Removes all unrelated files.

Signed-off-by: Nuno Goncalves <nunojpg@gmail.com>
pull/2/head
Nuno Goncalves 2015-07-12 00:46:30 +01:00
rodzic 43c8e9c30f
commit 8151c6757e
29 zmienionych plików z 0 dodań i 1643 usunięć

Plik binarny nie jest wyświetlany.

Wyświetl plik

@ -1,52 +0,0 @@
#! /usr/bin/env python
import sys
from collections import defaultdict
# todo
# interval based summary
# tall vs wide vs super wide output
def help():
print("flatten.py input.csv")
print("turns any rtl_power csv into a more compact summary")
sys.exit()
if len(sys.argv) <= 1:
help()
if len(sys.argv) > 2:
help()
path = sys.argv[1]
sums = defaultdict(float)
counts = defaultdict(int)
def frange(start, stop, step):
i = 0
f = start
while f <= stop:
f = start + step*i
yield f
i += 1
for line in open(path):
line = line.strip().split(', ')
low = int(line[2])
high = int(line[3])
step = float(line[4])
weight = int(line[5])
dbm = [float(d) for d in line[6:]]
for f,d in zip(frange(low, high, step), dbm):
sums[f] += d*weight
counts[f] += weight
ave = defaultdict(float)
for f in sums:
ave[f] = sums[f] / counts[f]
for f in sorted(ave):
print(','.join([str(f), str(ave[f])]))

Wyświetl plik

@ -1,549 +0,0 @@
#! /usr/bin/env python
from PIL import Image, ImageDraw, ImageFont
import os, sys, gzip, math, argparse, colorsys, datetime
from collections import defaultdict
from itertools import *
urlretrieve = lambda a, b: None
try:
import urllib.request
urlretrieve = urllib.request.urlretrieve
except:
import urllib
urlretrieve = urllib.urlretrieve
# todo:
# matplotlib powered --interactive
# arbitrary freq marker spacing
# ppm
# blue-less marker grid
# fast summary thing
# gain normalization
vera_url = "https://github.com/keenerd/rtl-sdr-misc/raw/master/heatmap/Vera.ttf"
vera_path = os.path.join(sys.path[0], "Vera.ttf")
parser = argparse.ArgumentParser(description='Convert rtl_power CSV files into graphics.')
parser.add_argument('input_path', metavar='INPUT', type=str,
help='Input CSV file. (may be a .csv.gz)')
parser.add_argument('output_path', metavar='OUTPUT', type=str,
help='Output image. (various extensions supported)')
parser.add_argument('--offset', dest='offset_freq', default=None,
help='Shift the entire frequency range, for up/down converters.')
parser.add_argument('--ytick', dest='time_tick', default=None,
help='Place ticks along the Y axis every N seconds/minutes/hours/days.')
parser.add_argument('--db', dest='db_limit', nargs=2, default=None,
help='Minimum and maximum db values.')
parser.add_argument('--compress', dest='compress', default=0,
help='Apply a gradual asymptotic time compression. Values > 1 are the new target height, values < 1 are a scaling factor.')
slicegroup = parser.add_argument_group('Slicing',
'Efficiently render a portion of the data. (optional) Frequencies can take G/M/k suffixes. Timestamps look like "YYYY-MM-DD HH:MM:SS" Durations take d/h/m/s suffixes.')
slicegroup.add_argument('--low', dest='low_freq', default=None,
help='Minimum frequency for a subrange.')
slicegroup.add_argument('--high', dest='high_freq', default=None,
help='Maximum frequency for a subrange.')
slicegroup.add_argument('--begin', dest='begin_time', default=None,
help='Timestamp to start at.')
slicegroup.add_argument('--end', dest='end_time', default=None,
help='Timestamp to stop at.')
slicegroup.add_argument('--head', dest='head_time', default=None,
help='Duration to use, starting at the beginning.')
slicegroup.add_argument('--tail', dest='tail_time', default=None,
help='Duration to use, stopping at the end.')
# hack, http://stackoverflow.com/questions/9025204/
for i, arg in enumerate(sys.argv):
if (arg[0] == '-') and arg[1].isdigit():
sys.argv[i] = ' ' + arg
args = parser.parse_args()
if not os.path.isfile(vera_path):
urlretrieve(vera_url, vera_path)
try:
font = ImageFont.truetype(vera_path, 10)
except:
print('Please download the Vera.ttf font and place it in the current directory.')
sys.exit(1)
def frange(start, stop, step):
i = 0
while (i*step + start <= stop):
yield i*step + start
i += 1
def min_filter(row):
size = 3
result = []
for i in range(size):
here = row[i]
near = row[0:i] + row[i+1:size]
if here > min(near):
result.append(here)
continue
result.append(min(near))
for i in range(size-1, len(row)):
here = row[i]
near = row[i-(size-1):i]
if here > min(near):
result.append(here)
continue
result.append(min(near))
return result
def floatify(zs):
# nix errors with -inf, windows errors with -1.#J
zs2 = []
previous = 0 # awkward for single-column rows
for z in zs:
try:
z = float(z)
except ValueError:
z = previous
if math.isinf(z):
z = previous
if math.isnan(z):
z = previous
zs2.append(z)
previous = z
return zs2
def freq_parse(s):
suffix = 1
if s.lower().endswith('k'):
suffix = 1e3
if s.lower().endswith('m'):
suffix = 1e6
if s.lower().endswith('g'):
suffix = 1e9
if suffix != 1:
s = s[:-1]
return float(s) * suffix
def duration_parse(s):
suffix = 1
if s.lower().endswith('s'):
suffix = 1
if s.lower().endswith('m'):
suffix = 60
if s.lower().endswith('h'):
suffix = 60 * 60
if s.lower().endswith('d'):
suffix = 24 * 60 * 60
if suffix != 1 or s.lower().endswith('s'):
s = s[:-1]
return float(s) * suffix
def date_parse(s):
if '-' not in s:
return datetime.datetime.fromtimestamp(int(s))
return datetime.datetime.strptime(s, '%Y-%m-%d %H:%M:%S')
def gzip_wrap(path):
"hides silly CRC errors"
iterator = gzip.open(path, 'rb')
running = True
while running:
try:
line = next(iterator)
if type(line) == bytes:
line = line.decode('utf-8')
yield line
except IOError:
running = False
def reparse(label, fn):
if args.__getattribute__(label) is None:
return
args.__setattr__(label, fn(args.__getattribute__(label)))
path = args.input_path
output = args.output_path
raw_data = lambda: open(path)
if path.endswith('.gz'):
raw_data = lambda: gzip_wrap(path)
reparse('low_freq', freq_parse)
reparse('high_freq', freq_parse)
reparse('offset_freq', freq_parse)
if args.offset_freq is None:
args.offset_freq = 0
reparse('time_tick', duration_parse)
reparse('begin_time', date_parse)
reparse('end_time', date_parse)
reparse('head_time', duration_parse)
reparse('tail_time', duration_parse)
reparse('head_time', lambda s: datetime.timedelta(seconds=s))
reparse('tail_time', lambda s: datetime.timedelta(seconds=s))
args.compress = float(args.compress)
if args.begin_time and args.tail_time:
print("Can't combine --begin and --tail")
sys.exit(2)
if args.end_time and args.head_time:
print("Can't combine --end and --head")
sys.exit(2)
if args.head_time and args.tail_time:
print("Can't combine --head and --tail")
sys.exit(2)
print("loading")
def slice_columns(columns, low_freq, high_freq):
start_col = 0
stop_col = len(columns)
if args.low_freq is not None and low <= args.low_freq <= high:
start_col = sum(f<args.low_freq for f in columns)
if args.high_freq is not None and low <= args.high_freq <= high:
stop_col = sum(f<=args.high_freq for f in columns)
return start_col, stop_col-1
freqs = set()
f_cache = set()
times = set()
labels = set()
min_z = 0
max_z = -100
start, stop = None, None
if args.db_limit:
min_z = min(map(float, args.db_limit))
max_z = max(map(float, args.db_limit))
for line in raw_data():
line = [s.strip() for s in line.strip().split(',')]
#line = [line[0], line[1]] + [float(s) for s in line[2:] if s]
line = [s for s in line if s]
low = int(line[2]) + args.offset_freq
high = int(line[3]) + args.offset_freq
step = float(line[4])
t = line[0] + ' ' + line[1]
if '-' not in line[0]:
t = line[0]
if args.low_freq is not None and high < args.low_freq:
continue
if args.high_freq is not None and args.high_freq < low:
continue
if args.begin_time is not None and date_parse(t) < args.begin_time:
continue
if args.end_time is not None and date_parse(t) > args.end_time:
break
times.add(t)
columns = list(frange(low, high, step))
start_col, stop_col = slice_columns(columns, args.low_freq, args.high_freq)
f_key = (columns[start_col], columns[stop_col], step)
zs = line[6+start_col:6+stop_col+1]
if not zs:
continue
if f_key not in f_cache:
freq2 = list(frange(*f_key))[:len(zs)]
freqs.update(freq2)
#freqs.add(f_key[1]) # high
#labels.add(f_key[0]) # low
f_cache.add(f_key)
if not args.db_limit:
zs = floatify(zs)
min_z = min(min_z, min(zs))
max_z = max(max_z, max(zs))
if start is None:
start = date_parse(t)
stop = date_parse(t)
if args.head_time is not None and args.end_time is None:
args.end_time = start + args.head_time
if args.tail_time is not None:
times = [t for t in times if date_parse(t) >= (stop - args.tail_time)]
start = date_parse(min(times))
freqs = list(sorted(list(freqs)))
times = list(sorted(list(times)))
labels = list(sorted(list(labels)))
if len(labels) == 1:
delta = (max(freqs) - min(freqs)) / (len(freqs) / 500.0)
delta = round(delta / 10**int(math.log10(delta))) * 10**int(math.log10(delta))
delta = int(delta)
lower = int(math.ceil(min(freqs) / delta) * delta)
labels = list(range(lower, int(max(freqs)), delta))
def compression(y, decay):
return int(round((1/decay)*math.exp(y*decay) - 1/decay))
height = len(times)
height2 = height
if args.compress:
if args.compress > height:
args.compress = 0
print("Image too short, disabling compression")
if 0 < args.compress < 1:
args.compress *= height
if args.compress:
args.compress = -1 / args.compress
height2 = compression(height, args.compress)
print("x: %i, y: %i, z: (%f, %f)" % (len(freqs), height2, min_z, max_z))
def rgb2(z):
g = (z - min_z) / (max_z - min_z)
return (int(g*255), int(g*255), 50)
def rgb3(z):
g = (z - min_z) / (max_z - min_z)
c = colorsys.hsv_to_rgb(0.65-(g-0.08), 1, 0.2+g)
return (int(c[0]*256),int(c[1]*256),int(c[2]*256))
def collate_row(x_size):
# this is more fragile than the old code
# sensitive to timestamps that are out of order
old_t = None
row = [0.0] * x_size
for line in raw_data():
line = [s.strip() for s in line.strip().split(',')]
#line = [line[0], line[1]] + [float(s) for s in line[2:] if s]
line = [s for s in line if s]
t = line[0] + ' ' + line[1]
if '-' not in line[0]:
t = line[0]
if t not in times:
continue # happens with live files and time cropping
if old_t is None:
old_t = t
low = int(line[2]) + args.offset_freq
high = int(line[3]) + args.offset_freq
step = float(line[4])
columns = list(frange(low, high, step))
start_col, stop_col = slice_columns(columns, args.low_freq, args.high_freq)
if args.low_freq and columns[stop_col] < args.low_freq:
continue
if args.high_freq and columns[start_col] > args.high_freq:
continue
start_freq = columns[start_col]
if args.low_freq:
start_freq = max(args.low_freq, start_freq)
# sometimes fails? skip or abort?
x_start = freqs.index(start_freq)
zs = floatify(line[6+start_col:6+stop_col+1])
if t != old_t:
yield old_t, row
row = [0.0] * x_size
old_t = t
for i in range(len(zs)):
x = x_start + i
if x >= x_size:
continue
row[x] = zs[i]
yield old_t, row
print("drawing")
tape_height = 25
img = Image.new("RGB", (len(freqs), tape_height + height2))
pix = img.load()
x_size = img.size[0]
average = [0.0] * len(freqs)
tally = 0
old_y = None
for t, zs in collate_row(x_size):
y = times.index(t)
if not args.compress:
for x in range(len(zs)):
pix[x,y+tape_height] = rgb2(zs[x])
continue
# ugh
y = height2 - compression(height - y, args.compress)
if old_y is None:
old_y = y
if old_y != y:
for x in range(len(average)):
pix[x,old_y+tape_height] = rgb2(average[x]/tally)
tally = 0
average = [0.0] * len(freqs)
old_y = y
for x in range(len(zs)):
average[x] += zs[x]
tally += 1
def closest_index(n, m_list, interpolate=False):
"assumes sorted m_list, returns two points for interpolate"
i = len(m_list) // 2
jump = len(m_list) // 2
while jump > 1:
i_down = i - jump
i_here = i
i_up = i + jump
if i_down < 0:
i_down = i
if i_up >= len(m_list):
i_up = i
e_down = abs(m_list[i_down] - n)
e_here = abs(m_list[i_here] - n)
e_up = abs(m_list[i_up] - n)
e_best = min([e_down, e_here, e_up])
if e_down == e_best:
i = i_down
if e_up == e_best:
i = i_up
if e_here == e_best:
i = i_here
jump = jump // 2
if not interpolate:
return i
if n < m_list[i] and i > 0:
return i-1, i
if n > m_list[i] and i < len(m_list)-1:
return i, i+1
return i, i
def word_aa(label, pt, fg_color, bg_color):
f = ImageFont.truetype(vera_path, pt*3)
s = f.getsize(label)
s = (s[0], pt*3 + 3) # getsize lies, manually compute
w_img = Image.new("RGB", s, bg_color)
w_draw = ImageDraw.Draw(w_img)
w_draw.text((0, 0), label, font=f, fill=fg_color)
return w_img.resize((s[0]//3, s[1]//3), Image.ANTIALIAS)
def blend(percent, c1, c2):
"c1 and c2 are RGB tuples"
# probably isn't gamma correct
r = c1[0] * percent + c2[0] * (1 - percent)
g = c1[1] * percent + c2[1] * (1 - percent)
b = c1[2] * percent + c2[2] * (1 - percent)
c3 = map(int, map(round, [r,g,b]))
return tuple(c3)
def tape_lines(interval, y1, y2, used=set()):
"returns the number of lines"
low_f = (min(freqs) // interval) * interval
high_f = (1 + max(freqs) // interval) * interval
hits = 0
blur = lambda p: blend(p, (255, 255, 0), (0, 0, 0))
for i in range(int(low_f), int(high_f), int(interval)):
if not (min(freqs) < i < max(freqs)):
continue
hits += 1
if i in used:
continue
x1,x2 = closest_index(i, freqs, interpolate=True)
if x1 == x2:
draw.line([x1,y1,x1,y2], fill='black')
else:
percent = (i - freqs[x1]) / float(freqs[x2] - freqs[x1])
draw.line([x1,y1,x1,y2], fill=blur(percent))
draw.line([x2,y1,x2,y2], fill=blur(1-percent))
used.add(i)
return hits
def tape_text(interval, y, used=set()):
low_f = (min(freqs) // interval) * interval
high_f = (1 + max(freqs) // interval) * interval
for i in range(int(low_f), int(high_f), int(interval)):
if i in used:
continue
if not (min(freqs) < i < max(freqs)):
continue
x = closest_index(i, freqs)
s = str(i)
if interval >= 1e6:
s = '%iM' % (i/1e6)
elif interval > 1000:
s = '%ik' % ((i/1e3) % 1000)
if s.startswith('0'):
s = '%iM' % (i/1e6)
else:
s = '%i' % (i%1000)
if s.startswith('0'):
s = '%ik' % ((i/1e3) % 1000)
if s.startswith('0'):
s = '%iM' % (i/1e6)
w = word_aa(s, tape_pt, 'black', 'yellow')
img.paste(w, (x - w.size[0]//2, y))
used.add(i)
def shadow_text(x, y, s, font, fg_color='white', bg_color='black'):
draw.text((x+1, y+1), s, font=font, fill=bg_color)
draw.text((x, y), s, font=font, fill=fg_color)
print("labeling")
tape_pt = 10
draw = ImageDraw.Draw(img)
font = ImageFont.load_default()
pixel_width = step
draw.rectangle([0,0,img.size[0],tape_height], fill='yellow')
min_freq = min(freqs)
max_freq = max(freqs)
delta = max_freq - min_freq
width = len(freqs)
label_base = 9
for i in range(label_base, 0, -1):
interval = int(10**i)
low_f = (min_freq // interval) * interval
high_f = (1 + max_freq // interval) * interval
hits = len(range(int(low_f), int(high_f), interval))
if hits >= 4:
label_base = i
break
label_base = 10**label_base
for scale,y in [(1,10), (5,15), (10,19), (50,22), (100,24), (500, 25)]:
hits = tape_lines(label_base/scale, y, tape_height)
pixels_per_hit = width / hits
if pixels_per_hit > 50:
tape_text(label_base/scale, y-tape_pt)
if pixels_per_hit < 10:
break
if args.time_tick:
label_format = "%H:%M:%S"
if args.time_tick % (60*60*24) == 0:
label_format = "%Y-%m-%d"
elif args.time_tick % 60 == 0:
label_format = "%H:%M"
label_next = datetime.datetime(start.year, start.month, start.day, start.hour)
tick_delta = datetime.timedelta(seconds = args.time_tick)
while label_next < start:
label_next += tick_delta
last_y = -100
for y,t in enumerate(times):
label_time = date_parse(t)
if label_time < label_next:
continue
if args.compress:
y = height2 - compression(height - y, args.compress)
if y - last_y > 15:
shadow_text(2, y+tape_height, label_next.strftime(label_format), font)
last_y = y
label_next += tick_delta
duration = stop - start
duration = duration.days * 24*60*60 + duration.seconds + 30
pixel_height = duration / len(times)
hours = int(duration / 3600)
minutes = int((duration - 3600*hours) / 60)
margin = 2
if args.time_tick:
margin = 60
shadow_text(margin, img.size[1] - 45, 'Duration: %i:%02i' % (hours, minutes), font)
shadow_text(margin, img.size[1] - 35, 'Range: %.2fMHz - %.2fMHz' % (min(freqs)/1e6, (max(freqs)+pixel_width)/1e6), font)
shadow_text(margin, img.size[1] - 25, 'Pixel: %.2fHz x %is' % (pixel_width, int(round(pixel_height))), font)
shadow_text(margin, img.size[1] - 15, 'Started: {0}'.format(start), font)
# bin size
print("saving")
img.save(output)

Wyświetl plik

@ -1,103 +0,0 @@
#! /usr/bin/env python
"""
takes raw iq, turns into heatmap
extremely crude, lacks features like windowing
"""
import sys, math, struct
import numpy
from PIL import Image
def help():
print("raw_iq.py bins averages sample-type input.raw")
print(" sample_types: u1 (uint8), s1 (int8), s2 (int16)")
sys.exit()
def byte_reader(path, sample):
dtype = None
offset = 0
scale = 2**7
if sample == 'u1':
dtype = numpy.uint8
offset = -127
if sample == 's1':
dtype = numpy.int8
if sample == 's2':
dtype = numpy.int16
scale = 2**15
raw = numpy.fromfile(path, dtype).astype(numpy.float64)
raw += offset
raw /= scale
return raw[0::2] + 1j * raw[1::2]
def psd(data, bin_count, averages):
"really basic, lacks windowing"
length = len(data)
table = [numpy.zeros(bin_count)]
ave = 0
for i in range(0, length, bin_count):
sub_data = numpy.array(data[i:i+bin_count])
dc_bias = sum(sub_data) / len(sub_data)
#sub_data -= dc_bias
fft = numpy.fft.fft(sub_data)
if len(fft) != bin_count:
continue
table[-1] = table[-1] + numpy.real(numpy.conjugate(fft)*fft)
ave += 1
if ave >= averages:
ave = max(1, ave)
row = table[-1]
row = numpy.concatenate((row[bin_count//2:], row[:bin_count//2]))
# spurious warnings
table[-1] = 10 * numpy.log10(row / ave)
table.append(numpy.zeros(bin_count))
ave = 0
if ave != 0:
row = table[-1]
row = numpy.concatenate((row[bin_count//2:], row[:bin_count//2]))
table[-1] = 10 * numpy.log10(row / ave)
if ave == 0:
table.pop(-1)
return table
def rgb2(z, lowest, highest):
g = (z - lowest) / (highest - lowest)
return (int(g*255), int(g*255), 50)
def heatmap(table):
lowest = -1
highest = -100
for row in table:
lowest = min(lowest, min(z for z in row if not math.isinf(z)))
highest = max(highest, max(row))
img = Image.new("RGB", (len(table[0]), len(table)))
pix = img.load()
for y,row in enumerate(table):
for x,val in enumerate(row):
if not val >= lowest: # fast nan/-inf test
val = lowest
pix[x,y] = rgb2(val, lowest, highest)
return img
if __name__ == '__main__':
try:
_, bin_count, averages, sample, path = sys.argv
bin_count = int(bin_count)
bin_count = int(2**(math.ceil(math.log(bin_count, 2))))
averages = int(averages)
except:
help()
print("loading data")
data = byte_reader(path, sample)
print("estimated size: %i x %i" % (bin_count,
int(len(data) / (bin_count*averages))))
print("crunching fft")
fft_table = psd(data, bin_count, averages)
print("drawing image")
img = heatmap(fft_table)
print("saving image")
img.save(path + '.png')

Plik binarny nie jest wyświetlany.

Wyświetl plik

@ -1,13 +0,0 @@
#!/bin/sh
# todo, a real makefile
files="waterfall.c"
binary="waterfall"
flags="-Wall -O2"
includes="-I/usr/include/libusb-1.0"
libs="-lSDL -lSDL_image -lSDL_ttf -lusb-1.0 -lrtlsdr -lpthread -lm"
rm -f $binary
gcc -o $binary $files $flags $includes $libs

Plik binarny nie jest wyświetlany.

Wyświetl plik

@ -1,395 +0,0 @@
/*
* rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver
* Copyright (C) 2012 by Steve Markgraf <steve@steve-m.de>
* Copyright (C) 2012 by Hoernchen <la@tfc-server.de>
* Copyright (C) 2012 by Kyle Keen <keenerd@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// a quick and horrible hack job of rtl_power.c
// 1024 element FFT
// no downsampling
// dedicated thread
// external flags for retune, gain change, data ready, quit
// todo, preface with fft_
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include <math.h>
#include <pthread.h>
#include <libusb.h>
#include "rtl-sdr.h"
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define FFT_LEVEL 10
#define FFT_STACK 4
#define FFT_SIZE (1 << FFT_LEVEL)
#define DEFAULT_BUF_LENGTH (2 * FFT_SIZE * FFT_STACK)
#define BUFFER_DUMP (1<<12)
#define DEFAULT_ASYNC_BUF_NUMBER 32
#define SAMPLE_RATE 3200000
#define PRESCALE 8
#define POSTSCALE 2
#define FREQ_MIN 27000000
#define FREQ_MAX 1700000000
struct buffer
{
// each buffer should have one writer and one reader thread
// the reader waits for the cond
int16_t buf[DEFAULT_BUF_LENGTH];
int len;
pthread_rwlock_t rw;
pthread_cond_t ready;
pthread_mutex_t ready_m;
int ready_fast;
};
// shared items
static volatile int do_exit = 0;
static rtlsdr_dev_t *dev = NULL;
static struct buffer fft_out;
static int frequency = 97000000;
// local items
struct buffer rtl_out;
struct buffer fft_tmp;
int16_t* Sinewave;
double* power_table;
int N_WAVE, LOG2_N_WAVE;
int next_power;
int16_t *fft_buf;
int *window_coefs;
pthread_t dongle_thread;
pthread_t fft_thread;
#define safe_cond_signal(n, m) pthread_mutex_lock(m); pthread_cond_signal(n); pthread_mutex_unlock(m)
#define safe_cond_wait(n, m) pthread_mutex_lock(m); pthread_cond_wait(n, m); pthread_mutex_unlock(m)
// some functions from convenience.c
void gain_default(void)
{
int count;
int* gains;
count = rtlsdr_get_tuner_gains(dev, NULL);
if (count <= 0)
{return;}
gains = malloc(sizeof(int) * count);
count = rtlsdr_get_tuner_gains(dev, gains);
rtlsdr_set_tuner_gain(dev, gains[count-1]);
free(gains);
}
void gain_increase(void)
{
int i, g, count;
int* gains;
count = rtlsdr_get_tuner_gains(dev, NULL);
if (count <= 0)
{return;}
gains = malloc(sizeof(int) * count);
count = rtlsdr_get_tuner_gains(dev, gains);
g = rtlsdr_get_tuner_gain(dev);
for (i=0; i<(count-1); i++)
{
if (gains[i] == g)
{
rtlsdr_set_tuner_gain(dev, gains[i+1]);
break;
}
}
free(gains);
}
void gain_decrease(void)
{
int i, g, count;
int* gains;
count = rtlsdr_get_tuner_gains(dev, NULL);
if (count <= 0)
{return;}
gains = malloc(sizeof(int) * count);
count = rtlsdr_get_tuner_gains(dev, gains);
g = rtlsdr_get_tuner_gain(dev);
for (i=1; i<count; i++)
{
if (gains[i] == g)
{
rtlsdr_set_tuner_gain(dev, gains[i-1]);
break;
}
}
free(gains);
}
void frequency_set(void)
{
if (frequency < FREQ_MIN)
{frequency = FREQ_MIN;}
if (frequency > FREQ_MAX)
{frequency = FREQ_MAX;}
rtlsdr_set_center_freq(dev, frequency);
}
// fft stuff
void sine_table(int size)
{
int i;
double d;
LOG2_N_WAVE = size;
N_WAVE = 1 << LOG2_N_WAVE;
Sinewave = malloc(sizeof(int16_t) * N_WAVE*3/4);
power_table = malloc(sizeof(double) * N_WAVE);
for (i=0; i<N_WAVE*3/4; i++)
{
d = (double)i * 2.0 * M_PI / N_WAVE;
Sinewave[i] = (int)round(32767*sin(d));
}
}
inline int16_t FIX_MPY(int16_t a, int16_t b)
/* fixed point multiply and scale */
{
int c = ((int)a * (int)b) >> 14;
b = c & 0x01;
return (c >> 1) + b;
}
int fix_fft(int16_t iq[], int m)
/* interleaved iq[], 0 <= n < 2**m, changes in place */
{
int mr, nn, i, j, l, k, istep, n, shift;
int16_t qr, qi, tr, ti, wr, wi;
n = 1 << m;
if (n > N_WAVE)
{return -1;}
mr = 0;
nn = n - 1;
/* decimation in time - re-order data */
for (m=1; m<=nn; ++m) {
l = n;
do
{l >>= 1;}
while (mr+l > nn);
mr = (mr & (l-1)) + l;
if (mr <= m)
{continue;}
// real = 2*m, imag = 2*m+1
tr = iq[2*m];
iq[2*m] = iq[2*mr];
iq[2*mr] = tr;
ti = iq[2*m+1];
iq[2*m+1] = iq[2*mr+1];
iq[2*mr+1] = ti;
}
l = 1;
k = LOG2_N_WAVE-1;
while (l < n) {
shift = 1;
istep = l << 1;
for (m=0; m<l; ++m) {
j = m << k;
wr = Sinewave[j+N_WAVE/4];
wi = -Sinewave[j];
if (shift) {
wr >>= 1; wi >>= 1;}
for (i=m; i<n; i+=istep) {
j = i + l;
tr = FIX_MPY(wr,iq[2*j]) - FIX_MPY(wi,iq[2*j+1]);
ti = FIX_MPY(wr,iq[2*j+1]) + FIX_MPY(wi,iq[2*j]);
qr = iq[2*i];
qi = iq[2*i+1];
if (shift) {
qr >>= 1; qi >>= 1;}
iq[2*j] = qr - tr;
iq[2*j+1] = qi - ti;
iq[2*i] = qr + tr;
iq[2*i+1] = qi + ti;
}
}
--k;
l = istep;
}
return 0;
}
void remove_dc(int16_t *data, int length)
/* works on interleaved data */
{
int i;
int16_t ave;
long sum = 0L;
for (i=0; i < length; i+=2) {
sum += data[i];
}
ave = (int16_t)(sum / (long)(length));
if (ave == 0) {
return;}
for (i=0; i < length; i+=2) {
data[i] -= ave;
}
}
int32_t real_conj(int16_t real, int16_t imag)
/* real(n * conj(n)) */
{
return ((int32_t)real*(int32_t)real + (int32_t)imag*(int32_t)imag);
}
// threading stuff
void rtl_callback_fn(unsigned char *buf, uint32_t len, void *ctx)
{
int i;
if (do_exit)
{return;}
pthread_rwlock_wrlock(&rtl_out.rw);
for (i=0; i<len; i++)
{
rtl_out.buf[i] = ((int16_t)buf[i]) - 127;
}
rtl_out.len = len;
pthread_rwlock_unlock(&rtl_out.rw);
safe_cond_signal(&rtl_out.ready, &rtl_out.ready_m);
}
void* dongle_thread_fn(void *arg)
{
rtlsdr_read_async(dev, rtl_callback_fn, NULL,
DEFAULT_ASYNC_BUF_NUMBER, DEFAULT_BUF_LENGTH);
return 0;
}
void* fft_thread_fn(void *arg)
{
int i, i2, p, len, offset;
int16_t buf1[DEFAULT_BUF_LENGTH];
int16_t buf2[DEFAULT_BUF_LENGTH];
while (!do_exit)
{
safe_cond_wait(&rtl_out.ready, &rtl_out.ready_m);
pthread_rwlock_rdlock(&rtl_out.rw);
for (i=0; i<rtl_out.len; i++)
{
buf1[i] = rtl_out.buf[i] * PRESCALE;
}
len = rtl_out.len;
pthread_rwlock_unlock(&rtl_out.rw);
// compute
//remove_dc(fft_buf, buf_len / ds);
//remove_dc(fft_buf+1, (buf_len / ds) - 1);
for (offset=0; offset<len; offset+=(2*FFT_SIZE))
{
fix_fft(buf1+offset, FFT_LEVEL);
for (i=0; i<FFT_SIZE; i++)
{
if (offset == 0)
{buf2[i] = 0;}
//buf1[i] = rtl_out.buf[i];
//p = buf1[i] * buf1[i];
i2 = offset + i*2;
p = (int16_t)real_conj(buf1[i2], buf1[i2 + 1]);
buf2[i] += p;
}
}
pthread_rwlock_wrlock(&fft_out.rw);
fft_out.len = FFT_SIZE;
// fft is 180 degrees off
len = FFT_SIZE / 2;
for (i=0; i<len; i++)
{
fft_out.buf[i] = (int)log10(POSTSCALE * (float)buf2[i+len]);
fft_out.buf[i+len] = (int)log10(POSTSCALE * (float)buf2[i]);
}
pthread_rwlock_unlock(&fft_out.rw);
safe_cond_signal(&fft_out.ready, &fft_out.ready_m);
fft_out.ready_fast = 1;
}
return 0;
}
int buffer_init(struct buffer* buf)
{
pthread_rwlock_init(&buf->rw, NULL);
pthread_cond_init(&buf->ready, NULL);
pthread_mutex_init(&buf->ready_m, NULL);
return 0;
}
int buffer_cleanup(struct buffer* buf)
{
pthread_rwlock_destroy(&buf->rw);
pthread_cond_destroy(&buf->ready);
pthread_mutex_destroy(&buf->ready_m);
return 0;
}
static int fft_launch(void)
{
sine_table(FFT_LEVEL);
buffer_init(&rtl_out);
buffer_init(&fft_tmp);
buffer_init(&fft_out);
rtlsdr_open(&dev, 0); // todo, verbose_device_search()
// settings
rtlsdr_reset_buffer(dev);
rtlsdr_set_center_freq(dev, frequency);
rtlsdr_set_sample_rate(dev, SAMPLE_RATE);
rtlsdr_set_tuner_gain_mode(dev, 1);
gain_default();
pthread_create(&dongle_thread, NULL, &dongle_thread_fn, NULL);
pthread_create(&fft_thread, NULL, &fft_thread_fn, NULL);
return 0;
}
static int fft_cleanup(void)
{
do_exit = 1;
usleep(10000);
rtlsdr_cancel_async(dev);
pthread_join(dongle_thread, NULL);
safe_cond_signal(&rtl_out.ready, &rtl_out.ready_m);
pthread_join(fft_thread, NULL);
safe_cond_signal(&fft_out.ready, &fft_out.ready_m);
rtlsdr_close(dev);
buffer_cleanup(&rtl_out);
buffer_cleanup(&fft_tmp);
buffer_cleanup(&fft_out);
return 0;
}
// vim: tabstop=4:softtabstop=4:shiftwidth=4:expandtab

Plik binarny nie jest wyświetlany.

Przed

Szerokość:  |  Wysokość:  |  Rozmiar: 42 KiB

Plik binarny nie jest wyświetlany.

Przed

Szerokość:  |  Wysokość:  |  Rozmiar: 46 KiB

Wyświetl plik

@ -1,531 +0,0 @@
/*
SDL powered waterfall
at the moment this everything is hard-coded for a single platform
the BeagleboneBlack with an LCD7 touchscreen (framebuffer mode)
it can run on other platforms, but will not autodetect anything
the keybinds are laid out for the touchscreen face buttons
on the BBB:
full screen double buffered blits seem to perform at 140 fps (cpu limited)
to run automatically:
@reboot sleep 1 && cd /the/install/path && ./waterfall
todo:
benchmark against fftw3
replace defines with options
autodetect things like screen resolution
change the displayed bandwidth
audio demodulation
fix screen blanking
a real make file
*/
#include <stdio.h>
#include <stdlib.h>
#include "SDL/SDL.h"
#include "SDL/SDL_image.h"
#include "SDL/SDL_ttf.h"
#include "rtl_power_lite.c"
#define SCREEN_WIDTH 800
#define SCREEN_HEIGHT 480
char* font_path = "./din1451alt.ttf";
#define FONT_SIZE 24
#define FRAME_MS 30
#define FRAME_LINES 10
#define MAX_STRING 100
#define BIG_JUMP 50000000
#if SDL_BYTEORDER == SDL_BIG_ENDIAN
static const Uint32 r_mask = 0xFF000000;
static const Uint32 g_mask = 0x00FF0000;
static const Uint32 b_mask = 0x0000FF00;
static const Uint32 a_mask = 0x000000FF;
#else
static const Uint32 r_mask = 0x000000FF;
static const Uint32 g_mask = 0x0000FF00;
static const Uint32 b_mask = 0x00FF0000;
static const Uint32 a_mask = 0xFF000000;
#endif
static SDL_Surface* img_surface;
static SDL_Surface* scroll_surface;
static SDL_Surface* future_surface;
static const SDL_VideoInfo* info = 0;
SDL_Surface* screen;
TTF_Font *font;
int do_flip; // todo, cond
int credits_toggle;
struct text_bin
{
char string[MAX_STRING];
int x, y;
int i;
int dirty;
SDL_Surface* surf_fg;
SDL_Surface* surf_bg;
};
struct text_bin credits[6];
struct text_bin freq_labels[5];
int init_video()
{
if (SDL_Init(SDL_INIT_VIDEO) < 0)
{
fprintf(stderr, "Video initialization failed: %s\n",
SDL_GetError());
return 0;
}
info = SDL_GetVideoInfo();
if( !info ) {
fprintf( stderr, "Video query failed: %s\n",
SDL_GetError( ) );
return 0;
}
return 1;
}
int set_video( Uint16 width, Uint16 height, int bpp, int flags)
{
if (init_video())
{
if((screen = SDL_SetVideoMode(width,height,bpp,flags))==0)
{
fprintf( stderr, "Video mode set failed: %s\n",
SDL_GetError( ) );
return 0;
}
}
return 1;
}
int init_ttf()
{
if (TTF_Init() != 0)
{
fprintf( stderr, "TTF init failed: %s\n",
SDL_GetError( ) );
return 1;
}
font = TTF_OpenFont(font_path, FONT_SIZE);
if (font == NULL)
{
fprintf( stderr, "TTF load failed: %s\n",
TTF_GetError( ) );
return 1;
}
return 0;
}
void quit( int code )
{
SDL_FreeSurface(scroll_surface);
SDL_FreeSurface(future_surface);
SDL_FreeSurface(img_surface);
TTF_Quit( );
SDL_Quit( );
exit( code );
}
void handle_key_down(SDL_keysym* keysym)
{
switch(keysym->sym)
{
case SDLK_ESCAPE:
quit(0);
break;
case SDLK_RETURN:
credits_toggle = !credits_toggle;
break;
case SDLK_DOWN:
case SDLK_UP:
case SDLK_LEFT:
case SDLK_RIGHT:
default:
break;
}
}
void process_events( void )
{
SDL_Event event;
while( SDL_PollEvent( &event ) ) {
switch( event.type ) {
case SDL_KEYDOWN:
handle_key_down( &event.key.keysym );
break;
case SDL_QUIT:
quit( 0 );
break;
}
}
}
void init()
{
SDL_Surface* tmp;
int i;
SDL_Color colors[256];
tmp = SDL_CreateRGBSurface(SDL_HWSURFACE, SCREEN_WIDTH,
SCREEN_HEIGHT, 8, r_mask, g_mask, b_mask, a_mask);
scroll_surface = SDL_DisplayFormat(tmp);
SDL_FreeSurface(tmp);
tmp = SDL_CreateRGBSurface(SDL_HWSURFACE, SCREEN_WIDTH,
SCREEN_HEIGHT, 8, r_mask, g_mask, b_mask, a_mask);
future_surface = SDL_DisplayFormat(tmp);
SDL_FreeSurface(tmp);
img_surface = IMG_Load("8-bit-arch.pcx");
for (i = 0; i < SDL_NUMEVENTS; ++i)
{
if (i != SDL_KEYDOWN && i != SDL_QUIT)
{
SDL_EventState(i, SDL_IGNORE);
}
}
for(i=0; i<256; i++)
{
colors[i].r = i;
colors[i].g = i;
colors[i].b = 50;
}
colors[0].r = 0; colors[0].g = 0; colors[0].b = 0;
colors[255].r = 255; colors[255].g = 255; colors[255].b = 255;
SDL_SetPalette(future_surface, SDL_LOGPAL|SDL_PHYSPAL, colors, 0, 256);
SDL_ShowCursor(SDL_DISABLE);
}
void putpixel(SDL_Surface *surface, int x, int y, uint32_t pixel)
/* taken from some stackoverflow post */
{
int bpp = surface->format->BytesPerPixel;
/* Here p is the address to the pixel we want to set */
Uint8 *p = (Uint8 *)surface->pixels + y * surface->pitch + x * bpp;
switch (bpp) {
case 1:
*p = pixel;
break;
case 2:
*(uint16_t *)p = pixel;
break;
case 3:
if (SDL_BYTEORDER == SDL_BIG_ENDIAN) {
p[0] = (pixel >> 16) & 0xff;
p[1] = (pixel >> 8) & 0xff;
p[2] = pixel & 0xff;
}
else {
p[0] = pixel & 0xff;
p[1] = (pixel >> 8) & 0xff;
p[2] = (pixel >> 16) & 0xff;
}
break;
case 4:
*(uint32_t *)p = pixel;
break;
default:
break; /* shouldn't happen, but avoids warnings */
}
}
int pretty_text(SDL_Surface* surface, struct text_bin* text)
{
SDL_Color fg_color = {255, 255, 255};
SDL_Color bg_color = {0, 0, 0};
SDL_Rect fg_rect = {text->x + 0, text->y + 0, SCREEN_WIDTH, SCREEN_HEIGHT};
SDL_Rect bg_rect = {text->x + 2, text->y + 2, SCREEN_WIDTH, SCREEN_HEIGHT};
if (text->dirty)
{
// this leaks, but freeing segfaults?
// in practice, it leaks an MB an hour under very heavy use
//if (text->surf_fg != NULL)
// {SDL_FreeSurface(text->surf_fg);}
//if (text->surf_bg != NULL)
// {SDL_FreeSurface(text->surf_bg);}
text->surf_fg = TTF_RenderText_Solid(font, text->string, fg_color);
text->surf_bg = TTF_RenderText_Solid(font, text->string, bg_color);
text->dirty = 0;
}
SDL_BlitSurface(text->surf_bg, NULL, surface, &bg_rect);
SDL_BlitSurface(text->surf_fg, NULL, surface, &fg_rect);
return 0;
}
void build_credits(void)
{
int i;
int xs[] = {300, 300, 300, 300, 300, 300};
int ys[] = {100, 150, 200, 250, 300, 350};
strncpy(credits[0].string, "board: BeagleBone Black", MAX_STRING);
strncpy(credits[1].string, "display: CircuitCo LCD7", MAX_STRING);
strncpy(credits[2].string, "radio: rtl-sdr", MAX_STRING);
strncpy(credits[3].string, "graphics: SDL", MAX_STRING);
strncpy(credits[4].string, "os: Arch Linux ARM", MAX_STRING);
strncpy(credits[5].string, "glue: Kyle Keen", MAX_STRING);
for (i=0; i<6; i++)
{
credits[i].x = xs[i];
credits[i].y = ys[i];
credits[i].dirty = 1;
}
}
void show_credits(SDL_Surface* surface)
{
int i;
for (i=0; i<6; i++)
{pretty_text(surface, &(credits[i]));}
}
void build_labels(void)
{
// very similar to the lines code
int f, i, x, drift, center;
drift = (frequency % 1000000) / (SAMPLE_RATE / FFT_SIZE);
center = frequency - (frequency % 1000000);
for (i=-2; i<=2; i++)
{
x = SCREEN_WIDTH / 2 + -drift + i * 1000000 / (SAMPLE_RATE / FFT_SIZE);
f = center + i * 1000000;
freq_labels[i+2].x = x - FONT_SIZE/2;
freq_labels[i+2].y = 10;
if (freq_labels[i+2].i == f)
{continue;}
freq_labels[i+2].dirty = 1;
freq_labels[i+2].i = f;
snprintf(freq_labels[i+2].string, MAX_STRING, "%i", f/1000000);
}
}
void static_events(void)
{
SDL_Rect blank = {0, 0, SCREEN_WIDTH, SCREEN_HEIGHT};
uint8_t* keystate = SDL_GetKeyState(NULL);
if (keystate[SDLK_LEFT])
{
frequency -= BIG_JUMP;
frequency_set();
build_labels();
SDL_FillRect(scroll_surface, &blank, 0);
}
if (keystate[SDLK_RIGHT])
{
frequency += BIG_JUMP;
frequency_set();
build_labels();
SDL_FillRect(scroll_surface, &blank, 0);
}
if (keystate[SDLK_UP])
{gain_decrease();}
if (keystate[SDLK_DOWN])
{gain_increase();}
}
uint32_t frame_callback(uint32_t interval, void* param)
{
do_flip = 1;
return interval;
}
uint32_t rgb(uint32_t i)
{
return ((b_mask/255)*20 | (r_mask/255)*i | (g_mask/255)*i);
}
int mouse_stuff(void)
// returns X scroll offset
// kind of crap with variable framerate
{
static double prev_x = -100;
static double velo = 0;
double deaccel = 10;
int x, y, buttons;
buttons = SDL_GetMouseState(&x, &y);
if (buttons & SDL_BUTTON_LMASK)
{
if (prev_x < 0)
{
prev_x = x;
}
velo = x - prev_x;
prev_x = x;
//fprintf(stdout, "%i %f\n", x, velo);
} else {
prev_x = -100;
if (velo > deaccel)
{velo -= deaccel;}
if (velo < -deaccel)
{velo += deaccel;}
if (velo >= -deaccel && velo <= deaccel)
{velo *= 0.5;}
}
return (int)round(velo);
}
int main( int argc, char* argv[] )
{
int i, c, x, y, v, line;
int blits = 0;
uint32_t pixel = 0;
struct text_bin text;
SDL_Rect ScrollFrom = {0, 1, SCREEN_WIDTH, SCREEN_HEIGHT};
if (!set_video(SCREEN_WIDTH, SCREEN_HEIGHT, 8,
SDL_HWSURFACE | SDL_HWACCEL | SDL_HWPALETTE /*| SDL_FULLSCREEN*/))
quit(1);
init_ttf();
//SDL_Init(SDL_INIT_TIMER);
SDL_WM_SetCaption("Demo", "");
init();
build_credits();
build_labels();
strncpy(text.string, "<< >> - + ?", MAX_STRING);
text.x = 30;
text.y = 450;
text.dirty = 1;
SDL_BlitSurface(img_surface, NULL, scroll_surface, NULL);
//SDL_AddTimer(FRAME_MS, frame_callback, NULL);
fft_launch();
y = 0;
SDL_LockSurface(future_surface);
while(1)
{
process_events();
//safe_cond_wait(&fft_out.ready, &fft_out.ready_m);
if (!fft_out.ready_fast)
{
usleep(1000);
continue;
}
fft_out.ready_fast = 0;
pthread_rwlock_rdlock(&fft_out.rw);
for (x=0; x<SCREEN_WIDTH; x++)
{
//putpixel(future_surface, x, y, pixel);
i = x + (FFT_SIZE - SCREEN_WIDTH) / 2;
c = 40*fft_out.buf[i] + 1;
if (c > 254)
{c = 254;}
if (c < 1)
{c = 1;}
//fprintf(stdout, "%i ", fft_out.buf[i]);
putpixel(future_surface, x, y, 40*fft_out.buf[i] + 1);
pixel++;
}
// lines every 100KHz
line = (frequency % 100000) / (SAMPLE_RATE / FFT_SIZE);
for (i=-15; i<15; i++)
{
if (y%4)
{break;}
x = SCREEN_WIDTH / 2 + -line + i * 100000 / (SAMPLE_RATE / FFT_SIZE);
if (x < 0)
{continue;}
if (x > SCREEN_WIDTH)
{continue;}
putpixel(future_surface, x, y, 0xFF);
}
//fprintf(stdout, "\n");
pthread_rwlock_unlock(&fft_out.rw);
y++;
if (!do_flip && y <= FRAME_LINES)
{continue;}
static_events();
v = mouse_stuff();
if (v != 0)
{
frequency += (-v * SAMPLE_RATE / FFT_SIZE);
frequency_set();
build_labels();
}
SDL_UnlockSurface(future_surface);
// scroll
ScrollFrom.x = -v;
ScrollFrom.y = y;
ScrollFrom.w = SCREEN_WIDTH;
ScrollFrom.h = SCREEN_HEIGHT;
SDL_BlitSurface(scroll_surface, &ScrollFrom, scroll_surface, NULL);
// nuke edges
if (v > 0)
{
ScrollFrom.x = 0;
ScrollFrom.y = 0;
}
if (v < 0)
{
ScrollFrom.x = SCREEN_WIDTH+v;
ScrollFrom.y = 0;
}
if (v != 0)
{
ScrollFrom.w = abs(v);
ScrollFrom.h = SCREEN_HEIGHT-y;
SDL_FillRect(scroll_surface, &ScrollFrom, 0);
}
// new stuff
ScrollFrom.x = v;
ScrollFrom.y = SCREEN_HEIGHT - y;
ScrollFrom.w = SCREEN_WIDTH;
ScrollFrom.h = SCREEN_HEIGHT;
SDL_BlitSurface(future_surface, NULL, scroll_surface, &ScrollFrom);
SDL_BlitSurface(scroll_surface, NULL, screen, NULL);
// overlay
pretty_text(screen, &text);
if (credits_toggle)
{show_credits(screen);}
for (i=0; i<5; i++)
{pretty_text(screen, &freq_labels[i]);}
pretty_text(screen, &text);
SDL_Flip(screen);
// only way to keep the BBB from blanking the screen
// (the 10 minute timeout can not be changed by any known means)
if (blits % 2000 == 0)
{system("setterm -blank poke");}
blits++;
do_flip = 0;
y = 0;
SDL_LockSurface(future_surface);
}
quit(0);
fft_cleanup();
return 0;
}
// vim:set tabstop=4 softtabstop=4 shiftwidth=4 expandtab smarttab: