cannot be han-
dled by the backend itself will fail automatically and the user may be prevented from accessing protected
resources. Backends are encouraged to implement means of authentication that do not require user as-
sistance. E.g., on a multi-user system that authenticates users through a login process a backend could
automatically lookup the apporpriate password based on resource- and user-name.

The authentication function type has the following declaration:

#define SANE_MAX_USERNAME_LEN 128
#define SANE_MAX_PASSWORD_LEN 128

typedef void (*SANE_Authorization_Callback)
(SANE_String_Const resource,
SANE_Char username[SANE_MAX_USERNAME_LEN],
SANE_Char password[SANE_MAX_PASSWORD_LEN]);

Three arguments are passed to the authorization function: resource is a string specifying the name of
the resource that requires authorization. A frontend should use this string to build a user-prompt requesting
a username and a password. The username and password arguments are (pointers to) an array of
SANE MAX USERNAME LEN and SANE MAX PASSWORD LEN characters, respectively. The authorization
call should place the entered username and password in these arrays. The returned strings must be ASCII-
NUL terminated.

4.3.2 sane exit

This function must be called to terminate use of a backend. The function will first close all device handles
that still might be open (it is recommended to close device handles explicitly through a call to sane clo-
se(), but backends are required to release all resources upon a call to this function). After this function
returns, no function other than sane init() may be called (regardless of the status value returned by
sane exit(). Neglecting to call this function may result in some resources not being released properly.

void sane_exit (void);

24

4.3.3 sane get devices

This function can be used to query the list of devices that are available. If the function executes successfully,
it stores a pointer to a NULL terminated array of pointers to SANE_Device structures in *device list.
The returned list is guaranteed to remain unchanged and valid until (a) another call to this function is per-
formed or (b) a call to sane exit() is performed. This function can be called repeatedly to detect when
new devices become available. If argument local only is true, only local devices are returned (devices
directly attached to the machine that SANE is running on). If it is false, the device list includes all remote
devices that are accessible to the SANE library.

SANE_Status sane_get_devices (const SANE_Device *** device_list,
SANE_Bool local_only);

This function may fail with SANE STATUS NO MEM if an insufficient amount of memory is available.

Backend Implementation Note
SANE does not require that this function is called before a sane open() call is performed.
A device name may be specified explicitly by a user which would make it unnecessary and
undesirable to call this function first.

4.3.4 sane open

This function is used to establish a connection to a particular device. The name of the device to be opened
is passed in argument name. If the call completes successfully, a handle for the device is returned in *h.
As a special case, specifying a zero-length string as the device requests opening the first available device (if
there is such a device).

SANE_Status sane_open (SANE_String_Const name, SANE_Handle * h);

This function may fail with one of the following status codes.

SANE STATUS DEVICE BUSY: The device is currently busy (in use by somebody else).
SANE STATUS INVAL: The device name is not valid.
SANE STATUS IO ERROR: An error occured while communicating with the device.
SANE STATUS NO MEM: An insufficent amount of memory is available.
SANE STATUS ACCESS DENIED: Access to the device has been denied due to insufficient

or invalid authentication.

4.3.5 sane close

This function terminates the association between the device handle passed in argument h and the device
it represents. If the device is presently active, a call to sane cancel() is performed first. After this
function returns, handle h must not be used anymore.

void sane_close (SANE_Handle h);

25

4.3.6 sane get option descriptor

This function is used to access option descriptors. The function returns the option descriptor for option
number n of the device represented by handle h. Option number 0 is guaranteed to be a valid option.
Its value is an integer that specifies the number of options that are available for device handle h (the count
includes option 0). If n is not a valid option index, the function returns NULL. The returned option descriptor
is guaranteed to remain valid (and at the returned address) until the device is closed.

const SANE_Option_Descriptor *
sane_get_option_descriptor (SANE_Handle h, SANE_Int n);

4.3.7 sane control option

This function is used to set or inquire the current value of option number n of the device represented by
handle h. The manner in which the option is controlled is specified by parameter a. The possible values of
this parameter are described in more detail below. The value of the option is passed through argument v. It
is a pointer to the memory that holds the option value. The memory area pointed to by v must be big enough
to hold the entire option value (determined by member size in the corresponding option descriptor). The
only exception to this rule is that when setting the value of a string option, the string pointed to by argument
v may be shorter since the backend will stop reading the option value upon encountering the first NUL
terminator in the string. If argument i is not NULL, the value of *i will be set to provide details on how
well the request has been met. The meaning of this argument is described in more detail below.

SANE_Status sane_control_option (SANE_Handle h, SANE_Int n,
SANE_Action a, void *v,
SANE_Int * i);

The way the option is affected by a call to this function is controlled by parameter a which is a value of type
SANE Action. The possible values and their meaning is described in Table 4.7.

Symbol Code Description
SANE ACTION GET VALUE 0 Get current option value.
SANE ACTION SET VALUE 1 Set option value. The option value passed through ar-

gument vmay be modified by the backend if the value
cannot be set exactly.

SANE ACTION SET AUTO 2 Turn on automatic mode. Backend or device will au-
tomatically select an appropriate value. This mode
remains effective until overridden by an explicit set
value request. The value of parameter v is completely
ignored in this case and may be NULL.

Table 4.7: Action Values (SANE Action)

26

After setting a value via an action value of SANE_ACTION_SET_VALUE, additional information on how
well the request has been met is returned in *i (if i is non-NULL). The returned value is a bitset that may
contain any combination of the values described in Table 4.8.

Symbol Code Description
SANE INFO INEXACT 1 This value is returned when setting an option value re-

sulted in a value being selected that does not exactly
match the requested value. For example, if a scanner
can adjust the resolution in increments of 30dpi only,
setting the resolution to 307dpi may result in an ac-
tual setting of 300dpi. When this happens, the bitset
returned in *i has this member set. In addition, the
option value is modified to reflect the actual (rounded)
value that was used by the backend. Note that inexact
values are admissible for strings as well. A backend
may choose to “round” a string to the closest matching
legal string for a constrained string value.

SANE INFO RELOAD OPTIONS 2 The setting of an option may affect the value or avail-
ability of one or more other options. When this hap-
pens, the SANE backend sets this member in *i to
indicate that the application should reload all options.
This member may be set if and only if at least one
option changed.

SANE INFO RELOAD PARAMS 4 The setting of an option may affect the parameter val-
ues (see sane get parameters()). If setting an
option affects the parameter values, this member will
be set in *i. Note that this member may be set even if
the parameters did not actually change. However, it is
guaranteed that the parameters never change without
this member being set.

Table 4.8: Additional Information Returned When Setting an Option

This function may fail with one of the following status codes.

SANE STATUS UNSUPPORTED: The operation is not supported for the specified handle and
option number.

SANE STATUS INVAL: The option value is not valid.

SANE STATUS IO ERROR: An error occured while communicating with the device.

SANE STATUS NO MEM: An insufficent amount of memory is available.

SANE STATUS ACCESS DENIED: Access to the option has been denied due to insufficient
or invalid authentication.

27

4.3.8 sane get parameters

This function is used to obtain the current scan parameters. The returned parameters are guaranteed to be
accurate between the time a scan has been started (sane start() has been called) and the completion of
that request. Outside of that window, the returned values are best-effort estimates of what the parameters
will be when sane start() gets invoked. Calling this function before a scan has actually started allows,
for example, to get an estimate of how big the scanned image will be. The parameters passed to this function
are the handle h of the device for which the parameters should be obtained and a pointer p to a parameter
structure. The parameter structure is described in more detail below.

SANE_Status sane_get_parameters (SANE_Handle h,
SANE_Parameters * p);

The scan parameters are returned in a structure of type SANE Parameters. The C declaration of this
structure is given below.

typedef struct
{

SANE_Frame format;
SANE_Bool last_frame;
SANE_Int bytes_per_line;
SANE_Int pixels_per_line;
SANE_Int lines;
SANE_Int depth;

}
SANE_Parameters;

Member format specifies the format of the next frame to be returned. The possible values for type
SANE Frame are described in Table 4.9. The meaning of these values is described in more detail in Sec-
tion 3.2.

Symbol Code Description
SANE FRAME GRAY 0 Band covering human visual range.
SANE FRAME RGB 1 Pixel-interleaved red/green/blue bands.
SANE FRAME RED 2 Red band of a red/green/blue image.
SANE FRAME GREEN 3 Green band of a red/green/blue image.
SANE FRAME BLUE 4 Blue band of a red/green/blue image.

Table 4.9: Frame Format (SANE Frame)

Member last frame is set to SANE TRUE if and only if the frame that is currently being acquired (or the
frame that will be acquired next if there is no current frame) is the last frame of a multi frame image (e.g.,
the current frame is the blue component of a red, green, blue image).

28

Member lines specifies how many scan lines the frame is comprised of. If this value is -1, the num-
ber of lines is not known a priori and the frontend should call sane read() until it returns a status of
SANE STATUS EOF.

Member bytes per line specifies the number of bytes that comprise one scan line.

Member depth specifies the number of bits per sample.

Member pixels per line specifies the number of pixels that comprise one scan line.

Assume B is the number of channels in the frame, then the bit depth d (as given by member depth) and
the number of pixels per line n (as given by this member pixels per line) are related to c, the number
of bytes per line (as given by member bytes per line) as follows:

c >=

{
B · b(n+ 7)/8c if d = 1
B · n · d/8 if d > 1

Note that the number of bytes per line can be larger than the minimum value imposed by the right side of
this equation. A frontend must be able to properly cope with such “padded” image formats.

4.3.9 sane start

This function initiates aquisition of an image from the device represented by handle h.

SANE_Status sane_start (SANE_Handle h);

This function may fail with one of the following status codes.

SANE STATUS CANCELLED: The operation was cancelled through a call to sane cancel.

SANE STATUS DEVICE BUSY: The device is busy. The operation should be retried later.

SANE STATUS JAMMED: The document feeder is jammed.

SANE STATUS NO DOCS: The document feeder is out of documents.

SANE STATUS COVER OPEN: The scanner cover is open.

SANE STATUS IO ERROR: An error occurred while communicating with the device.

SANE STATUS NO MEM: An insufficent amount of memory is available.

SANE STATUS INVAL: The scan cannot be started with the current set of options. The fron-
tend should reload the option descriptors, as if SANE INFO RELOAD OPTIONS had been
returned from a call to sane control option(), since the device’s capabilities may
have changed.

29

4.3.10 sane read

This function is used to read image data from the device represented by handle h. Argument buf is a pointer
to a memory area that is at least maxlen bytes long. The number of bytes returned is stored in *len. A
backend must set this to zero when a status other than SANE STATUS GOOD is returned. When the call
succeeds, the number of bytes returned can be anywhere in the range from 0 to maxlen bytes.

SANE_Status sane_read (SANE_Handle h, SANE_Byte * buf,
SANE_Int maxlen, SANE_Int * len);

If this function is called when no data is available, one of two things may happen, depending on the I/O
mode that is in effect for handle h.

1. If the device is in blocking I/O mode (the default mode), the call blocks until at least one data byte is
available (or until some error occurs).

2. If the device is in non-blocking I/O mode, the call returns immediately with status SANE STA-
TUS GOOD and with *len set to zero.

The I/O mode of handle h can be set via a call to sane set io mode().

This function may fail with one of the following status codes.

SANE STATUS CANCELLED: The operation was cancelled through a call to sane cancel.
SANE STATUS EOF: No more data is available for the current frame.
SANE STATUS JAMMED: The document feeder is jammed.
SANE STATUS NO DOCS: The document feeder is out of documents.
SANE STATUS COVER OPEN: The scanner cover is open.
SANE STATUS IO ERROR: An error occurred while communicating with the device.
SANE STATUS NO MEM: An insufficent amount of memory is available.
SANE STATUS ACCESS DENIED: Access to the device has been denied due to insufficient

or invalid authentication.

4.3.11 sane cancel

This function is used to immediately or as quickly as possible cancel the currently pending operation of the
device represented by handle h.

void sane_cancel (SANE_Handle h);

This function can be called at any time (as long as handle h is a valid handle) but usually affects long-
running operations only (such as image is acquisition). It is safe to call this function asynchronously (e.g.,
from within a signal handler). It is important to note that completion of this operaton does not imply
that the currently pending operation has been cancelled. It only guarantees that cancellation has been
initiated. Cancellation completes only when the cancelled call returns (typically with a status value of
SANE STATUS CANCELLED). Since the SANE API does not require any other operations to be re-entrant,
this implies that a frontend must not call any other operation until the cancelled operation has returned.

30

4.3.12 sane set io mode

This function is used to set the I/O mode of handle h. The I/O mode can be either blocking or non-blocking.
If argument m is SANE TRUE, the mode is set to non-blocking mode, otherwise it’s set to blocking mode.
This function can be called only after a call to sane start() has been performed.

SANE_Status sane_set_io_mode (SANE_Handle h, SANE_Bool m);

By default, newly opened handles operate in blocking mode. A backend may elect not to support non-
blocking I/O mode. In such a case the status value SANE STATUS UNSUPPORTED is returned. Blocking
I/O must be supported by all backends, so calling this function with argument m set to SANE FALSE is
guaranteed to complete successfully.

This function may fail with one of the following status codes:

SANE STATUS INVAL: No image acquisition is pending.

SANE STATUS UNSUPPORTED: The backend does not support the requested I/O mode.

4.3.13 sane get select fd

This function is used to obtain a (platform-specific) file-descriptor for handle h that is readable if and only
if image data is available (i.e., when a call to sane read() will return at least one byte of data). If the call
completes successfully, the select file-descriptor is returned in *fd.

SANE_Status sane_get_select_fd (SANE_Handle h, SANE_Int *fd);

This function can be called only after a call to sane start() has been performed and the returned
file-descriptor is guaranteed to remain valid for the duration of the current image acquisition (i.e., un-
til sane cancel() or sane start() get called again or until sane read() returns with status
SANE STATUS EOF). Indeed, a backend must guarantee to close the returned select file descriptor at the
point when the next sane read() call would return SANE STATUS EOF. This is necessary to ensure the
application can detect when this condition occurs without actually having to call sane read().

A backend may elect not to support this operation. In such a case, the function returns with status code
SANE STATUS UNSUPPORTED.

Note that the only operation supported by the returned file-descriptor is a host operating-system dependent
test whether the file-descriptor is readable (e.g., this test can be implemented using select() or poll()
under UNIX). If any other operation is performed on the file descriptor, the behavior of the backend becomes
unpredictable. Once the file-descriptor signals “readable” status, it will remain in that state until a call to
sane read() is performed. Since many input devices are very slow, support for this operation is strongly
encouraged as it permits an application to do other work while image acquisition is in progress.

This function may fail with one of the following status codes:

SANE STATUS INVAL: No image acquisition is pending.

SANE STATUS UNSUPPORTED: The backend does not support this operation.

31

4.3.14 sane strstatus

This function can be used to translate a SANE status code into a printable string. The returned string is a
single line of text that forms a complete sentence, but without the trailing period (full-stop). The function is
guaranteed to never return NULL. The returned pointer is valid at least until the next call to this function is
performed.

const SANE_String_Const sane_strstatus (SANE_Status status);

4.4 Code Flow

The code flow for the SANE API is illustrated in Figure 4.1. Functions sane init() and sane exit()
initialize and exit the backend, respectively. All other calls must be performed after initialization and before
exiting the backend.

image acquisition

device setup

- go back to sane_start() if more frames desired

- use:

- sane_start()

repeatedly to configure device as desired

sane_control_option()

sane_get_option_descriptor()

- use:

repeatedly until read returns EOF

sane_get_parameters()

sane_read()

- sane_cancel()

- sane_init()

- sane_exit()

- pick desired device, possibly by using

- sane_open()

- sane_close()

sane_get_devices()

Figure 4.1: Code flow

Function sane get devices() can be called any time after sane init() has been called. It returns
the list of the devices that are known at the time of the call. This list may change over time since some

32

devices may be turned on or off or a remote host may boot or shutdown between different calls. It should be
noted that this operation may be relatively slow since it requires contacting all configured devices (some of
which may be on remote hosts). A frontend may therefore want to provide the ability for a user to directly
select a desired device without requiring a call to this function.

Once a device has been chosen, it is opened using a call to sane open(). Multiple devices can be open at
any given time. A SANE backend must not impose artificial constraints on how many devices can be open
at any given time.

An opened device can be setup through the corresponding device handle using functions sane get opt-
ion descriptor() and sane control option(). While setting up a device, obtaining option
descriptors and setting and reading of option values can be mixed freely. It is typical for a frontend to
read out all available options at the beginning and then build a dialog (either graphical or a command-
line oriented option list) that allows to control the available options. It should be noted that the number of
options is fixed for a given handle. However, as options are set, other options may become active or inactive.
Thus, after setting an option, it maybe necessary to re-read some or all option descriptors. While setting up
the device, it is also admissible to call sane get parameters() to get an estimate of what the image
parameters will look like once image acquisition begins.

The device handle can be put in blocking or non-blocking mode by a call to sane set io mode().
Devices are required to support blocking mode (which is the default mode), but support for non-blocking
I/O is strongly encouraged for operating systems such as UNIX.

After the device is setup properly, image acquisition can be started by a call to sane start(). The back-
end calculates the exact image parameters at this point. So future calls to sane get parameters()
will return the exact values, rather than estimates. Whether the physical image acquisition starts at this
point or during the first call to sane read() is unspecified by the SANE API. If non-blocking I/O
and/or a select-style interface is desired, the frontend may attempt to call sane set io mode() and/or
sane get select fd() at this point. Either of these functions may fail if the backend does not support
the requested operation.

Image data is collected by repeatedly calling sane read(). Eventually, this function will return an end-
of-file status (SANE STATUS EOF). This indicates the end of the current frame. If the frontend expects
additional frames (e.g., the individual channels in of a red/green/blue image or multiple images), it can
call sane start() again. Once all desired frames have been acquired, function sane cancel() must
be called. This operation can also be called at any other time to cancel a pending operation. Note that
sane cancel() must be called even if the last read operation returned SANE STATUS EOF.

When done using the device, the handle should be closed by a call to sane close(). Finally, before
exiting the application, function sane exit() must be called. It is important not to forget to call this
function since otherwise some resources (e.g., temporary files or locks) may remain unclaimed.

4.5 Well-Known Options

While most backend options are completely self-describing, there are a cases where a user interface might
want to special-case the handling of certain options. For example, the scan area is typically defined by four
options that specify the top-left and bottom-right corners of the area. With a graphical user interface, it

33

would be tedious to force the user to type in these four numbers. Instead, most such interfaces will want to
present to the user a preview (low-resolution scan) of the scanner surface and let the user pick the scan area
by dragging a rectangle into the desired position. For this reason, the SANE API specifies a small number
of option names that have well-defined meanings.

4.5.1 Option Number Count

Option number 0 has an empty string as its name. The value of this option is of type SANE TYPE INT and
it specifies the total number of options available for a given device (the count includes option number 0).
This means that there are two ways of counting the number of options available: a frontend can either cycle
through all option numbers starting at one until sane get option descriptor() returns NULL, or a
frontend can directly read out the value of option number 0.

4.5.2 Scan Resolution Option

Option resolution is used to select the resolution at which an image should be acquired. The type of
this option is either SANE TYPE INT or SANE TYPE FIXED. The unit is SANE UNIT DPI (dots/inch).

This option is not mandatory, but if a backend does support it, it must implement it in a manner consistent
with the above definition.

4.5.3 Preview Mode Option

The boolean option preview is used by a frontend to inform the backend when image acquisition should
be optimized for speed, rather than quality (“preview mode”). When set to SANE TRUE, preview mode is
in effect, when set to SANE FALSE image acquisition should proceed in normal quality mode. The setting
of this option must not affect any other option. That is, as far as the other options are concerned, the preview
mode is completely side effect free. A backend can assume that the frontend will take care of appropriately
setting the scan resolution for preview mode (through option resolution). A backend is free to override
the resolution value with its own choice for preview mode, but it is advised to leave this choice to the
frontend wherever possible.

This option is not mandatory, but if a backend does support it, it must implement it in a manner consistent
with the above definition.

4.5.4 Scan Area Options

The four most important well-known options are the ones that define the scan area. The scan area is defined
by two points (x/y coordinate pairs) that specify the top-left and the bottom-right corners. This is illustrated
in Figure 4.2. Note that the origin of the coordinate system is at the top-left corner of the scan surface as
seen by the sensor (which typically is a mirror image of the scan surface seen by the user). For this reason,
the top-left corner is the corner for which the abscissa and ordinate values are simultaneously the smallest
and the bottom-right corner is the corner for which the abscissa and ordinate values are simulatenously the

34

scan area

bottom-right

top-left

scan surface

y

x0

Figure 4.2: Scan area options

largest. If this coordinate system is not natural for a given device, it is the job of the backend to perform the
necessary conversions.

The names of the four options that define the scan area are given in the table below:

Name Description
tl-x Top-left x coordinate value
tl-y Top-left y coordinate value
br-x Bottom-right x coordinate value
br-y Bottom-right y coordinate value

There are several rules that should be followed by front and backends regarding these options:

• Backends must attach a unit of either pixels (SANE UNIT PIXEL) or millimeters (SANE UNIT MM)
to these options. The unit of all four options must be identical.

• Whenever meaningful, a backend should attach a range or a word-list constraint to these options.

• A frontend can determine the size of the scan surface by first checking that the options have range
constraints associated. If a range or word-list constraints exist, the frontend can take the minimum
and maximum values of one of the x and y option range-constraints to determine the scan surface size.

• A frontend must work properly with any or all of these options missing.

35

Chapter 5

Network Protocol

The SANE interface has been designed to facilitate network access to image acquisition devices. In particu-
lar, most SANE implementations are expected to support a network backend (net client) and a corresponding
network daemon (net server) that allows accessing image acquisition devices through a network connection.
Network access is useful in several situations:

• To provide controlled access to resources that are inaccessible to a regular user. For example, a user
may want to access a device on a host where she has no account on. With the network protocol, it is
possible to allow certain users to access scanners without giving them full access to the system.

Controlling access through the network daemon can be useful even in the local case: for example,
certain backends may require root privileges to access a device. Rather than installing each frontend
as setuid-root, a system administrator could instead install the SANE network daemon as setuid-
root. This enables regular users to access the privileged device through the SANE daemon (which,
presumably, supports a more fine-grained access control mechanism than the simple setuid approach).
This has the added benefit that the system administrator only needs to trust the SANE daemon, not
each and every frontend that may need access to the privileged device.

• Network access provides a sense of ubiquity of the available image acquisition devices. For example,
in a local area network environment, this allows a user to log onto any machine and have convenient
access to any resource available to any machine on the network (subject to permission constraints).

• For devices that do not require physical access when used (e.g., video cameras), network access allows
a user to control and use these devices without being in physical proximity. Indeed, if such devices
are connected to the Internet, access from any place in the world is possible.

The network protocol described in this chapter has been design with the following goals in mind:

1. Image transmission should be efficient (have low encoding overhead).

2. Accessing option descriptors on the client side must be efficient (since this is a very common opera-
tion).

36

3. Other operations, such as setting or inquiring the value of an option are less performance critical since
they typically require explicit user action.

4. The network protocol should be simple and easy to implement on any host architecture and any
programming language.

The SANE protocol can be run across any transport protocol that provides reliable data delivery. While
SANE does not specify a specific transport protocol, it is expected that TCP/IP will be among the most
commonly used protocols.

5.1 Data Type Encoding

5.1.1 Primitive Data Types

The four primitive types of the SANE standard are encoded as follows:

SANE Byte: A byte is encoded as an 8 bit value. Since the transport protocol is assumed to be byte-orientd,
the bit order is irrelevant.

SANE Word: A word is encoded as 4 bytes (32 bits). The bytes are ordered from most-significant to least-
significant byte (big-endian byte-order).

SANE Char: A character is currently encoded as an 8-bit ISO LATIN-1 value. An extension to support
wider character sets (16 or 32 bits) is planned for the future, but not supported at this point.

SANE String: A string pointer is encoded as a SANE Char array. The trailing NUL byte is considered
part of the array and a NULL pointer is encoded as a zero-length array.

SANE Handle: A handle is encoded like a word. The network backend needs to take care of converting
these integer values to the opaque pointer values that are presented to the user of the network backend.
Similarly, the SANE daemon needs to take care of converting the opaque pointer values it receives
from its backends into 32-bit integers suitable for use for network encoding.

enumeration types: Enumeration types are encoded like words.

5.1.2 Type Constructors

Closely following the type constructors of the C language, the SANE network protocol supports the follow-
ing four constructors:

pointer: A pointer is encoded by a word that indicates whether the pointer is a NULL-pointer which is then
followed by the value that the pointer points to (in the case of a non-NULL pointer; in the case of a
NULL pointer, no bytes are encoded for the pointer value).

37

array: An array is encoded by a word that indicates the length of the array followed by the values of the
elements in the array. The length may be zero in which case no bytes are encoded for the element
values.

structure: A structure is encoded by simply encoding the structure members in the order in which they
appear in the corresponding C type declaration.

union: A union must always be accompanied by a tag value that indicates which of the union members is
the currently the active one. For this reason, the union itself is encoded simply by encoding the value
of the currently active member.

Note that for type constructors, the pointer, element, or member values themselves may have a constructed
type. Thus, the above rules should be applied recursively until a sequence of primitive types has been found.

Also SANE had no need for encoding of circular structures. This greatly simplifies the network protocol.

5.2 Remote Procedure Call Requests

The SANE network protocol is a client/server-style remote procedure call (RPC) protocol. This means that
all activity is initiated by the client side (the network backend)—a server is restricted to answering requests
sent by the client.

The data transferred from the client to the server is comprised of the RPC code (as a SANE WORD), followed
by arguments defined in the request column below. The format of the server’s answer is given in the reply
column.

5.2.1 SANE NET INIT

RPC Code: 0

This RPC establishes a connection to a particular SANE network daemon. It must be the first call in a SANE
network session. The parameter and reply arguments for this call are shown in the table below:

request: reply:
SANE Word version code SANE Word status
SANE String user name SANE Word version code

The version code argument in the request is the SANE version-code of the network backend that is
contacting the network daemon (see Section 4.1). The “build-revision” in the version code is used to hold
the network protocol version. The SANE network daemon receiving such a request must make sure that the
network protocol version corresponds to a supported version since otherwise the encoding of the network
stream may be incompatible (even though the SANE interface itself may be compatible). The user name
argument is the name of the user on whose behalf this call is being performed. If the network backend
cannot determine a user-name, it passes a NULL pointer for this argument. No trust should be placed in the

38

authenticity of this user-name. The intent of this string is to provide more convenience to the user. E.g., it
could be used as the default-user name in subsequent authentication calls.

In the reply, status indicates the completion status. If the value is anything other than SANE STA-
TUS GOOD, the remainder of the reply has undefined values.1 The version code argument returns the
SANE version-code that the network daemon supports. See the comments in the previous paragraph on the
meaning of the build-revision in this version code.

5.2.2 SANE NET GET DEVICES

RPC Code: 1

This RPC is used to obtain the list of devices accessible by the SANE daemon.

request: reply:
void SANE Word status

SANE Device ***device list

There are no arguments in the request for this call.

In the reply, status indicates the completion status. If the value is anything other than SANE STA-
TUS GOOD, the remainder of the reply has undefined values. The device list argument is a pointer to
a NULL-terminated array of SANE Device pointers.

5.2.3 SANE NET OPEN

RPC Code: 2

This RPC is used to open a connection to a remote SANE device.

request: reply:
SANE String device name SANE Word status

SANE Word handle
SANE String resource

The device name argument specifies the name of the device to open.

In the reply, status indicates the completion status. If the value is anything other than SANE STA-
TUS GOOD, the remainder of the reply has undefined values. The handle argument specifies the device
handle that uniquely identifies the connection. The resource argument is used to request authentication.
If it has a non-NULL value, the network backend should authenticate the specified resource and then retry
this operation (see Section 5.2.10 for details on how to authorize a resource).

1The sane network daemon should be careful not to leak information in the undefined portion of the reply.

39

5.2.4 SANE NET CLOSE

RPC Code: 3

This RPC is used to close a connection to a remote SANE device.

request: reply:
SANE Word handle SANE Word dummy

The handle argument identifies the connection that should be closed.

In the reply, the dummy argument is unused. Its purpose is to ensure proper synchronization (without it, a
net client would not be able to determine when the RPC has completed).

5.2.5 SANE NET GET OPTION DESCRIPTORS

RPC Code: 4

This RPC is used to obtain all the option descriptors for a remote SANE device.

request: reply:
SANE Word handle Option Descriptor Array odesc

The handle argument identifies the remote device whose option descriptors should be obtained.

In the reply, the odesc argument is used to return the array of option descriptors. The option descriptor
array has the following structure:

struct Option_Descriptor_Array
{

SANE_Word num_options;
SANE_Option_Descriptor **desc;

};

5.2.6 SANE NET CONTROL OPTION

RPC Code: 5

This RPC is used to control (inquire, set, or set to automatic) a specific option of a remote SANE device.

request: reply:
SANE Word handle SANE Status status
SANE Word option SANE Word info
SANE Word action SANE Word value type
SANE Word value type SANE Word value size
SANE Word value size void *value
void *value SANE String *resource

40

The handle argument identifies the remote device whose option should be controlled. Argument option
is the number (index) of the option that should be controlled. Argument action specifies what action
should be taken (get, set, or set automatic). Argument value type specifies the type of the option
value (must be one of SANE TYPE BOOL, SANE TYPE INT, SANE TYPE FIXED, SANE TYPE STR-
ING, SANE TYPE BUTTON). Argument value size specifies the size of the option value in number of
bytes (see Section 4.2.9 for the precise meaning of this value). Finally, argument value is a pointer to the
option value. It must be a writeable area that is at least value size bytes large. (Note that this area must
be writable even if the action is to set the option value. This is because the backend may not be able to set
the exact option value, in which case the option value is used to return the next best value that the backend
has chosen.)

In the reply, argument resource is set to the name of the resource that must be authorized before this call
can be retried. If this value is non-NULL, all other arguments have undefined values (see Section 5.2.10 for
details on how to authorize a resource). Argument status indicates the completion status. If the value
is anything other than SANE STATUS GOOD, the remainder of the reply has undefined values. The info
argument returns the information on how well the backend was able to satisfy the request. For details, see the
description of the corresponding argument in Section 4.3.7. Arguments value type and value size
have the same values as the arguments by the same name in corresponding request. The values are repeated
here to ensure that both the request and the reply are self-contained (i.e., they can be encoded and decoded
independently). Argument value is holds the value of the option that has become effective as a result of
this RPC.

5.2.7 SANE NET GET PARAMETERS

RPC Code: 6

This RPC is used to obtain the scan parameters of a remote SANE device.

request: reply:
SANE Word handle SANE Status status

SANE Parameters params

The handle argument identifies the connection to the remote device whose scan parameters should be
returned.

In the reply, status indicates the completion status. If the value is anything other than SANE STA-
TUS GOOD, the remainder of the reply has undefined values. The argument params is used to return the
scan parameters.

5.2.8 SANE NET START

RPC Code: 7

This RPC is used to start image acquisition (scanning).

41

request: reply:
SANE Word handle SANE Status status

SANE Word port
SANE Word byte order
SANE String resource

The handle argument identifies the connection to the remote device from which the image should be
acquired.

In the reply, argument resource is set to the name of the resource that must be authorized before this call
can be retried. If this value is non-NULL, all other arguments have undefined values (see Section 5.2.10 for
details on how to authorize a resource). Argument, status indicates the completion status. If the value is
anything other than SANE STATUS GOOD, the remainder of the reply has undefined values. The argument
port returns the port number from which the image data will be available. To read the image data, a
network client must connect to the remote host at the indicated port number. Through this port, the image
data is transmitted as a sequence of data records. Each record starts with the data length in bytes. The data
length is transmitted as a sequence of four bytes. These bytes should be interpreted as an unsigned integer in
big-endian format. The four length bytes are followed by the number of data bytes indicated by the length.
Except for byte-order, the data is in the same format as defined for sane read(). Since some records may
contain no data at all, a length value of zero is perfectly valid. The special length value of 0xffffffff
is used to indicate the end of the data stream. That is, after receiving a record length of 0xffffffff, the
network client should close the data connection and stop reading data.

Argument byte order specifies the byte-order of the image data. A value of 0x1234 indicates little-
endian format, a value of 0x4321 indicates big-endian format. All other values are presently undefined and
reserved for future enhancements of this protocol. The intent is that a network server sends data in its own
byte-order and the client is responsible for adjusting the byte-order, if necessary. This approach causes no
unnecessary overheads in the case where the server and client byte-order match and puts the extra burden
on the client side when there is a byte-order mismatch. Putting the burden on the client-side improves the
scalability properties of this protocol.

5.2.9 SANE NET CANCEL

RPC Code: 8

This RPC is used to cancel the current operation of a remote SANE device.

request: reply:
SANE Word handle SANE Word dummy

The handle argument identifies the connection whose operation should be cancelled.

In the reply, the dummy argument is unused. Its purpose is to ensure proper synchronization (without it, a
net client would not be able to determine when the RPC has completed).

42

5.2.10 SANE NET AUTHORIZE

RPC Code: 9

This RPC is used to pass authorization data from the net client to the net server.

request: reply:
SANE String resource SANE Word dummy
SANE String username
SANE String password

The resource argument specifies the name of the resource to be authorized. This argument should be set
to the string returned in the resource argument of the RPC reply that required this authorization call. The
username and password are the name of the user that is accessing the resource and the password for the
specified resource/user pair.

Since the password is not encrypted during network transmission, it is recommended to use the following
extension:

If the server adds the string ‘$MD5$’ to the resource-name followed by a random string not longer then
128 bytes, the client may answer with the MD5 digest of the concatenation of the password and the random
string. To differentiate between the MD5 digest and a strange password the client prepends the MD5 digest
with the string ‘$MD5$’.

In the reply, dummy is completely unused. Note that there is no direct failure indication. This is unnecessary
since a net client will retry the RPC that resulted in the authorization request until that call succeeds (or until
the request is cancelled). The RPC that resulted in the authorization request continues after the reply from
the client and may fail with SANE STATUS ACCESS DENIED.

5.2.11 SANE NET EXIT

RPC Code: 10

This RPC is used to disconnect a net client from a net server. There are no request or reply arguments in
this call. As a result of this call, the connection between the client and the server that was established by the
SANE NET INIT call will be closed.

43

Chapter 6

Contact Information

The SANE standard is discussed and evolved via a mailing list. Anybody with email access to the Internet
can automatically join and leave the discussion group by sending mail to the following address.

sane-devel-request@lists.alioth.debian.org

To subscribe, send a mail with the body “subscribe sane-devel” to the above address.

A complete list of commands supported can be obtained by sending a mail with a subject of “help” to the
above address. The mailing list is archived and available through the SANE home page at URL:

http://www.sane-project.org/

44

Index

array, 38

br-x, 35
br-y, 35

code flow, 32

device-name, 18
domain, 24

enumeration types, 37

image data format, 10

mailing list, 44

network authorization, 43
NUL, 16

option count, 34
Option Descriptor Array, 40

password, 24
pointer, 37
preview mode, 34

resolution option, 34

SANE Action, 26
SANE ACTION GET VALUE, 26
SANE ACTION SET AUTO, 26
SANE ACTION SET VALUE, 26
SANE Authorization Callback, 24
SANE Bool, 15
SANE Byte, 14, 37
sane cancel, 30
SANE CAP ADVANCED, 22
SANE CAP AUTOMATIC, 22
SANE CAP EMULATED, 22
SANE CAP HARD SELECT, 22

SANE CAP INACTIVE, 22
SANE CAP SOFT DETECT, 22
SANE CAP SOFT SELECT, 22
SANE Char, 16, 37
sane close, 25
SANE CONSTRAINT NONE, 23
SANE CONSTRAINT RANGE, 23
SANE CONSTRAINT STRING LIST, 23
SANE Constraint Type, 21
SANE CONSTRAINT WORD LIST, 23
sane control option, 26
SANE CURRENT MAJOR, 13
SANE Device, 17
sane exit, 24
SANE FALSE, 15
SANE FIX, 16
SANE Fixed, 15
SANE FIXED SCALE SHIFT, 15
SANE Frame, 28
SANE FRAME BLUE, 12, 28
SANE FRAME GRAY, 11, 28
SANE FRAME GREEN, 12, 28
SANE FRAME RED, 12, 28
SANE FRAME RGB, 11, 28
sane get devices, 25
sane get option descriptor, 26
sane get parameters, 28
sane get select fd, 31
SANE Handle, 17, 37
SANE INFO INEXACT, 27
SANE INFO RELOAD OPTIONS, 27, 29
SANE INFO RELOAD PARAMS, 27
sane init, 24
SANE Int, 15
SANE NET AUTHORIZE, 43
SANE NET CANCEL, 42
SANE NET CLOSE, 40

45

SANE NET CONTROL OPTION, 40
SANE NET EXIT, 43
SANE NET GET DEVICES, 39
SANE NET GET OPTION DESCRIPTORS, 40
SANE NET GET PARAMETERS, 41
SANE NET INIT, 38
SANE NET OPEN, 39
SANE NET START, 41
sane open, 25
SANE Option Descriptor, 19
SANE OPTION IS ACTIVE, 21
SANE OPTION IS SETTABLE, 21
SANE Parameters, 28
SANE Range, 23
sane read, 30
sane set io mode, 31
sane start, 29
SANE Status, 17
SANE STATUS ACCESS DENIED, 17
SANE STATUS CANCELLED, 17
SANE STATUS COVER OPEN, 17
SANE STATUS DEVICE BUSY, 17
SANE STATUS EOF, 17
SANE STATUS GOOD, 17, 24
SANE STATUS INVAL, 17
SANE STATUS IO ERROR, 17
SANE STATUS JAMMED, 17
SANE STATUS NO DOCS, 17
SANE STATUS NO MEM, 17
SANE STATUS UNSUPPORTED, 17
SANE String, 16, 37
SANE String Const, 16
sane strstatus, 32
SANE TRUE, 15
SANE TYPE BOOL, 20
SANE TYPE BUTTON, 20
SANE TYPE FIXED, 20
SANE TYPE GROUP, 20
SANE TYPE INT, 20
SANE TYPE STRING, 20
SANE Unit, 20
SANE UNFIX, 16
SANE UNIT BIT, 20
SANE UNIT DPI, 20
SANE UNIT MICROSECOND, 20

SANE UNIT MM, 20
SANE UNIT NONE, 20
SANE UNIT PERCENT, 20
SANE UNIT PIXEL, 20
SANE Value Type, 20
SANE VERSION CODE, 14
SANE VERSION MAJOR, 14
SANE Word, 14, 37
scan area options, 34
scan resolution, 34
structure, 38

tl-x, 35
tl-y, 35
Type Strings, 18

union, 38
username, 24

Vendor Strings, 18

well-known options, 33

46

