Add files via upload

pull/10/head
tatarize 2018-08-11 19:24:21 -07:00 zatwierdzone przez GitHub
rodzic e158ddfbd3
commit 528f23e5c9
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: 4AEE18F83AFDEB23
73 zmienionych plików z 6972 dodań i 1 usunięć

21
LICENSE 100644
Wyświetl plik

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2018
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

445
README.md
Wyświetl plik

@ -1,2 +1,445 @@
# pyembroidery
pyembroidery library for reading and writing a variety of embroidery formats.
Python library for the reading and writing of embroidery files.
Compatable with Python 2 and 3 Explictly tested with 3.6 and 2.7.
To install:
```bash
pip install pyembroidery
```
Any suggestions or comments please raise an issue.
pyembroidery was originally intended for in inkscape/inkstitch. However, it was entirely coded from the ground up with all projects in mind. It includes a lot of higher level and middle level pattern composition abilities, and accounts for any knowable error. It should be highly robust with a simple api in order to be entirely reasonable for *any* python embroidery project.
It should be complex enough to go very easily from points to stitches, fine grained enough to let you control everything, and good enough that you shouldn't want to.
Mandate
---
pyembroidery must to be small enough to be finished in short order and big enough to pack a punch.
* pyembroidery must read and write: PES, DST, EXP, JEF, VP3.
* pyembroidery must fully support commands: STITCH, JUMP, TRIM, STOP, END, COLOR_CHANGE, SEQUIN_MODE and SEQUIN_EJECT.
* pyembroidery must support and function in Python 2.7
Pyembroidery fully meets and exceeds all of these requirements.
* It writes 9 formats, including the mandated ones.
* It reads 38 formats, including the mandated ones.
* It supports all the core commands where that format can use said command as well as FAST and SLOW for .u01.
* SEQUINS work in all supported formats (.dst) that are known to support sequins. Further it supports SEQUIN to JUMP operations on the other formats.
* It is currently fully compatable with Python 2.7 and Python 3.6
Philosophy
---
Pyembroidery will always attempt to minimize information loss. Embroidery reading and writing, the exporting and importing of these files, is always lossy. If there is information in a file, it is within the purview of the project (but not the mandate) to read that information and provide it to the user. If information can be written to a file, it is within the purview of the project to write that information to the file or provide means by which that can be done.
* Low level commands: Those commands actually found in binary encoded embroidery files.
* Low level commands will be transcribed and preserved in their exact order, unless doing so will cause an error.
* Middle level commands: Useful ways of thinking about blocks of low level commands. Commands which describe the way the low level commands are encoded, but are not themselves commands executed by embroidery machines.
* Middle level commands will be helpful and converted to low-level commands during writing events.
* These will often be context sensitive converting to slightly different low level commands depending on intended writer, or encoder settings.
* High level commands: Conversion of shapes and fills into useful structures, patterning within stitches, modifiers of structures.
* High level commands will not exist.
Other reasonable elements:
* Higher level objects like .PES or .THR containing shapes are currently ignored in favor of reading raw stitches, However, loading such things would be less lossy and thus within the scope of the project.
* Conversions from raw low level commands to some middle level interpretations or iterable generators are provided in the EmbPattern class. Additional methods are entirely reasonable feature requests.
How it works:
---
Readers are sent a fileobject and an EmbPattern and parses the file, filling in the metadata, threads, stitches.
EmbPattern objects contain all the relevant data. You can iterate stitch blocks .get_as_stitchblocks() or access the raw-stitches, threads, or metadata.
Writers are called to save a pattern to disk. They save raw-stitch data to disk. This data may, however, not be formatted in a way the writer can utilize effectively. For this reason, writers will normalize the data with an encoder.
The encoder encode a low level version of the commands in the pattern, not just from low level but also middle-level commands implemented with the encoder. The writer contain format specific information with which to call to the encoder with some format specific values. Each export will reencode the data for the format, without modifying or altering the original data.
The encoder call can be made directly on the EmbPattern with .get_normalized_pattern() on the pattern, this returns a new pattern. Neither, encoding or saving will modify a pattern. Most operations performed on the data will have some degree of loss. So there is always a level of isolation between all lossy operation converting the pattern.
* Read
* File -> Reader -> Pattern
* Write
* Pattern -> Encoder -> Pattern -> Writer -> File
* Convert
* File -> Reader -> Pattern -> Stablizer -> Pattern -> Encoder -> Pattern -> Writer -> File
Formats:
---
Pyembroidery will write:
* .pes (mandated)
* .dst (mandated)
* .exp (mandated)
* .jef (mandated)
* .vp3 (mandated)
* .pec
* .u01
* .csv
* .svg
Pyembroidery will read:
* .pes (mandated)
* .dst (mandated)
* .exp (mandated)
* .jef (mandated)
* .vp3 (mandated)
* .10o
* .100
* .bro
* .dat (barudan & sunstar)
* .dsb
* .dsz
* .emd
* .exy
* .fxy
* .gt
* .inb
* .jpx
* .ksm
* .max
* .mit
* .new
* .pcd
* .pcm
* .pcq
* .pcs
* .pec
* .phb
* .phc
* .sew
* .shv
* .stc
* .stx
* .tap
* .tbf
* .u01
* .xxx
* .zxy
Writing to SVG:
While not a binary writing format, the testing/debugging utility of SVG is unmatched. There is some notable irony in writing an SVG file in a library, whose main genesis is to help another program that *already* writes them.
Writing to CSV:
Prints out a workable CSV file with the given data. It will be encoded like a .DST file by default.
Reading:
---
```python
import pyembroidery
```
To load a pattern from disk:
```python
pattern = pyembroidery.read("myembroidery.exp")
```
If only a file name is given, pyembroidery will use the extension to determine what reader it should use.
(In the case of .dat where there are two non-compatable embroidery files with the same extension, the difference is detected by the reader.)
For the discrete readers, the file may be a FileObject or a the string of the path.
```python
pattern = pyembroidery.read_dst(file)
pattern = pyembroidery.read_pec(file)
pattern = pyembroidery.read_pes(file)
pattern = pyembroidery.read_exp(file)
pattern = pyembroidery.read_vp3(file)
pattern = pyembroidery.read_jef(file)
```
You can optionally add settings and pattern to these readers, it will use that pattern and append the new stitches to the end.
```python
# append to an existing pattern
pattern = pyembroidery.read_pes(file, None, pattern)
# or even chain together read calls
pattern = pyembroidery.read("secondread.dst", None, pyembroidery.read("firstread.jef"))
```
This will cause the pattern to have the stitches from both files.
Writing:
---
To write to a pattern do disk:
```python
pyembroidery.write(pattern,"myembroidery.dst")
```
For the discrete writers, the file may be a FileObject or a string of the path. It does not need to know the filename to judge the extension.
```python
pyembroidery.write_dst(pattern, file)
pyembroidery.write_pec(pattern, file)
pyembroidery.write_pes(pattern, file)
pyembroidery.write_exp(pattern, file)
pyembroidery.write_vp3(pattern, file)
pyembroidery.write_jef(pattern, file)
pyembroidery.write_svg(pattern, file)
```
In addition, you can add a dict object to the writer, reader, and converter with various settings.
```python
pyembroidery.write(pattern, file.dst, { "tie_on": True, "tie_off": True, "translate": (40, 50) }
```
The parameters currently have recognized values for:
* `max_stitch`
* `max_jump`
* `full_jump`
* `long_stitch_contingency`
* `sequin_contingency`
* `explicit_trim`
* `translate`
* `scale`
* `rotate`
* `tie_on`
* `tie_off`
* `encode`
* `stable`
The max_stitch, max_jump, full_jump, and sequin_contingency properties are appended by default depending on the format being writing to. For example, DST files support a maximum stitch length of 12.1mm, and this is set automatically. If you set these, they will override those values. If you override them in ways that cannot be accounted for by the reader, it may cause a crash. If you disable the encoder "encode" = False, it may crash. If you disable the stablizer for conversions "stable" = False, it will have less defined behavior. And may may have undefined behavior between specific different formats.
Translate, Scale and Rotate occur in that order. If you need finer grain control over these they can be modified on the fly with middle-level commands.
long_stitch_contingency sets the contingency protocol for when a stitch is longer than the format can encode and how to deal with that event.
sequin_contingency sets the contingency protocol for when sequins exist in a file. By default this tends to be CONTINGENCY_SEQUIN_JUMP converting whatever sequins are in the data into jumps (this can sometimes be restored on various embroidery machines). For .dst files it uses CONTINGENCY_SEQUIN_UTILIZE as the format is able to fully encode sequin data. You may also use CONTINGENCY_SEQUIN_REMOVE to simply remove the commands completely as if they never existed or CONTINGENCY_SEQUIN_STITCH which converts the sequin stitches to stitches. This will look better, but is overtly more lossy.
Explicit Trim sets whether the encoder should overtly include a trim before color change event or not. Default is True. Setting this to false will omit the trim if it is going to perform a color-change action.
Conversion:
---
As pyembroidery is a fully fleshed out reader/writer within the mandate, it also does conversion.
```python
pyembroidery.convert("embroidery.jef", "converted.dst")
```
This will read the embroidery.jef file in JEF format and will export it as converted.dst in DST format.
Internally this stablizes the format:
* Reader -> Pattern -> Pattern.get_stablized_pattern() -> Encoder -> Writer
The stablized pattern clips out the order of the particlar trims, jumps, colorchanges, stops, and turns it into middle-level commands of STITCH, COLOR_BREAK, SEQUENCE_BREAK.
The stablizer can be disabled by setting "stable" to False.
You can perform some finer grain controls like get_pattern_interpolate_trim(), or process the data yourself if you need this information. If there's a completely reasonable way to post-process loaded data that isn't accounted for, raise an issue. This is still an open question.
```python
pyembroidery.convert("embroidery.jef", "converted.dst", {"stable": False})
```
Depending on the formats and files in question this does not have a guarenteed result. It will still use the encoder and should be effective.
You can disable both the stablizer and the encoder:
```python
pyembroidery.convert("embroidery.jef", "converted.dst", {"stable": False, "encode": False})
```
Composing a pattern:
---
* Use core commands to compose a pattern
* Use shorthand commands to compose a pattern
* `pyembroidery.STITCH`
* `pyembroidery.SEQUENCE_BREAK`
* `pyembroidery.COLOR_BREAK`
* `pyembroidery.FRAME_EJECT`
* Use bulk dump stitchblock
* Mix these different command levels.
The constants for the stitch types are located in the EmbConstants.py
To compose a pattern you will typically use:
```python
import pyembroidery
pattern = pyembroidery.EmbPattern()
pattern.add_stitch_relative(COMMAND, dx, dy)
pattern.add_stitch_absolute(COMMAND, x, y)
pattern.add_command(command)
pattern.add_stitchblock(stitchblock)
```
The relative and absolute markers determine whether the numbers given are relative to the last position or an absolute location. Calling add_command does not update the internal record of position. These are taken as positionless and the x and y are taken as parameters. Adding a command that is explicitly positioned with add_command will have undefined behavior.
NOTE: the order here is `command, x, y`, not `x,y command`. Python is good with letting you omit values at the end. And the command is *always* needed but the dx,dy can be dropped quite reasonably.
For `COMMAND`, you can:
* Use overt low-level commands:
* `pyembroidery.STITCH`
* move to position and drop needle once to make a stitch
* `pyembroidery.JUMP`
* move to position without dropping needle
* `pyembroidery.TRIM`
* trim the thread (for supported machines and file formats)
* `pyembroidery.COLOR_CHANGE`
* `pyembroidery.STOP`
* pause the machine (for applique, thread-change, etc)
* `pyembroidery.END`
* end the pattern
* `pyembroidery.SEQUIN_EJECT`
* ejects a sequin. These are overtly saved in .dst format. But, can be made to pattern JUMPs in other formats that may be used with various sequin attachments.
* `pyembroidery.SEQUIN_MODE`
* turns on sequin mode. this is done automatically for you if you eject a sequin.
* `pyembroidery.SLOW`
* .u01 only. Runs the machine in slow mode.
* `pyembroidery.FAST`
* .u01 only. Runs the machine in fast mode.
Shorthand function calls for the above are also available. These all equate to `pattern.add_stitch_relative` calls using the above constants. You can omit the `dx` and `dy` parameters if the position should not change (especially useful for trim and color change).
```python
pattern.stitch(dx, dy)
pattern.trim()
pattern.color_change()
```
StitchBlocks:
---
Conceptually a lot of embroidery can be thought of as unbroken blocks of stitches. Given the ubiquity of this, pyembroidery allows several methods for manipulating stitchblocks for reading and writing.
A stitch block currently has two parts a block and thread.
The block is a list of lists, with each 3 values. x, y, command. iterable set of objects with stitch.command, stitch.x, stitch.y will also works for adding a stitch block to a pattern.
If your internal schema is different than this, raise an issue to have it accounted for within pyembroidery.
When a call is made to add_stitchblock(), the thread object is required to whether the current thread is different than the previous one. If a different thread is detected pyembroidery will append a COLOR_BREAK rather than SEQUENCE_BREAK after it adds the stitches into the pattern. Depending on your use case, you could implement this yourself using singular calls to add_stitch_relative() or add_stitch_absolute() and then determine the type of break with COLOR_BREAK or SEQUENCE_BREAK afterwards. No break command will cause it to merge these stitches (likely invoking whatever long_stitch_contingency is needed).
Middle-Level Commands:
----
The middle-level commands, as they currently stand:
* SEQUENCE_BREAK - Break between stitches. Inserts a trim and jumps to the next stitch in the sequence.
* COLOR_BREAK - Breaks between stitches. Changes to the next color (unless called before anything was stitched)
* FRAME_EJECT(x,y) - Breaks the stitches, jumps to the given location, performs a stop, then goes to next stitch accordingly.
* STITCH_BREAK - Next location is jumped to. Existing jumps are reallocated.
* MATRIX_TRANSLATE(tx,ty) - Applies an inline translation shift for the encoder. It will treat all future stitches translated from here.
* MATRIX_SCALE(sx,sy) - Applies an inline scale shift. It will scale by that factor for future stitches.
* MATRIX_ROTATE(r) - Applies an inline rotateion shift. It will rotate by that factor for future stitches (in degrees).
* MATRIX_RESET - Resets the affine transformation matrix.
* OPTION_ENABLE_TIE_ON - Enables Tie_on on the fly.
* OPTION_ENABLE_TIE_OFF - Enables Tie_off on the fly.
* OPTION_DISABLE_TIE_ON - Disables Tie_on on the fly.
* OPTION_DISABLE_TIE_OFF - Disables Tie_off on the fly.
* OPTION_MAX_STITCH_LENGTH(x) - Sets the max stitch length on the fly.
* OPTION_MAX_JUMP_LENGTH(x) - Sets the max jump length on the fly.
* OPTION_EXPLICIT_TRIM - (Default) includes trim command before color-change command explicitly.
* OPTION_IMPLICIT_TRIM - Sets trim to be implied by the color-change event.
* SEW_TO - STITCH but with forced CONTINGENCY_SEW_TO
* NEEDLE_AT - STITCH but with forced CONTINGENCY_JUMP_NEEDLE
* CONTINGENCY_NONE - Disables long stitch contingency encoding.
* CONTINGENCY_JUMP_NEEDLE - Sets, long stitch contingency to jump the needle to the new position.
* CONTINGENCY_SEW_TO - Sets, long stitch contingency to sew to the new position with interpolated stitches.
* CONTINGENCY_SEQUIN_UTILIZE - sets the equin contingency to use the sequin information.
* CONTINGENCY_SEQUIN_JUMP - Sets the sequin contingency to call the sequins jumps.
* CONTINGENCY_SEQUIN_STITCH - Sets the sequin contingency to call the sequins stitches.
* CONTINGENCY_SEQUIN_REMOVE - Sets the sequin contingency to remove the commands completely.
Note: these do not need to have a 1 to 1 conversion to stitches. Many have 1 to 0 and trigger changes in states for the encoder, or the matrix being used to filter the locations, or specific higher level commands.
The could can be made to do a lot at the encoder level. If something is needed and within scope of the project, raise an issue.
---
COLOR_BREAK and SEQUENCE_BREAK:
The main two middle-level commands simply serve as dividers for series of stitches.
* pattern.command(COLOR_BREAK)
* (add a bunch of stitches)
* pattern.command(SEQUENCE_BREAK)
* (add a bunch of stitches)
* pattern.command(COLOR_BREAK)
* (add a bunch of stitches)
* pattern.command(SEQUENCE_BREAK)
The encoder will by default ignore any COLOR_BREAK that occurs before any stitches have been put down, or sequence or color breaks would occur after all stitching has happened. So you don't have to worry about the order you put them in. They work expressly as breaks that divide one block of stitches from another, and gives information as to whether this change also requires we use a new color.
You can expressly add any of the core commands to the patterns. These are generalized and try to play nice with other commands. When the patterns are written to disk, they call pattern.get_normalized_pattern() and save the normalized pattern. Saving to any format does not modify the pattern, ever. It writes the modified pattern out. It adds the max_jump and max_stitch to the encoding when it normalizes this to save. So each format can compile to a different set of stitches due to the max_jump etc. This is expressly an attempt to maintain as much data integrity as possible.
After a load, the pattern will be filled with raw basic stitch data, it's perfectly reasonable call .get_stable_pattern() on this which will make it into a series of stitches, color_breaks, sequence_breaks or get_pattern_interpolate_trim() which will allow you to introduce trim commands after a series of JUMP commands as specified and merge the untrimmed jumps. Or to iterate through the data with .get_as_stitchblocks() which is a generator that will produce stitch blocks from the raw loaded data. The stablized pattern simply makes a new pattern, iterates through the current pattern by the stitchblocks and feeds that into add_stitch_block(). This results in a pattern without any jumps, trims, etc.
STITCH_BREAK
Stitch break is only needed for reallocating jumps. It requires that the long stitch contingency is needle_to for the next stitch and any existing jumps directly afterwards are ignored. This causes the jump sequences to reallocate. If an existing jump sequence exists because it was loaded from a file and fed into a write routine. The write routine may only seek a contingency for the long jumps by providing extra subdivisions, because low level commands are only tweaked if a literal transcription would cause errors. However, calling pattern.get_pattern_merge_jumps() returns a pattern with all sequences of JUMP replaced with a single STITCH_BREAK command which is middle level and converted by the encoder into a series of jumps produced by the encoder rather than directly transcribed from their current sequence.
Stitch Contingency
---
The encoder needs to decide what to do when a stitch is too long. The current modes here are:
* CONTINGENCY_NEEDLE_JUMP (default)
* CONTINGENCY_SEW_TO
* CONTINGENCY_NONE
When a stitch is beyond max_stitch (whether set by the format or by the user) it must deal with this event, however opinions differ as to how what a stitch beyond the maximum should do. If it is your intent that STITCH means SEW_TO this location then setting the stitch contingency to SEW_TO will create a series of stitches until we get to the end location. If you use the command SEW_TO this overtly works like a stitch with CONTINGENCY_SEW_TO. Likewise NEEDLE_AT is the STITCH flavor that jumps to to the end location and then stitches. If you set CONTINGENCY_NONE then no contingency method is used, long stitches are simply fed to the writer as they appear which may throw an error or crash.
Sequin Contingency
---
The enconder needs to decide what to do when there are sequins in a pattern. The current modes here are:
* CONTINGENCY_SEQUIN_UTILIZE - sets the equin contingency to use the sequin information.
* CONTINGENCY_SEQUIN_JUMP - Sets the sequin contingency to call the sequins jumps.
* CONTINGENCY_SEQUIN_STITCH - Sets the sequin contingency to call the sequins stitches.
* CONTINGENCY_SEQUIN_REMOVE - Sets the sequin contingency to remove the commands completely.
Sequins being written into files that do not support sequins can go several ways, the two typical methods are JUMP and STITCH, this means to replace the SEQUIN_EJECTs with JUMP. This will allow some machines to manually enable sequins for a particular section and interpret the JUMPs as stitches. It is known that some Barudan machines have this ability. The other typical mode is STITCH which will preserve viewable structure of the underlying pattern while destroying the information of where the JUMPs were. With the JUMPs some data will appear to be corrupted, with STITCHes the data will look correct except without the sequins but the information is lost and not recoverable. REMOVE is given for completeness, but it calls all SEQUIN_EJECT commands NO OPERATIONS as if they don't appear in the pattern at all.
Units
---
* The core units are 1/10th mm. This is what 1 refers to within most formats, and internally within pyembroidery itself. You are entirely permitted to use floating point numbers. When writing to a format, fractional values will be lost, but this shall happen in such a way to avoid the propagation of error. Relative stitches from position ( 0.0, 0.31 ) of (+5.4, +5.4), (+5.4, +5,4), (+5.4, +5,4) should encode as changes of 5,6 6,5 5,6. Taking the relative distance in the format as the integer change from the last integer position to the new one, maintaining a position as close to the absolute position as possible. All fractional values are considered significant.
In some read formats the formats themselves have a slightly different unit systems such as .PCD or .MIT these alternative units will be presented seemlessly as 1/10th mm units.
Core Command Ordering
---
Stitch is taken to mean move_position(x,y), needle_strike. Jump is taken to mean move_position(x,y), block_needle_bar. In those orders.
If a format takes stitch to mean needle_strike, move_position(x,y) in that order. The encoder will may insert an extra jump in to avoid stitching an unwanted element. These differences matter, and are accounted for by things like FULL_JUMP in places, and within the formats. However, within the pattern the understanding should be consistently be taken as displace then operation.
Note: This is true for sequin_eject too. DST files are the only currently supported format with sequins and they use dx,dy then command. But, note the sequin is ejected at the destination of the dx dy. It will move, then sequin_eject this is the assumed order. It is also the DST order.
So if write your own pattern and you intend to stitch at the origin and then go somewhere you must `stitch, 0, 0` then `stitch, x, y` if you start by stitching somewhere at x, y. It may insert jump stitches to get you to that location, then stitch at that location.
Coordinate System
---
Fundamentally pyembroidery stores the positions such that the +y direction is down and -y is up (when viewed horizontally) with +x right and -x left. This is consistent with most modern graphics coordinate systems, but this is different from how these values are stored within embroidery formats. pyembroidery reads by flipping the y-axis, and writes by flipping the y-axis (except for SVG which uses the same coordinate system). This allows for seemless reading, writing, and interfacing. The flips occur at the level of the format readers and writers and is not subject to encoding. However encoding with scale of (1, -1) would invert this during the encoding. All patterns are stored such that `top` is in the -y direction and `bottom` is in the +y direction.
All patterns start at the origin point (0,0).
---
This code is based on Embroidermodder/MobileViewer Java code,
Which in turn is based on Embroidermodder/libembroidery C++ code.
Thanks to,
* The Embroidermodder Team
* Josh Varga
* Jonathan Greig redteam316
* fabriciocouto
* frno7
* Trever Adams
* Linus Torvalds
* Rudolfo @ http://www.achatina.de/sewing/main/TECHNICL.HTM
* Lex Neva, lexelby
* wwderw
* Purple-bobby
* Jason Weiler
* And the countless other people who put forward good works in figuring out these formats, and those who may yet do so.
---
This software is in no way derived from or based on Jackson Yee's abandoned 2006 "pyembroidery" project. The name was simply taken from libEmbroidery and written in python and thus a portmanteau of those. I was unaware of the project until after the all the principle work on this project was complete. I apologize for any confusion this may cause.

18
mass_convert.py 100644
Wyświetl plik

@ -0,0 +1,18 @@
from pyembroidery import *
for file_stream in os.listdir("convert"):
convert_file = os.path.join("convert", file_stream)
pattern = read(convert_file)
if pattern is None:
continue
pattern = pattern.get_pattern_interpolate_trim(3)
# pattern = pattern.get_pattern_merge_jumps()
for emb_format in supported_formats():
if emb_format.get('writer', None) is None:
continue
results_file = os.path.join("results", file_stream) + \
'.' + emb_format["extension"]
if emb_format["extension"] == "csv":
write(pattern, results_file, {"encode": False, "deltas": True})
else:
write(pattern, results_file)

Wyświetl plik

@ -0,0 +1,15 @@
from __future__ import print_function
import sys
from pyembroidery import *
if len(sys.argv) <= 1:
print("No command arguments")
exit(1)
input = sys.argv[1]
if len(sys.argv) >= 3:
output = sys.argv[2]
else:
output = sys.argv[1] + ".csv"
pattern = read(input)
write = write(pattern,output)

Wyświetl plik

@ -0,0 +1,17 @@
from __future__ import print_function
import sys
from pyembroidery import *
if len(sys.argv) <= 1:
print("No command arguments")
exit(1)
input_file = sys.argv[1]
pattern = read(input_file)
write(pattern, input_file + ".dst")
write(pattern, input_file + ".exp")
write(pattern, input_file + ".vp3")
write(pattern, input_file + ".pes")
write(pattern, input_file + ".jef")
write(pattern, input_file + ".u01")

Wyświetl plik

@ -0,0 +1,30 @@
def read_100_stitches(f, out):
count = 0
while True:
count += 1
b = bytearray(f.read(4))
if len(b) != 4:
break
x = b[2]
y = b[3]
if x > 0x80:
x -= 0x80
x = -x
if y > 0x80: # because 2s complement is for chumps?
y -= 0x80
y = -y
if b[0] == 0x61:
out.stitch(x, -y)
continue
elif (b[0] & 0x01) != 0:
out.move(x, -y)
continue
else: # too broad of catch
out.color_change()
continue
break # Uncaught Control
out.end()
def read(f, out, settings=None):
read_100_stitches(f, out)

Wyświetl plik

@ -0,0 +1,41 @@
def read_10o_sttiches(f, out):
count = 0
while True:
count += 1
byte = bytearray(f.read(3))
if len(byte) != 3:
break
ctrl = byte[0]
y = -byte[1]
x = byte[2]
if ctrl & 0x20 != 0:
x = -x
if ctrl & 0x40 != 0:
y = -y
if (ctrl & 0b11111) == 0:
out.stitch(x, y)
continue
if (ctrl & 0b11111) == 0x10:
out.move(x, y)
continue
if ctrl == 0x8A:
# Start.
continue
if ctrl == 0x85:
out.color_change()
continue
if ctrl == 0x82:
out.stop()
continue
if ctrl == 0x81:
out.trim()
continue
if ctrl == 0x87:
break
break # Unknown Control
out.end()
def read(f, out, settings=None):
read_10o_sttiches(f, out)

Wyświetl plik

@ -0,0 +1,46 @@
from .ReadHelper import read_int_16le, read_int_8, signed8, signed16
# Do you even embroider .bro?
def read_bro_stitches(f, out):
count = 0
while True:
count += 1
b = bytearray(f.read(2))
if len(b) != 2:
break
if b[0] != 0x80:
out.stitch(signed8(b[0]), -signed8(b[1]))
continue
control = read_int_8(f)
if control == 0x00:
continue
if control == 0x02:
break
if control == 0xE0:
break
if control == 0x7E:
x = signed16(read_int_16le(f))
y = signed16(read_int_16le(f))
out.move(x, -y)
continue
if control == 0x03:
x = signed16(read_int_16le(f))
y = signed16(read_int_16le(f))
out.move(x, -y)
continue
if 0xE0 < control < 0xF0:
needle = control - 0xE0
out.color_change()
x = signed16(read_int_16le(f))
y = signed16(read_int_16le(f))
out.move(x, -y)
continue
break # Uncaught Control
out.end()
def read(f, out, settings=None):
f.seek(0x100, 0)
read_bro_stitches(f, out)

Wyświetl plik

@ -0,0 +1,97 @@
from pyembroidery.EmbConstant import *
READ_FILE_IN_TEXT_MODE = True
def read(f, out, settings=None):
import csv
csv_reader = csv.reader(f, delimiter=',')
command_dict = get_command_dictionary()
for row in csv_reader:
if len(row) == 0:
continue
if "*" in row[0]:
command = command_dict[row[2]]
if len(row) == 3:
out.add_command(command)
else:
out.add_stitch_absolute(command, float(row[3]), float(row[4]))
elif "#" in row[0]:
continue
elif "@" in row[0]:
if len(row) != 3:
continue
out.metadata(row[1], row[2])
elif "$" in row[0]:
thread_add = {}
if len(row) == 7 and len(row[2]) <= 3 and len(row[3]) <= 3 and len(row[4]) <= 3:
# This is an embroidermodder csv file, I changed the colors and added more details.
# [THREAD_NUMBER], [RED], [GREEN], [BLUE], [DESCRIPTION], [CATALOG_NUMBER]\"\n");
thread_add["rgb"] = (int(row[2]), int(row[3]), int(row[4]))
thread_add["description"] = row[5]
thread_add["catalog"] = row[6]
else:
try:
thread_add["rgb"] = row[2]
except IndexError:
pass
try:
thread_add["name"] = row[3]
except IndexError:
pass
try:
thread_add["brand"] = row[4]
except IndexError:
pass
try:
thread_add["catalog"] = row[5]
except IndexError:
pass
try:
thread_add["details"] = row[6]
except IndexError:
pass
try:
thread_add["weight"] = row[7]
except IndexError:
pass
out.add_thread(thread_add)
def get_command_dictionary():
return {
"NO_COMMAND": NO_COMMAND,
"STITCH": STITCH,
"JUMP": JUMP,
"TRIM": TRIM,
"STOP": STOP,
"END": END,
"SLOW": SLOW,
"FAST": FAST,
"COLOR_CHANGE": COLOR_CHANGE,
"SEQUIN_MODE": SEQUIN_MODE,
"SEQUIN_EJECT": SEQUIN_EJECT,
"SEW_TO": SEW_TO,
"NEEDLE_AT": NEEDLE_AT,
"STITCH_BREAK": STITCH_BREAK,
"SEQUENCE_BREAK": SEQUENCE_BREAK,
"COLOR_BREAK": COLOR_BREAK,
"TIE_ON": TIE_ON,
"TIE_OFF": TIE_OFF,
"FRAME_EJECT": FRAME_EJECT,
"MATRIX_TRANSLATE": MATRIX_TRANSLATE,
"MATRIX_SCALE": MATRIX_SCALE,
"MATRIX_ROTATE": MATRIX_ROTATE,
"MATRIX_RESET": MATRIX_RESET,
"OPTION_ENABLE_TIE_ON": OPTION_ENABLE_TIE_ON,
"OPTION_ENABLE_TIE_OFF": OPTION_ENABLE_TIE_OFF,
"OPTION_DISABLE_TIE_ON": OPTION_DISABLE_TIE_ON,
"OPTION_DISABLE_TIE_OFF": OPTION_DISABLE_TIE_OFF,
"OPTION_MAX_STITCH_LENGTH": OPTION_MAX_STITCH_LENGTH,
"OPTION_MAX_JUMP_LENGTH": OPTION_MAX_JUMP_LENGTH,
"OPTION_IMPLICIT_TRIM": OPTION_IMPLICIT_TRIM,
"OPTION_EXPLICIT_TRIM": OPTION_EXPLICIT_TRIM,
"CONTINGENCY_NONE": CONTINGENCY_NONE,
"CONTINGENCY_JUMP_NEEDLE": CONTINGENCY_JUMP_NEEDLE,
"CONTINGENCY_SEW_TO": CONTINGENCY_SEW_TO,
}

Wyświetl plik

@ -0,0 +1,230 @@
from .EmbConstant import *
from .WriteHelper import write_string_utf8
from .PecGraphics import get_graphic_as_string
import math
STRIP_SPEEDS = False
SEQUIN_CONTINGENCY = CONTINGENCY_SEQUIN_UTILIZE
MAX_JUMP_DISTANCE = 121
MAX_STITCH_DISTANCE = 121
def csv(f, values):
string = ""
for v in values:
if len(string) > 0:
string += ','
string += ('\"%s\"' % v)
write_string_utf8(f, string + "\n")
def distance(dx, dy):
dx *= dx
dy *= dy
return math.sqrt(dx + dy)
def angle(dx, dy):
tau = math.pi * 2
angle = math.atan2(dy, dx)
angle += tau / float(2)
angle /= tau
return angle
def write(pattern, f, settings=None):
names = get_common_name_dictionary()
deltas = settings is not None and "deltas" in settings
displacement = settings is not None and "displacement" in settings
extends = pattern.extends()
width = extends[2] - extends[0]
height = extends[3] - extends[1]
csv(f, ('#', '[VAR_NAME]', '[VAR_VALUE]'))
count_stitches = pattern.count_stitches()
csv(f, ('>', 'STITCH_COUNT:', str(count_stitches)))
count_threads = pattern.count_color_changes()
csv(f, ('>', 'THREAD_COUNT:', str(count_threads)))
csv(f, ('>', 'EXTENTS_LEFT:', str(extends[0])))
csv(f, ('>', 'EXTENTS_TOP:', str(extends[1])))
csv(f, ('>', 'EXTENTS_RIGHT:', str(extends[2])))
csv(f, ('>', 'EXTENTS_BOTTOM:', str(extends[3])))
csv(f, ('>', 'EXTENTS_WIDTH:', str(width)))
csv(f, ('>', 'EXTENTS_HEIGHT:', str(height)))
stitch_counts = {}
for s in pattern.stitches:
command = s[2]
if command in stitch_counts:
stitch_counts[command] += 1
else:
stitch_counts[command] = 1
if len(stitch_counts) != 0:
for the_key, the_value in stitch_counts.items():
try:
name = "COMMAND_" + names[the_key]
except (IndexError, KeyError):
name = "COMMAND_UNKNOWN_" + str(the_key)
csv(f, (
'>',
name,
str(the_value)
))
write_string_utf8(f, "\n")
if len(pattern.extras) > 0:
csv(f, (
'#',
'[METADATA_NAME]',
'[METADATA]'
))
for the_key, the_value in pattern.extras.items():
if isinstance(the_value, tuple):
the_value = "\n" + get_graphic_as_string(the_value)
csv(f, (
'@',
str(the_key),
str(the_value)
))
write_string_utf8(f, "\n")
if len(pattern.threadlist) > 0:
csv(f, (
'#',
'[THREAD_NUMBER]',
'[HEX_COLOR]',
'[DESCRIPTION]',
'[BRAND]',
'[CATALOG_NUMBER]',
'[DETAILS]',
'[WEIGHT]'
))
for i, thread in enumerate(pattern.threadlist):
csv(f, (
'$',
str(i),
thread.hex_color(),
thread.description,
thread.brand,
thread.catalog_number,
thread.details,
thread.weight,
))
write_string_utf8(f, "\n")
if len(pattern.stitches) > 0:
if displacement:
csv(f, (
'#',
'[STITCH_INDEX]',
'[STITCH_TYPE]',
'[X]',
'[Y]',
'[DX]',
'[R]',
'[ANGLE]'
))
elif deltas:
csv(f, (
'#',
'[STITCH_INDEX]',
'[STITCH_TYPE]',
'[X]',
'[Y]',
'[DX]',
'[DY]'
))
else:
csv(f, (
'#',
'[STITCH_INDEX]',
'[STITCH_TYPE]',
'[X]',
'[Y]'
))
current_x = 0
current_y = 0
for i, stitch in enumerate(pattern.stitches):
try:
name = names[stitch[2]]
except (IndexError, KeyError):
name = "UNKNOWN " + str(stitch[2])
if displacement:
dx = stitch[0] - current_x
dy = stitch[1] - current_y
csv(f, (
'*',
str(i),
name,
str(stitch[0]),
str(stitch[1]),
str(dx),
str(dy),
str(distance(dx, dy)),
str(angle(dx, dy))
))
elif deltas:
dx = stitch[0] - current_x
dy = stitch[1] - current_y
csv(f, (
'*',
str(i),
name,
str(stitch[0]),
str(stitch[1]),
str(dx),
str(dy)
))
else:
csv(f, (
'*',
str(i),
name,
str(stitch[0]),
str(stitch[1]),
))
current_x = stitch[0]
current_y = stitch[1]
def get_common_name_dictionary():
return {
NO_COMMAND: "NO_COMMAND",
STITCH: "STITCH",
JUMP: "JUMP",
TRIM: "TRIM",
STOP: "STOP",
END: "END",
SLOW: "SLOW",
FAST: "FAST",
COLOR_CHANGE: "COLOR_CHANGE",
SEQUIN_MODE: "SEQUIN_MODE",
SEQUIN_EJECT: "SEQUIN_EJECT",
SEW_TO: "SEW_TO",
NEEDLE_AT: "NEEDLE_AT",
STITCH_BREAK: "STITCH_BREAK",
SEQUENCE_BREAK: "SEQUENCE_BREAK",
COLOR_BREAK: "COLOR_BREAK",
TIE_ON: "TIE_ON",
TIE_OFF: "TIE_OFF",
FRAME_EJECT: "FRAME_EJECT",
MATRIX_TRANSLATE: "MATRIX_TRANSLATE",
MATRIX_SCALE: "MATRIX_SCALE",
MATRIX_ROTATE: "MATRIX_ROTATE",
MATRIX_RESET: "MATRIX_RESET",
OPTION_ENABLE_TIE_ON: "OPTION_ENABLE_TIE_ON",
OPTION_ENABLE_TIE_OFF: "OPTION_ENABLE_TIE_OFF",
OPTION_DISABLE_TIE_ON: "OPTION_DISABLE_TIE_ON",
OPTION_DISABLE_TIE_OFF: "OPTION_DISABLE_TIE_OFF",
OPTION_MAX_STITCH_LENGTH: "OPTION_MAX_STITCH_LENGTH",
OPTION_MAX_JUMP_LENGTH: "OPTION_MAX_JUMP_LENGTH",
OPTION_IMPLICIT_TRIM: "OPTION_IMPLICIT_TRIM",
OPTION_EXPLICIT_TRIM: "OPTION_EXPLICIT_TRIM",
CONTINGENCY_NONE: "CONTINGENCY_NONE",
CONTINGENCY_JUMP_NEEDLE: "CONTINGENCY_JUMP_NEEDLE",
CONTINGENCY_SEW_TO: "CONTINGENCY_SEW_TO",
}

Wyświetl plik

@ -0,0 +1,95 @@
def read_barudan_dat(f, out):
stitched_yet = False
count = 0
while True:
count += 1
byte = bytearray(f.read(3))
if len(byte) != 3:
break
ctrl = byte[0]
y = -byte[1]
x = byte[2]
if ctrl & 0x80 == 0:
# This bit should always be set, must be other dat type.
return False
if ctrl & 0x40 != 0:
y = -y
if ctrl & 0x20 != 0:
x = -x
if (ctrl & 0b11111) == 0:
stitched_yet = True
out.stitch(x, y)
continue
if (ctrl & 0b11111) == 1:
out.move(x, y)
continue
if ctrl == 0xF8:
break
if ctrl == 0xE7:
out.trim()
continue
if ctrl == 0xE8:
if count > 1:
out.stop()
continue
if 0xE9 <= ctrl < 0xF8:
needle = ctrl - 0xE8
if stitched_yet:
out.color_change()
continue
break # Uncaught Control
out.end()
return True
def read_sunstar_dat_stitches(f, out):
count = 0
while True:
count += 1
byte = bytearray(f.read(3))
if len(byte) != 3:
break
x = byte[0] & 0x7F
y = byte[1] & 0x7F
if byte[0] & 0x80:
x = -x
if byte[1] & 0x80:
y = -y
y = -y
ctrl = byte[2]
if ctrl == 0x07:
out.stitch(x, y)
continue
if ctrl == 0x04:
out.move(x, y)
continue
if ctrl == 0x80:
out.trim(x, y)
continue
if ctrl == 0x87:
out.color_change()
if x != 0 or y != 0:
out.stitch(x, y)
continue
if ctrl == 0x84: # Initialized info.
out.stitch(x, y)
continue
elif ctrl == 0:
break
break # Uncaught Control
out.end()
def read_sunstar_dat(f, out):
# f.seek(0x02, 0)
# stitches = read_int_16le(f)
f.seek(0x100, 0)
read_sunstar_dat_stitches(f, out)
def read(f, out, settings=None):
if not read_barudan_dat(f, out):
f.seek(0, 0)
read_sunstar_dat(f, out)

Wyświetl plik

@ -0,0 +1,48 @@
from .DstReader import dst_read_header
def b_stitch_encoding_read(f, out):
stitched_yet = False
count = 0
while True:
count += 1
byte = bytearray(f.read(3))
if len(byte) != 3:
break
ctrl = byte[0]
y = -byte[1]
x = byte[2]
if ctrl & 0x40 != 0:
y = -y
if ctrl & 0x20 != 0:
x = -x
if (ctrl & 0b11111) == 0:
stitched_yet = True
out.stitch(x, y)
continue
if (ctrl & 0b11111) == 1:
out.move(x, y)
continue
if ctrl == 0xF8:
break
if ctrl == 0xE7:
out.trim()
continue
if ctrl == 0xE8:
out.stop()
continue
if 0xE9 <= ctrl < 0xF8:
needle = ctrl - 0xE8
if stitched_yet:
out.color_change()
continue
break # Uncaught Control
out.end()
def read(f, out, settings=None):
dst_read_header(f, out)
b_stitch_encoding_read(f, out)

Wyświetl plik

@ -0,0 +1,87 @@
def getbit(b, pos):
return (b >> pos) & 1
def decode_dx(b0, b1, b2):
x = 0
x += getbit(b2, 2) * (+81)
x += getbit(b2, 3) * (-81)
x += getbit(b1, 2) * (+27)
x += getbit(b1, 3) * (-27)
x += getbit(b0, 2) * (+9)
x += getbit(b0, 3) * (-9)
x += getbit(b1, 0) * (+3)
x += getbit(b1, 1) * (-3)
x += getbit(b0, 0) * (+1)
x += getbit(b0, 1) * (-1)
return x
def decode_dy(b0, b1, b2):
y = 0
y += getbit(b2, 5) * (+81)
y += getbit(b2, 4) * (-81)
y += getbit(b1, 5) * (+27)
y += getbit(b1, 4) * (-27)
y += getbit(b0, 5) * (+9)
y += getbit(b0, 4) * (-9)
y += getbit(b1, 7) * (+3)
y += getbit(b1, 6) * (-3)
y += getbit(b0, 7) * (+1)
y += getbit(b0, 6) * (-1)
return -y
def process_header_info(out, prefix, value):
if prefix == "LA":
out.metadata("name", value)
elif prefix == "AU":
out.metadata("author", value)
elif prefix == "CP":
out.metadata("copyright", value)
elif prefix == "TC":
values = [x.strip() for x in value.split(',')]
out.add_thread({
"hex": values[0],
"description": value[1],
"catalog": value[2]
})
else:
out.metadata(prefix, value)
def dst_read_header(f, out):
header = f.read(512)
header_string = header.decode('utf8')
for line in [x.strip() for x in header_string.split('\r')]:
if len(line) > 3:
process_header_info(out, line[0:2].strip(), line[3:].strip())
def dst_read_stitches(f, out):
sequin_mode = False
while True:
byte = bytearray(f.read(3))
if len(byte) != 3:
break
dx = decode_dx(byte[0], byte[1], byte[2])
dy = decode_dy(byte[0], byte[1], byte[2])
if byte[2] & 0b11110011 == 0b11110011:
out.stop(dx, dy)
elif byte[2] & 0b11000011 == 0b11000011:
out.color_change(dx, dy)
elif byte[2] & 0b01000011 == 0b01000011:
out.sequin_mode(dx, dy)
sequin_mode = not sequin_mode
elif byte[2] & 0b10000011 == 0b10000011:
if sequin_mode:
out.sequin_eject(dx, dy)
else:
out.move(dx, dy)
else:
out.stitch(dx, dy)
def read(f, out, settings=None):
dst_read_header(f, out)
dst_read_stitches(f, out)

Wyświetl plik

@ -0,0 +1,159 @@
from .EmbConstant import *
from .WriteHelper import write_string_utf8
SEQUIN_CONTINGENCY = CONTINGENCY_SEQUIN_UTILIZE
FULL_JUMP = False
MAX_JUMP_DISTANCE = 121
MAX_STITCH_DISTANCE = 121
PPMM = 10
DSTHEADERSIZE = 512
def bit(b):
return 1 << b
def encode_record(x, y, flags):
y = -y # flips the coordinate y space.
b0 = 0
b1 = 0
b2 = 0
if flags == JUMP or flags == SEQUIN_EJECT:
b2 += bit(7) # jumpstitch 10xxxx11
if flags == STITCH or flags == JUMP or flags == SEQUIN_EJECT:
b2 += bit(0)
b2 += bit(1)
if x > 40:
b2 += bit(2)
x -= 81
if x < -40:
b2 += bit(3)
x += 81
if x > 13:
b1 += bit(2)
x -= 27
if x < -13:
b1 += bit(3)
x += 27
if x > 4:
b0 += bit(2)
x -= 9
if x < -4:
b0 += bit(3)
x += 9
if x > 1:
b1 += bit(0)
x -= 3
if x < -1:
b1 += bit(1)
x += 3
if x > 0:
b0 += bit(0)
x -= 1
if x < 0:
b0 += bit(1)
x += 1
if x != 0:
raise ValueError("The dx value given to the writer exceeds maximum allowed.")
if y > 40:
b2 += bit(5)
y -= 81
if y < -40:
b2 += bit(4)
y += 81
if y > 13:
b1 += bit(5)
y -= 27
if y < -13:
b1 += bit(4)
y += 27
if y > 4:
b0 += bit(5)
y -= 9
if y < -4:
b0 += bit(4)
y += 9
if y > 1:
b1 += bit(7)
y -= 3
if y < -1:
b1 += bit(6)
y += 3
if y > 0:
b0 += bit(7)
y -= 1
if y < 0:
b0 += bit(6)
y += 1
if y != 0:
raise ValueError("The dy value given to the writer exceeds maximum allowed.")
elif flags is COLOR_CHANGE:
b2 = 0b11000011
elif flags is STOP:
b2 = 0b11000011
elif flags is END:
b2 = 0b11110011
elif flags is SEQUIN_MODE:
b2 = 0b01000011
return bytes(bytearray([b0, b1, b2]))
def write(pattern, f, settings=None):
extended_header = False
if settings is not None:
extended_header = settings.get("extended header", extended_header)
extends = pattern.extends()
width = extends[2] - extends[0]
height = extends[3] - extends[1]
name = pattern.get_metadata("name", "Untitled")
write_string_utf8(f, "LA:%-16s\r" % name)
write_string_utf8(f, "ST:%7d\r" % pattern.count_stitches())
write_string_utf8(f, "CO:%3d\r" % pattern.count_color_changes())
x_extend = int(round(PPMM * width / 2))
y_extend = int(round(PPMM * height / 2))
write_string_utf8(f, "+X:%5d\r" % x_extend)
write_string_utf8(f, "-X:%5d\r" % x_extend)
write_string_utf8(f, "+Y:%5d\r" % y_extend)
write_string_utf8(f, "-Y:%5d\r" % y_extend)
write_string_utf8(f, "AX:+%5d\r" % 0)
write_string_utf8(f, "AY:+%5d\r" % 0)
write_string_utf8(f, "MX:+%5d\r" % 0)
write_string_utf8(f, "AY:+%5d\r" % 0)
write_string_utf8(f, "PD:%6s\r" % "******")
if extended_header:
author = pattern.get_metadata("author")
if author is not None:
write_string_utf8(f, "AU:%s\r" % author)
meta_copyright = pattern.get_metadata("copyright")
if meta_copyright is not None:
write_string_utf8(f, "CP:%s\r" % meta_copyright)
if len(pattern.threadlist) > 0:
for thread in pattern.threadlist:
write_string_utf8(f, "TC:%s,%s,%s\r" %
(thread.hex_color(),
thread.description,
thread.catalog_number))
f.write(b'\x1a')
for i in range(f.tell(), DSTHEADERSIZE):
f.write(b'\x20') # space
stitches = pattern.stitches
xx = 0
yy = 0
for stitch in stitches:
x = stitch[0]
y = stitch[1]
data = stitch[2]
dx = int(round(x - xx))
dy = int(round(y - yy))
xx += dx
yy += dy
if data == TRIM:
f.write(encode_record(2, 2, JUMP))
f.write(encode_record(-4, -4, JUMP))
f.write(encode_record(2, 2, JUMP))
else:
f.write(encode_record(dx, dy, data))

Wyświetl plik

@ -0,0 +1,46 @@
from .DstReader import dst_read_header
def z_stitch_encoding_read(f, out):
stitched_yet = False
count = 0
while True:
count += 1
byte = bytearray(f.read(3))
if len(byte) != 3:
break
y = -byte[0]
x = byte[1]
ctrl = byte[2]
if ctrl & 0x40 != 0:
x = -x
if ctrl & 0x20 != 0:
y = -y
if (ctrl & 0b11111) == 0:
stitched_yet = True
out.stitch(x, y)
continue
if (ctrl & 0b11111) == 1:
out.move(x, y)
continue
if ctrl == 0x82:
out.stop()
continue
if ctrl == 0x9B:
out.trim()
continue
if 0x83 <= ctrl <= 0x9A:
needle = (ctrl - 0x83) >> 1
if stitched_yet:
out.color_change()
continue
break # Uncaught Control
out.end()
def read(f, out, settings=None):
dst_read_header(f, out)
z_stitch_encoding_read(f, out)

Wyświetl plik

@ -0,0 +1,52 @@
NO_COMMAND = -1
STITCH = 0
JUMP = 1
TRIM = 2
STOP = 3
END = 4
COLOR_CHANGE = 5
SEQUIN_MODE = 6
SEQUIN_EJECT = 7
SLOW = 0xB
FAST = 0xC
# Stitch with implied contingency.
SEW_TO = 0xB0
NEEDLE_AT = 0xB1
STITCH_BREAK = 0xE0
SEQUENCE_BREAK = 0xE1
COLOR_BREAK = 0xE2
TIE_ON = 0xE4
TIE_OFF = 0xE5
FRAME_EJECT = 0xE9
MATRIX_TRANSLATE = 0xC0
MATRIX_SCALE = 0xC1
MATRIX_ROTATE = 0xC2
MATRIX_RESET = 0xC3
OPTION_ENABLE_TIE_ON = 0xD1
OPTION_ENABLE_TIE_OFF = 0xD2
OPTION_DISABLE_TIE_ON = 0xD3
OPTION_DISABLE_TIE_OFF = 0xD4
OPTION_MAX_STITCH_LENGTH = 0xD5
OPTION_MAX_JUMP_LENGTH = 0xD6
OPTION_EXPLICIT_TRIM = 0xD7
OPTION_IMPLICIT_TRIM = 0xD8
CONTINGENCY_NONE = 0xF0
CONTINGENCY_JUMP_NEEDLE = 0xF1
CONTINGENCY_SEW_TO = 0xF2
CONTINGENCY_SEQUIN_UTILIZE = 0xF5
CONTINGENCY_SEQUIN_JUMP = 0xF6
CONTINGENCY_SEQUIN_STITCH = 0xF7
CONTINGENCY_SEQUIN_REMOVE = 0xF8
# Eventually the commands are supposed to be limited to 255 thereby
# allowing additional information like, color change to color in position n
# To be stored in the higher level bits.
COMMAND_MASK = 0xFF

Wyświetl plik

@ -0,0 +1,622 @@
import math
from .EmbConstant import *
class Transcoder:
def __init__(self, settings=None):
if settings is None:
settings = {}
self.max_stitch = settings.get("max_stitch", float('inf'))
self.max_jump = settings.get("max_jump", float('inf'))
self.full_jump = settings.get("full_jump", False)
strip_sequins = settings.get("strip_sequins", True)
if strip_sequins:
self.sequin_contingency = CONTINGENCY_SEQUIN_UTILIZE
else:
self.sequin_contingency = CONTINGENCY_SEQUIN_JUMP
self.sequin_contingency = settings.get("sequin_contingency", self.sequin_contingency)
self.strip_speeds = settings.get("strip_speeds", True)
self.explicit_trim = settings.get("explicit_trim", True)
self.has_tie_on = settings.get("tie_on", False)
self.has_tie_off = settings.get("tie_off", False)
self.long_stitch_contingency = \
settings.get("long_stitch_contingency", CONTINGENCY_JUMP_NEEDLE)
self.matrix = get_identity()
translate = settings.get("translate", None)
if translate is not None:
try:
m = get_translate(translate[0], translate[1])
self.matrix = matrix_multiply(self.matrix, m)
except IndexError:
try:
m = get_translate(translate.x, translate.y)
self.matrix = matrix_multiply(self.matrix, m)
except AttributeError:
pass
scale = settings.get("scale", None)
if scale is not None:
try:
m = get_scale(scale[0], scale[1])
self.matrix = matrix_multiply(self.matrix, m)
except (IndexError, TypeError):
try:
m = get_scale(scale.x, scale.y)
self.matrix = matrix_multiply(self.matrix, m)
except AttributeError:
m = get_scale(scale, scale)
self.matrix = matrix_multiply(self.matrix, m)
rotate = settings.get("rotate", None)
if rotate is not None:
m = get_rotate(rotate)
self.matrix = matrix_multiply(self.matrix, m)
self.source_pattern = None
self.destination_pattern = None
self.position = 0
self.color_index = -1
self.stitch = None
self.state_trimmed = True
self.state_sequin_mode = False
self.needle_x = 0
self.needle_y = 0
self.state_jumping = False
def transcode(self, source_pattern, destination_pattern):
self.source_pattern = source_pattern
self.destination_pattern = destination_pattern
self.transcode_metadata()
self.transcode_threads()
self.transcode_stitches()
return destination_pattern
def transcode_metadata(self):
"""Transcodes metadata, (just moves)"""
source = self.source_pattern.extras
dest = self.destination_pattern.extras
dest.update(source)
def transcode_threads(self):
"""Transcodes threads, (just moves)"""
source = self.source_pattern.threadlist
dest = self.destination_pattern.threadlist
dest.extend(source)
def transcode_stitches(self):
"""Transcodes stitches.
Converts middle-level commands and potentially incompatible
commands into a format friendly low level commands."""
source = self.source_pattern.stitches
self.state_trimmed = True
self.needle_x = 0
self.needle_y = 0
self.position = 0
self.color_index = -1
flags = NO_COMMAND
for self.position, self.stitch in enumerate(source):
p = point_in_matrix_space(self.matrix, self.stitch)
x = p[0]
y = p[1]
flags = self.stitch[2]
if flags == NO_COMMAND:
continue
elif flags == STITCH:
if self.state_trimmed:
self.jump_to_within_stitchrange(x, y)
self.stitch_at(x, y)
if self.has_tie_on:
self.tie_on()
elif self.state_jumping:
self.needle_to(x, y)
self.state_jumping = False
else:
self.stitch_with_contingency(x, y)
elif flags == NEEDLE_AT:
if self.state_trimmed:
self.jump_to_within_stitchrange(x, y)
self.stitch_at(x, y)
if self.has_tie_on:
self.tie_on()
elif self.state_jumping:
self.needle_to(x, y)
self.state_jumping = False
else:
self.needle_to(x, y)
elif flags == SEW_TO:
if self.state_trimmed:
self.jump_to_within_stitchrange(x, y)
self.stitch_at(x, y)
if self.has_tie_on:
self.tie_on()
elif self.state_jumping:
self.needle_to(x, y)
self.state_jumping = False
else:
self.sew_to(x, y)
# Middle Level Commands.
elif flags == STITCH_BREAK:
self.state_jumping = True
elif flags == FRAME_EJECT:
self.tie_off_and_trim_if_needed()
self.jump_to(x, y)
self.stop_here()
elif flags == SEQUENCE_BREAK:
self.tie_off_and_trim_if_needed()
elif flags == COLOR_BREAK:
self.color_break()
elif flags == TIE_OFF:
self.tie_off()
elif flags == TIE_ON:
self.tie_on()
# Core Commands.
elif flags == TRIM:
self.tie_off_and_trim_if_needed()
elif flags == JUMP:
if not self.state_jumping:
self.jump_to(x, y)
elif flags == SEQUIN_MODE:
self.toggle_sequins()
elif flags == SEQUIN_EJECT:
if self.state_trimmed:
self.jump_to_within_stitchrange(x, y)
self.stitch_at(x, y)
if self.has_tie_on:
self.tie_on()
if not self.state_sequin_mode:
self.toggle_sequins()
self.sequin_at(x, y)
elif flags == COLOR_CHANGE:
self.tie_off_trim_color_change()
# If we are told to do something we do it.
# Even if it's the first command and makes no sense.
elif flags == STOP:
self.stop_here()
elif flags == SLOW:
self.slow_command_here()
elif flags == FAST:
self.fast_command_here()
elif flags == END:
self.end_here()
break
# On-the-fly Settings Commands.
elif flags == OPTION_ENABLE_TIE_ON:
self.has_tie_on = True
elif flags == OPTION_ENABLE_TIE_OFF:
self.has_tie_off = True
elif flags == OPTION_DISABLE_TIE_ON:
self.has_tie_on = False
elif flags == OPTION_DISABLE_TIE_OFF:
self.has_tie_off = False
elif flags == OPTION_MAX_JUMP_LENGTH:
x = self.stitch[0]
self.max_jump = x
elif flags == OPTION_MAX_STITCH_LENGTH:
x = self.stitch[0]
self.max_stitch = x
elif flags == OPTION_EXPLICIT_TRIM:
self.explicit_trim = True
elif flags == OPTION_IMPLICIT_TRIM:
self.explicit_trim = False
elif flags == CONTINGENCY_NONE:
self.long_stitch_contingency = CONTINGENCY_NONE
elif flags == CONTINGENCY_JUMP_NEEDLE:
self.long_stitch_contingency = CONTINGENCY_JUMP_NEEDLE
elif flags == CONTINGENCY_SEW_TO:
self.long_stitch_contingency = CONTINGENCY_SEW_TO
elif flags == CONTINGENCY_SEQUIN_REMOVE:
if self.state_sequin_mode: # if sequin_mode, turn it off.
self.toggle_sequins()
self.sequin_contingency = CONTINGENCY_SEQUIN_REMOVE
elif flags == CONTINGENCY_SEQUIN_STITCH:
if self.state_sequin_mode: # if sequin_mode, turn it off.
self.toggle_sequins()
self.sequin_contingency = CONTINGENCY_SEQUIN_STITCH
elif flags == CONTINGENCY_SEQUIN_JUMP:
if self.state_sequin_mode: # if sequin_mode, turn it off.
self.toggle_sequins()
self.sequin_contingency = CONTINGENCY_SEQUIN_REMOVE
elif flags == CONTINGENCY_SEQUIN_UTILIZE:
self.sequin_contingency = CONTINGENCY_SEQUIN_UTILIZE
elif flags == MATRIX_TRANSLATE:
m = get_translate(self.stitch[0], self.stitch[1])
self.matrix = matrix_multiply(self.matrix, m)
elif flags == MATRIX_SCALE:
m = get_scale(self.stitch[0], self.stitch[1])
self.matrix = matrix_multiply(self.matrix, m)
elif flags == MATRIX_ROTATE:
m = get_rotate(self.stitch[0])
self.matrix = matrix_multiply(self.matrix, m)
elif flags == MATRIX_RESET:
self.matrix = get_identity()
if flags != END:
self.end_here()
def update_needle_position(self, x, y):
self.needle_x = x
self.needle_y = y
def declare_not_trimmed(self):
if self.state_trimmed:
self.state_trimmed = False
if self.color_index == -1:
self.color_index = 0
def add(self, flags, x=None, y=None):
if x is None:
x = self.needle_x
if y is None:
y = self.needle_y
self.destination_pattern.stitches.append([x, y, flags])
def lookahead_stitch(self):
"""Looks forward from current position and
determines if anymore stitching will occur."""
source = self.source_pattern.stitches
for pos in range(self.position, len(source)):
stitch = source[pos]
flags = stitch[2]
if flags == STITCH:
return True
elif flags == NEEDLE_AT:
return True
elif flags == SEW_TO:
return True
elif flags == TIE_ON:
return True
elif flags == SEQUIN_EJECT:
return True
elif flags == END:
return False
return False
def color_break(self):
"""Implements color break. Should add color changes add needed only."""
if self.color_index < 0:
return # We haven't stitched anything, colorbreak happens, before start. Ignore.
if not self.state_trimmed:
if self.has_tie_off:
self.tie_off()
if self.explicit_trim:
self.trim_here()
if not self.lookahead_stitch():
return # No more stitching will happen, colorchange unneeded.
self.add(COLOR_CHANGE)
self.color_index += 1
self.state_trimmed = True
def tie_off_trim_color_change(self):
if not self.state_trimmed:
if self.has_tie_off:
self.tie_off()
if self.explicit_trim:
self.trim_here()
self.add(COLOR_CHANGE)
self.color_index += 1
self.state_trimmed = True
def tie_off_and_trim_if_needed(self):
if not self.state_trimmed:
self.tie_off_and_trim()
def tie_off_and_trim(self):
if self.has_tie_off:
self.tie_off()
self.trim_here()
def tie_off(self):
try:
b = point_in_matrix_space(
self.matrix,
self.source_pattern.stitches[self.position - 1],
)
flags = b[2]
if flags == STITCH or flags == NEEDLE_AT or \
flags == SEW_TO or flags == SEQUIN_EJECT:
self.lock_stitch(self.needle_x, self.needle_y,
b[0], b[1], self.max_stitch)
except IndexError:
pass # must be an island stitch. jump-stitch-jump
def tie_on(self):
try:
b = point_in_matrix_space(
self.matrix,
self.source_pattern.stitches[self.position + 1]
)
flags = b[2]
if flags == STITCH or flags == NEEDLE_AT or \
flags == SEW_TO or flags == SEQUIN_EJECT:
self.lock_stitch(self.needle_x, self.needle_y,
b[0], b[1], self.max_stitch)
except IndexError:
pass # must be an island stitch. jump-stitch-jump
def trim_here(self):
if self.state_sequin_mode:
# Can't trim in sequin mode. DST uses jumps to trigger sequin eject and to trim.
self.toggle_sequins()
self.add(TRIM)
self.state_trimmed = True
def toggle_sequins(self):
"""Sequin mode toggle can be called whenever but will only actually turn on if set
to utilize mode for the sequin contingency."""
contingency = self.sequin_contingency
if contingency == CONTINGENCY_SEQUIN_UTILIZE:
self.add(SEQUIN_MODE)
self.state_sequin_mode = not self.state_sequin_mode
def jump_to_within_stitchrange(self, new_x, new_y):
"""Jumps close enough to stitch a position in x,y
without violating the length constraints."""
x0 = self.needle_x
y0 = self.needle_y
max_length = self.max_jump
self.interpolate_gap_stitches(x0, y0, new_x, new_y, max_length, JUMP)
if self.full_jump:
if self.needle_x != new_x or self.needle_y != new_y:
self.jump_at(new_x, new_y)
# We are currently assuming that max_jump is also max_stitch.
# Properly it might be the case that some format could require
# a split constraint here where we would need to jump further
# so that we could then stitch closer.
def jump_to(self, new_x, new_y):
x0 = self.needle_x
y0 = self.needle_y
max_length = self.max_jump
self.interpolate_gap_stitches(x0, y0, new_x, new_y, max_length, JUMP)
self.jump_at(new_x, new_y)
def jump_at(self, new_x, new_y):
if self.state_sequin_mode:
self.toggle_sequins() # can't jump with sequin mode on.
self.add(JUMP, new_x, new_y)
self.update_needle_position(new_x, new_y)
def stitch_with_contingency(self, new_x, new_y):
if self.long_stitch_contingency == CONTINGENCY_SEW_TO:
self.sew_to(new_x, new_y)
elif self.long_stitch_contingency == CONTINGENCY_JUMP_NEEDLE:
self.needle_to(new_x, new_y)
else:
self.stitch_at(new_x, new_y)
def sew_to(self, new_x, new_y):
"""Stitches to a specific location, with the emphasis on sewing.
Subdivides long stitches into additional stitches.
"""
x0 = self.needle_x
y0 = self.needle_y
max_length = self.max_stitch
self.interpolate_gap_stitches(x0, y0, new_x, new_y, max_length, STITCH)
self.stitch_at(new_x, new_y)
def needle_to(self, new_x, new_y):
"""Insert needle at specific location, emphasis on the needle.
Uses jumps to avoid needle penetrations where possible.
The limit here is the max stitch limit or jump threshold.
If jump threshold is set low, it will insert jumps even
between stitches it could have technically encoded values for.
Stitches to the new location, adding jumps if needed.
"""
x0 = self.needle_x
y0 = self.needle_y
max_length = self.max_stitch
self.interpolate_gap_stitches(x0, y0, new_x, new_y, max_length, JUMP)
self.stitch_at(new_x, new_y)
def stitch_at(self, new_x, new_y):
"""Inserts a stitch at the specific location.
Should have already been checked for constraints."""
self.add(STITCH, new_x, new_y)
self.update_needle_position(new_x, new_y)
self.declare_not_trimmed()
def sequin_at(self, new_x, new_y):
contingency = self.sequin_contingency
if contingency == CONTINGENCY_SEQUIN_UTILIZE:
self.add(SEQUIN_EJECT, new_x, new_y)
elif contingency == CONTINGENCY_SEQUIN_JUMP:
self.add(JUMP, new_x, new_y)
elif contingency == CONTINGENCY_SEQUIN_STITCH:
self.add(STITCH, new_x, new_y)
elif contingency == CONTINGENCY_SEQUIN_REMOVE:
# Do not update the needle position or declare untrimmed.
return
self.update_needle_position(new_x, new_y)
self.declare_not_trimmed()
def slow_command_here(self):
if not self.strip_speeds:
self.add(SLOW)
def fast_command_here(self):
if not self.strip_speeds:
self.add(FAST)
def stop_here(self):
self.add(STOP)
self.state_trimmed = True
def end_here(self):
self.add(END)
self.state_trimmed = True
def color_change_here(self):
self.add(COLOR_CHANGE)
self.color_index += 1
self.state_trimmed = True
def position_will_exceed_constraint(self, length=None, new_x=None, new_y=None):
"""Check if the stitch is too long before trying to deal with it."""
if length is None:
length = self.max_stitch
if new_x is None or new_y is None:
p = point_in_matrix_space(self.matrix,
self.stitch[0],
self.stitch[1])
new_x = p[0]
new_y = p[1]
distance_x = new_x - self.needle_x
distance_y = new_y - self.needle_y
return abs(distance_x) > length or abs(distance_y) > length
def interpolate_gap_stitches(self, x0, y0, x1, y1, max_length, data):
"""Command sequence line to x, y, respecting length as maximum.
This does not arrive_at, it steps to within striking distance.
The next step can arrive at (x, y) without violating constraint.
If these are already in range, this command will do nothing.
returns the last stitch interpolated by the code.
"""
transcode = self.destination_pattern.stitches
distance_x = x1 - x0
distance_y = y1 - y0
if abs(distance_x) > max_length or abs(distance_y) > max_length:
if data == JUMP and self.state_sequin_mode:
self.toggle_sequins() # can't jump with sequin mode on.
# python 2,3 patch of division that could be integer.
steps_x = math.ceil(abs(distance_x / (max_length * 1.0)))
steps_y = math.ceil(abs(distance_y / (max_length * 1.0)))
if steps_x > steps_y:
steps = steps_x
else:
steps = steps_y
step_size_x = distance_x / steps
step_size_y = distance_y / steps
qx = x0
qy = y0
for q in range(1, int(steps)):
# we need the gap stitches only, not start or end stitch.
qx += step_size_x
qy += step_size_y
stitch = [round(qx), round(qy), data]
transcode.append(stitch)
self.update_needle_position(stitch[0], stitch[1])
def lock_stitch(self, x, y, anchor_x, anchor_y, max_length=None):
"""Tie-on, Tie-off. Lock stitch from current location towards
anchor location.Ends again at lock location. May not exceed
max_length in the process."""
if max_length is None:
max_length = self.max_stitch
transcode = self.destination_pattern.stitches
length = distance(x, y, anchor_x, anchor_y)
if length > max_length:
p = oriented(x, y, anchor_x, anchor_y, max_length)
anchor_x = p[0]
anchor_y = p[1]
for amount in (.33, .66, .33, 0):
transcode.append([
towards(x, anchor_x, amount),
towards(y, anchor_y, amount),
STITCH])
def distance_squared(x0, y0, x1, y1):
"""squared of distance between x0,y0 and x1,y1"""
dx = x1 - x0
dy = y1 - y0
dx *= dx
dy *= dy
return dx + dy
def distance(x0, y0, x1, y1):
"""distance between x0,y0 and x1,y1"""
return math.sqrt(distance_squared(x0, y0, x1, y1))
def towards(a, b, amount):
"""amount between [0,1] -> [a,b]"""
return (amount * (b - a)) + a
def angle_radians(x0, y0, x1, y1):
"""Angle in radians between x0,y0 and x1,y1"""
return math.atan2(y1 - y0, x1 - x0)
def oriented(x0, y0, x1, y1, r):
"""from x0,y0 in the direction of x1,y1 in the distance of r"""
radians = angle_radians(x0, y0, x1, y1)
return x0 + (r * math.cos(radians)), y0 + (r * math.sin(radians))
def get_identity():
return \
1, 0, 0, \
0, 1, 0, \
0, 0, 1 # identity
def get_scale(sx, sy=None):
if sy is None:
sy = sx
return \
sx, 0, 0, \
0, sy, 0, \
0, 0, 1
def get_translate(tx, ty):
return \
1, 0, 0, \
0, 1, 0, \
tx, ty, 1
def get_rotate(theta):
tau = math.pi * 2
theta *= tau / 360
ct = math.cos(theta)
st = math.sin(theta)
return \
ct, st, 0, \
-st, ct, 0, \
0, 0, 1
def matrix_multiply(a, b):
return [
a[0] * b[0] + a[1] * b[3] + a[2] * b[6],
a[0] * b[1] + a[1] * b[4] + a[2] * b[7],
a[0] * b[2] + a[1] * b[5] + a[2] * b[8],
a[3] * b[0] + a[4] * b[3] + a[5] * b[6],
a[3] * b[1] + a[4] * b[4] + a[5] * b[7],
a[3] * b[2] + a[4] * b[5] + a[5] * b[8],
a[6] * b[0] + a[7] * b[3] + a[8] * b[6],
a[6] * b[1] + a[7] * b[4] + a[8] * b[7],
a[6] * b[2] + a[7] * b[5] + a[8] * b[8]]
def point_in_matrix_space(matrix, v0, v1=None):
if v1 is None:
try:
return [
v0[0] * matrix[0] + v0[1] * matrix[3] + 1 * matrix[6],
v0[0] * matrix[1] + v0[1] * matrix[4] + 1 * matrix[7],
v0[2]
]
except IndexError:
return [
v0[0] * matrix[0] + v0[1] * matrix[3] + 1 * matrix[6],
v0[0] * matrix[1] + v0[1] * matrix[4] + 1 * matrix[7]
# Must not have had a 3rd element.
]
return [
v0 * matrix[0] + v1 * matrix[3] + 1 * matrix[6],
v0 * matrix[1] + v1 * matrix[4] + 1 * matrix[7]
]

Wyświetl plik

@ -0,0 +1,374 @@
import random
from .EmbThread import EmbThread
from .EmbEncoder import Transcoder as Normalizer
from .EmbConstant import *
class EmbPattern:
def __init__(self):
self.stitches = [] # type: list
self.threadlist = [] # type: list
self.extras = {}
# filename, name, category, author, keywords, comments, are typical
self._previousX = 0 # type: float
self._previousY = 0 # type: float
def move(self, dx=0, dy=0):
"""Move dx, dy"""
self.add_stitch_relative(JUMP, dx, dy)
def move_abs(self, x, y):
"""Move absolute x, y"""
self.add_stitch_absolute(JUMP, x, y)
def stitch(self, dx=0, dy=0):
"""Stitch dx, dy"""
self.add_stitch_relative(STITCH, dx, dy)
def stitch_abs(self, x, y):
"""Stitch absolute x, y"""
self.add_stitch_absolute(STITCH, x, y)
def stop(self, dx=0, dy=0):
"""Stop dx, dy"""
self.add_stitch_relative(STOP, dx, dy)
def trim(self, dx=0, dy=0):
"""Trim dx, dy"""
self.add_stitch_relative(TRIM, dx, dy)
def color_change(self, dx=0, dy=0):
"""Color Change dx, dy"""
self.add_stitch_relative(COLOR_CHANGE, dx, dy)
def sequin_eject(self, dx=0, dy=0):
"""Eject Sequin dx, dy"""
self.add_stitch_relative(SEQUIN_EJECT, dx, dy)
def sequin_mode(self, dx=0, dy=0):
"""Eject Sequin dx, dy"""
self.add_stitch_relative(SEQUIN_MODE, dx, dy)
def end(self, dx=0, dy=0):
"""End Design dx, dy"""
self.add_stitch_relative(END, dx, dy)
def add_thread(self, thread):
"""Adds thread to design.
Note: this has no effect on stitching and can be done at any point."""
if isinstance(thread, EmbThread):
self.threadlist.append(thread)
elif isinstance(thread, int):
thread_object = EmbThread()
thread_object.color = thread
self.threadlist.append(thread_object)
elif isinstance(thread, dict):
thread_object = EmbThread()
if "name" in thread:
thread_object.description = thread["name"]
if "description" in thread:
thread_object.description = thread["description"]
if "desc" in thread:
thread_object.description = thread["desc"]
if "brand" in thread:
thread_object.brand = thread["brand"]
if "manufacturer" in thread:
thread_object.brand = thread["manufacturer"]
if "color" in thread or "rgb" in thread:
try:
color = thread["color"]
except KeyError:
color = thread["rgb"]
if isinstance(color, int):
thread_object.color = thread["color"]
elif isinstance(color, str):
if color == "random":
thread_object.color = 0xFF000000 | random.randint(0, 0xFFFFFF)
if color[0:1] == "#":
thread_object.set_hex_color(color[1:])
elif isinstance(color, tuple) or isinstance(color, list):
thread_object.color = (color[0] & 0xFF) << 16 | \
(color[1] & 0xFF) << 8 | \
(color[2] & 0xFF)
if "hex" in thread:
thread_object.set_hex_color(thread["hex"])
if "id" in thread:
thread_object.catalog_number = thread["id"]
if "catalog" in thread:
thread_object.catalog_number = thread["catalog"]
self.threadlist.append(thread_object)
def metadata(self, name, data):
"""Adds select metadata to design.
Note: this has no effect on stitching and can be done at any point."""
self.extras[name] = data
def get_metadata(self, name, default=None):
return self.extras.get(name, default)
def extends(self):
min_x = float('inf')
min_y = float('inf')
max_x = -float('inf')
max_y = -float('inf')
for stitch in self.stitches:
if stitch[0] > max_x:
max_x = stitch[0]
if stitch[0] < min_x:
min_x = stitch[0]
if stitch[1] > max_y:
max_y = stitch[1]
if stitch[1] < min_y:
min_y = stitch[1]
return min_x, min_y, max_x, max_y
def count_stitch_commands(self, command):
count = 0
for stitch in self.stitches:
flags = stitch[2]
if flags == command:
count += 1
return count
def count_color_changes(self):
return self.count_stitch_commands(COLOR_CHANGE)
def count_stitches(self):
return len(self.stitches)
def count_threads(self):
return len(self.threadlist)
@staticmethod
def get_random_thread():
thread = EmbThread()
thread.color = 0xFF000000 | random.randint(0, 0xFFFFFF)
thread.description = "Random"
return thread
def get_thread_or_filler(self, index):
if len(self.threadlist) <= index:
return self.get_random_thread()
else:
return self.threadlist[index]
def get_as_stitchblock(self):
stitchblock = []
thread = self.get_thread_or_filler(0)
thread_index = 1
for stitch in self.stitches:
flags = stitch[2]
if flags == STITCH:
stitchblock.append(stitch)
else:
if len(stitchblock) > 0:
yield (stitchblock, thread)
stitchblock = []
if flags == COLOR_CHANGE:
thread = self.get_thread_or_filler(thread_index)
thread_index += 1
if len(stitchblock) > 0:
yield (stitchblock, thread)
def get_as_command_blocks(self):
last_pos = 0
last_command = NO_COMMAND
for pos, stitch in enumerate(self.stitches):
command = stitch[2]
if command == last_command or last_command == NO_COMMAND:
last_command = command
continue
last_command = command
yield self.stitches[last_pos:pos]
last_pos = pos
yield self.stitches[last_pos:]
def get_as_colorblocks(self):
thread_index = 0
last_pos = 0
for pos, stitch in enumerate(self.stitches):
if stitch[2] != COLOR_CHANGE:
continue
thread = self.get_thread_or_filler(thread_index)
thread_index += 1
yield (self.stitches[last_pos:pos], thread)
last_pos = pos
thread = self.get_thread_or_filler(thread_index)
yield (self.stitches[last_pos:], thread)
def get_unique_threadlist(self):
return set(self.threadlist)
def get_singleton_threadlist(self):
singleton = []
last_thread = None
for thread in self.threadlist:
if thread != last_thread:
singleton.append(thread)
last_thread = thread
return singleton
def move_center_to_origin(self):
extends = self.extends()
cx = round((extends[2] - extends[0]) / 2.0)
cy = round((extends[3] - extends[1]) / 2.0)
self.translate(-cx, -cy)
def translate(self, dx, dy):
for stitch in self.stitches:
stitch[0] += dx
stitch[1] += dy
def fix_color_count(self):
"""Ensure the there are threads for all color blocks."""
thread_index = 0
init_color = True
for stitch in self.stitches:
data = stitch[2] & COMMAND_MASK
if data == STITCH or data == SEW_TO or data == NEEDLE_AT:
if init_color:
thread_index += 1
init_color = False
elif data == COLOR_CHANGE or data == COLOR_BREAK:
init_color = True
while len(self.threadlist) < thread_index:
self.add_thread(self.get_thread_or_filler(len(self.threadlist)))
def add_stitch_absolute(self, cmd, x=0, y=0):
"""Add a command at the absolute location: x, y"""
self.stitches.append([x, y, cmd])
self._previousX = x
self._previousY = y
def add_stitch_relative(self, cmd, dx=0, dy=0):
"""Add a command relative to the previous location"""
x = self._previousX + dx
y = self._previousY + dy
self.add_stitch_absolute(cmd, x, y)
def add_command(self, cmd, x=0, y=0):
"""Add a command, without treating parameters as locations
that require an update"""
self.stitches.append([x, y, cmd])
def add_stitchblock(self, stitchblock):
threadlist = self.threadlist
block = stitchblock[0]
thread = stitchblock[1]
if len(threadlist) == 0 or thread is not threadlist[-1]:
threadlist.append(thread)
self.add_stitch_relative(COLOR_BREAK)
else:
self.add_stitch_relative(SEQUENCE_BREAK)
for stitch in block:
try:
self.add_stitch_absolute(stitch.command, stitch.x, stitch.y)
except AttributeError:
self.add_stitch_absolute(stitch[2], stitch[0], stitch[1])
def get_pattern_interpolate_trim(self, jumps_to_require_trim):
"""Gets a processed pattern with untrimmed jumps merged
and trims added if merged jumps are beyond the given value.
The expectation is that it has core commands and not
middle-level commands"""
new_pattern = EmbPattern()
i = -1
ie = len(self.stitches) - 1
count = 0
trimmed = True
while i < ie:
i += 1
stitch = self.stitches[i]
command = stitch[2]
if command == STITCH or command == SEQUIN_EJECT:
trimmed = False
elif command == COLOR_CHANGE or command == TRIM:
trimmed = True
if trimmed or stitch[2] != JUMP:
new_pattern.add_stitch_absolute(stitch[2],
stitch[0],
stitch[1])
continue
while i < ie and command == JUMP:
i += 1
stitch = self.stitches[i]
command = stitch[2]
count += 1
if command != JUMP:
i -= 1
stitch = self.stitches[i]
if count >= jumps_to_require_trim:
new_pattern.trim()
count = 0
new_pattern.add_stitch_absolute(stitch[2],
stitch[0],
stitch[1])
new_pattern.threadlist.extend(self.threadlist)
new_pattern.extras.update(self.extras)
return new_pattern
def get_pattern_merge_jumps(self):
"""Returns a pattern with all multiple jumps merged."""
new_pattern = EmbPattern()
i = -1
ie = len(self.stitches) - 1
stitch_break = False
while i < ie:
i += 1
stitch = self.stitches[i]
if stitch[2] == JUMP:
if stitch_break:
continue
new_pattern.add_command(STITCH_BREAK)
stitch_break = True
continue
new_pattern.add_stitch_absolute(stitch[2],
stitch[0],
stitch[1])
new_pattern.threadlist.extend(self.threadlist)
new_pattern.extras.update(self.extras)
return new_pattern
def get_stable_pattern(self):
"""Gets a stablized version of the pattern."""
stable_pattern = EmbPattern()
for stitchblock in self.get_as_stitchblock():
stable_pattern.add_stitchblock(stitchblock)
stable_pattern.extras.update(self.extras)
return stable_pattern
def get_normalized_pattern(self, encode_settings=None):
"""Encodes"""
normal_pattern = EmbPattern()
transcoder = Normalizer(encode_settings)
transcoder.transcode(self, normal_pattern)
return normal_pattern
def append_translation(self, x, y):
"""Appends translation to the pattern.
All commands will be translated by the given amount,
including absolute location commands."""
self.add_stitch_relative(MATRIX_TRANSLATE, x, y, )
def append_enable_tie_on(self, x=0, y=0):
"""Appends enable tie on.
All starts of new stitching will be tied on"""
self.add_stitch_relative(OPTION_ENABLE_TIE_ON, x, y)
def append_enable_tie_off(self, x=0, y=0):
"""Appends enable tie off.
All ends of stitching will be tied off"""
self.add_stitch_relative(OPTION_ENABLE_TIE_OFF, x, y)
def append_disable_tie_on(self, x=0, y=0):
"""Appends disable tie on.
New stitching will no longer be tied on"""
self.add_stitch_relative(OPTION_DISABLE_TIE_ON, x, y)
def append_disable_tie_off(self, x=0, y=0):
"""Appends enable tie off.
Ends of stitching will no longer be tied off"""
self.add_stitch_relative(OPTION_DISABLE_TIE_OFF, x, y)

Wyświetl plik

@ -0,0 +1,83 @@
def find_nearest_color_index(find_color, values):
if isinstance(find_color, EmbThread):
find_color = find_color.color
red = (find_color >> 16) & 0xff
green = (find_color >> 8) & 0xff
blue = find_color & 0xff
closest_index = -1
current_index = -1
current_closest_value = float("inf")
for t in values:
current_index += 1
if t is None:
continue
dist = color_distance_red_mean(
red,
green,
blue,
t.get_red(),
t.get_green(),
t.get_blue())
if dist <= current_closest_value: # <= choose second if they tie.
current_closest_value = dist
closest_index = current_index
return closest_index
def color_distance_red_mean(
r1, g1, b1,
r2, g2, b2):
red_mean = int(round((r1 + r2) / 2))
r = int(r1 - r2)
g = int(g1 - g2)
b = int(b1 - b2)
return (((512 + red_mean) * r * r) >> 8) + 4 * g * g + \
(((767 - red_mean) * b * b) >> 8)
# See the very good color distance paper:
# https://www.compuphase.com/cmetric.htm
class EmbThread:
def __init__(self):
self.color = 0xFF000000
self.description = None # type: str
self.catalog_number = None # type: str
self.details = None # type: str
self.brand = None # type: str
self.chart = None # type: str
self.weight = None # type: str
# description, catalog_number, details, brand, chart, weight
def set_color(self, r, g, b):
self.color = 0xFF000000 | (
(r & 255) << 16) | (
(g & 255) << 8) | (
b & 255)
def get_opaque_color(self):
return 0xFF000000 | self.color
def get_red(self):
return (self.color >> 16) & 0xFF
def get_green(self):
return (self.color >> 8) & 0xFF
def get_blue(self):
return self.color & 0xFF
def find_nearest_color_index(self, values):
return find_nearest_color_index(self.color, values)
def hex_color(self):
return "#%02x%02x%02x" % (
self.get_red(), self.get_green(), self.get_blue())
def set_hex_color(self, hex_string):
h = hex_string.lstrip('#')
size = len(h)
if size == 6 or size == 8:
self.color = int(h[:6], 16)
elif size == 4 or size == 3:
self.color = int(h[2] + h[2] + h[1] + h[1] + h[0] + h[0], 16)

Wyświetl plik

@ -0,0 +1,95 @@
from .EmbThread import EmbThread
def get_thread_set():
return [
EmbThreadJef(0x000000, "Placeholder", "000"),
EmbThreadJef(0x000000, "Black", "002"),
EmbThreadJef(0xffffff, "White", "001"),
EmbThreadJef(0xffff17, "Yellow", "204"),
EmbThreadJef(0xff6600, "Orange", "203"),
EmbThreadJef(0x2f5933, "Olive Green", "219"),
EmbThreadJef(0x237336, "Green", "226"),
EmbThreadJef(0x65c2c8, "Sky", "217"),
EmbThreadJef(0xab5a96, "Purple", "208"),
EmbThreadJef(0xf669a0, "Pink", "201"),
EmbThreadJef(0xff0000, "Red", "225"),
EmbThreadJef(0xb1704e, "Brown", "214"),
EmbThreadJef(0x0b2f84, "Blue", "207"),
EmbThreadJef(0xe4c35d, "Gold", "003"),
EmbThreadJef(0x481a05, "Dark Brown", "205"),
EmbThreadJef(0xac9cc7, "Pale Violet", "209"),
EmbThreadJef(0xfcf294, "Pale Yellow", "210"),
EmbThreadJef(0xf999b7, "Pale Pink", "211"),
EmbThreadJef(0xfab381, "Peach", "212"),
EmbThreadJef(0xc9a480, "Beige", "213"),
EmbThreadJef(0x970533, "Wine Red", "215"),
EmbThreadJef(0xa0b8cc, "Pale Sky", "216"),
EmbThreadJef(0x7fc21c, "Yellow Green", "218"),
EmbThreadJef(0xe5e5e5, "Silver Gray", "220"),
EmbThreadJef(0x889b9b, "Gray", "221"),
EmbThreadJef(0x98d6bd, "Pale Aqua", "227"),
EmbThreadJef(0xb2e1e3, "Baby Blue", "228"),
EmbThreadJef(0x368ba0, "Powder Blue", "229"),
EmbThreadJef(0x4f83ab, "Bright Blue", "230"),
EmbThreadJef(0x386a91, "Slate Blue", "231"),
EmbThreadJef(0x071650, "Navy Blue", "232"),
EmbThreadJef(0xf999a2, "Salmon Pink", "233"),
EmbThreadJef(0xf9676b, "Coral", "234"),
EmbThreadJef(0xe3311f, "Burnt Orange", "235"),
EmbThreadJef(0xe2a188, "Cinnamon", "236"),
EmbThreadJef(0xb59474, "Umber", "237"),
EmbThreadJef(0xe4cf99, "Blond", "238"),
EmbThreadJef(0xffcb00, "Sunflower", "239"),
EmbThreadJef(0xe1add4, "Orchid Pink", "240"),
EmbThreadJef(0xc3007e, "Peony Purple", "241"),
EmbThreadJef(0x80004b, "Burgundy", "242"),
EmbThreadJef(0x540571, "Royal Purple", "243"),
EmbThreadJef(0xb10525, "Cardinal Red", "244"),
EmbThreadJef(0xcae0c0, "Opal Green", "245"),
EmbThreadJef(0x899856, "Moss Green", "246"),
EmbThreadJef(0x5c941a, "Meadow Green", "247"),
EmbThreadJef(0x003114, "Dark Green", "248"),
EmbThreadJef(0x5dae94, "Aquamarine", "249"),
EmbThreadJef(0x4cbf8f, "Emerald Green", "250"),
EmbThreadJef(0x007772, "Peacock Green", "251"),
EmbThreadJef(0x595b61, "Dark Gray", "252"),
EmbThreadJef(0xfffff2, "Ivory White", "253"),
EmbThreadJef(0xb15818, "Hazel", "254"),
EmbThreadJef(0xcb8a07, "Toast", "255"),
EmbThreadJef(0x986c80, "Salmon", "256"),
EmbThreadJef(0x98692d, "Cocoa Brown", "257"),
EmbThreadJef(0x4d3419, "Sienna", "258"),
EmbThreadJef(0x4c330b, "Sepia", "259"),
EmbThreadJef(0x33200a, "Dark Sepia", "260"),
EmbThreadJef(0x523a97, "Violet Blue", "261"),
EmbThreadJef(0x0d217e, "Blue Ink", "262"),
EmbThreadJef(0x1e77ac, "Sola Blue", "263"),
EmbThreadJef(0xb2dd53, "Green Dust", "264"),
EmbThreadJef(0xf33689, "Crimson", "265"),
EmbThreadJef(0xde649e, "Floral Pink", "266"),
EmbThreadJef(0x984161, "Wine", "267"),
EmbThreadJef(0x4c5612, "Olive Drab", "268"),
EmbThreadJef(0x4c881f, "Meadow", "269"),
EmbThreadJef(0xe4de79, "Mustard", "270"),
EmbThreadJef(0xcb8a1a, "Yellow Ocher", "271"),
EmbThreadJef(0xcba21c, "Old Gold", "272"),
EmbThreadJef(0xff9805, "Honey Dew", "273"),
EmbThreadJef(0xfcb257, "Tangerine", "274"),
EmbThreadJef(0xffe505, "Canary Yellow", "275"),
EmbThreadJef(0xf0331f, "Vermilion", "202"),
EmbThreadJef(0x1a842d, "Bright Green", "206"),
EmbThreadJef(0x386cae, "Ocean Blue", "222"),
EmbThreadJef(0xe3c4b4, "Beige Gray", "223"),
EmbThreadJef(0xe3ac81, "Bamboo", "224")
]
class EmbThreadJef(EmbThread):
def __init__(self, color, description, catalog_number):
EmbThread.__init__(self)
self.color = color
self.description = description
self.catalog_number = catalog_number
self.brand = "Jef"
self.chart = "Jef"

Wyświetl plik

@ -0,0 +1,81 @@
from .EmbThread import EmbThread
def get_thread_set():
return [
EmbThreadPec(0, 0, 0, "Unknown", "0"),
EmbThreadPec(14, 31, 124, "Prussian Blue", "1"),
EmbThreadPec(10, 85, 163, "Blue", "2"),
EmbThreadPec(0, 135, 119, "Teal Green", "3"),
EmbThreadPec(75, 107, 175, "Cornflower Blue", "4"),
EmbThreadPec(237, 23, 31, "Red", "5"),
EmbThreadPec(209, 92, 0, "Reddish Brown", "6"),
EmbThreadPec(145, 54, 151, "Magenta", "7"),
EmbThreadPec(228, 154, 203, "Light Lilac", "8"),
EmbThreadPec(145, 95, 172, "Lilac", "9"),
EmbThreadPec(158, 214, 125, "Mint Green", "10"),
EmbThreadPec(232, 169, 0, "Deep Gold", "11"),
EmbThreadPec(254, 186, 53, "Orange", "12"),
EmbThreadPec(255, 255, 0, "Yellow", "13"),
EmbThreadPec(112, 188, 31, "Lime Green", "14"),
EmbThreadPec(186, 152, 0, "Brass", "15"),
EmbThreadPec(168, 168, 168, "Silver", "16"),
EmbThreadPec(125, 111, 0, "Russet Brown", "17"),
EmbThreadPec(255, 255, 179, "Cream Brown", "18"),
EmbThreadPec(79, 85, 86, "Pewter", "19"),
EmbThreadPec(0, 0, 0, "Black", "20"),
EmbThreadPec(11, 61, 145, "Ultramarine", "21"),
EmbThreadPec(119, 1, 118, "Royal Purple", "22"),
EmbThreadPec(41, 49, 51, "Dark Gray", "23"),
EmbThreadPec(42, 19, 1, "Dark Brown", "24"),
EmbThreadPec(246, 74, 138, "Deep Rose", "25"),
EmbThreadPec(178, 118, 36, "Light Brown", "26"),
EmbThreadPec(252, 187, 197, "Salmon Pink", "27"),
EmbThreadPec(254, 55, 15, "Vermillion", "28"),
EmbThreadPec(240, 240, 240, "White", "29"),
EmbThreadPec(106, 28, 138, "Violet", "30"),
EmbThreadPec(168, 221, 196, "Seacrest", "31"),
EmbThreadPec(37, 132, 187, "Sky Blue", "32"),
EmbThreadPec(254, 179, 67, "Pumpkin", "33"),
EmbThreadPec(255, 243, 107, "Cream Yellow", "34"),
EmbThreadPec(208, 166, 96, "Khaki", "35"),
EmbThreadPec(209, 84, 0, "Clay Brown", "36"),
EmbThreadPec(102, 186, 73, "Leaf Green", "37"),
EmbThreadPec(19, 74, 70, "Peacock Blue", "38"),
EmbThreadPec(135, 135, 135, "Gray", "39"),
EmbThreadPec(216, 204, 198, "Warm Gray", "40"),
EmbThreadPec(67, 86, 7, "Dark Olive", "41"),
EmbThreadPec(253, 217, 222, "Flesh Pink", "42"),
EmbThreadPec(249, 147, 188, "Pink", "43"),
EmbThreadPec(0, 56, 34, "Deep Green", "44"),
EmbThreadPec(178, 175, 212, "Lavender", "45"),
EmbThreadPec(104, 106, 176, "Wisteria Violet", "46"),
EmbThreadPec(239, 227, 185, "Beige", "47"),
EmbThreadPec(247, 56, 102, "Carmine", "48"),
EmbThreadPec(181, 75, 100, "Amber Red", "49"),
EmbThreadPec(19, 43, 26, "Olive Green", "50"),
EmbThreadPec(199, 1, 86, "Dark Fuschia", "51"),
EmbThreadPec(254, 158, 50, "Tangerine", "52"),
EmbThreadPec(168, 222, 235, "Light Blue", "53"),
EmbThreadPec(0, 103, 62, "Emerald Green", "54"),
EmbThreadPec(78, 41, 144, "Purple", "55"),
EmbThreadPec(47, 126, 32, "Moss Green", "56"),
EmbThreadPec(255, 204, 204, "Flesh Pink", "57"),
EmbThreadPec(255, 217, 17, "Harvest Gold", "58"),
EmbThreadPec(9, 91, 166, "Electric Blue", "59"),
EmbThreadPec(240, 249, 112, "Lemon Yellow", "60"),
EmbThreadPec(227, 243, 91, "Fresh Green", "61"),
EmbThreadPec(255, 153, 0, "Orange", "62"),
EmbThreadPec(255, 240, 141, "Cream Yellow", "63"),
EmbThreadPec(255, 200, 200, "Applique", "64")
]
class EmbThreadPec(EmbThread):
def __init__(self, red, green, blue, description, catalog_number):
EmbThread.__init__(self)
self.set_color(red, green, blue)
self.description = description
self.catalog_number = catalog_number
self.brand = "Brother"
self.chart = "Brother"

Wyświetl plik

@ -0,0 +1,95 @@
from .EmbThread import EmbThread
def get_thread_set():
return [
EmbThreadSew(0, 0, 0, "Unknown", "0"),
EmbThreadSew(0, 0, 0, "Black", "1"),
EmbThreadSew(255, 255, 255, "White", "2"),
EmbThreadSew(255, 255, 23, "Sunflower", "3"),
EmbThreadSew(250, 160, 96, "Hazel", "4"),
EmbThreadSew(92, 118, 73, "Green Dust", "5"),
EmbThreadSew(64, 192, 48, "Green", "6"),
EmbThreadSew(101, 194, 200, "Sky", "7"),
EmbThreadSew(172, 128, 190, "Purple", "8"),
EmbThreadSew(245, 188, 203, "Pink", "9"),
EmbThreadSew(255, 0, 0, "Red", "10"),
EmbThreadSew(192, 128, 0, "Brown", "11"),
EmbThreadSew(0, 0, 240, "Blue", "12"),
EmbThreadSew(228, 195, 93, "Gold", "13"),
EmbThreadSew(165, 42, 42, "Dark Brown", "14"),
EmbThreadSew(213, 176, 212, "Pale Violet", "15"),
EmbThreadSew(252, 242, 148, "Pale Yellow", "16"),
EmbThreadSew(240, 208, 192, "Pale Pink", "17"),
EmbThreadSew(255, 192, 0, "Peach", "18"),
EmbThreadSew(201, 164, 128, "Beige", "19"),
EmbThreadSew(155, 61, 75, "Wine Red", "20"),
EmbThreadSew(160, 184, 204, "Pale Sky", "21"),
EmbThreadSew(127, 194, 28, "Yellow Green", "22"),
EmbThreadSew(185, 185, 185, "Silver Grey", "23"),
EmbThreadSew(160, 160, 160, "Grey", "24"),
EmbThreadSew(152, 214, 189, "Pale Aqua", "25"),
EmbThreadSew(184, 240, 240, "Baby Blue", "26"),
EmbThreadSew(54, 139, 160, "Powder Blue", "27"),
EmbThreadSew(79, 131, 171, "Bright Blue", "28"),
EmbThreadSew(56, 106, 145, "Slate Blue", "29"),
EmbThreadSew(0, 32, 107, "Nave Blue", "30"),
EmbThreadSew(229, 197, 202, "Salmon Pink", "31"),
EmbThreadSew(249, 103, 107, "Coral", "32"),
EmbThreadSew(227, 49, 31, "Burnt Orange", "33"),
EmbThreadSew(226, 161, 136, "Cinnamon", "34"),
EmbThreadSew(181, 148, 116, "Umber", "35"),
EmbThreadSew(228, 207, 153, "Blonde", "36"),
EmbThreadSew(225, 203, 0, "Sunflower", "37"),
EmbThreadSew(225, 173, 212, "Orchid Pink", "38"),
EmbThreadSew(195, 0, 126, "Peony Purple", "39"),
EmbThreadSew(128, 0, 75, "Burgundy", "40"),
EmbThreadSew(160, 96, 176, "Royal Purple", "41"),
EmbThreadSew(192, 64, 32, "Cardinal Red", "42"),
EmbThreadSew(202, 224, 192, "Opal Green", "43"),
EmbThreadSew(137, 152, 86, "Moss Green", "44"),
EmbThreadSew(0, 170, 0, "Meadow Green", "45"),
EmbThreadSew(33, 138, 33, "Dark Green", "46"),
EmbThreadSew(93, 174, 148, "Aquamarine", "47"),
EmbThreadSew(76, 191, 143, "Emerald Green", "48"),
EmbThreadSew(0, 119, 114, "Peacock Green", "49"),
EmbThreadSew(112, 112, 112, "Dark Grey", "50"),
EmbThreadSew(242, 255, 255, "Ivory White", "51"),
EmbThreadSew(177, 88, 24, "Hazel", "52"),
EmbThreadSew(203, 138, 7, "Toast", "53"),
EmbThreadSew(247, 146, 123, "Salmon", "54"),
EmbThreadSew(152, 105, 45, "Cocoa Brown", "55"),
EmbThreadSew(162, 113, 72, "Sienna", "56"),
EmbThreadSew(123, 85, 74, "Sepia", "57"),
EmbThreadSew(79, 57, 70, "Dark Sepia", "58"),
EmbThreadSew(82, 58, 151, "Violet Blue", "59"),
EmbThreadSew(0, 0, 160, "Blue Ink", "60"),
EmbThreadSew(0, 150, 222, "Solar Blue", "61"),
EmbThreadSew(178, 221, 83, "Green Dust", "62"),
EmbThreadSew(250, 143, 187, "Crimson", "63"),
EmbThreadSew(222, 100, 158, "Floral Pink", "64"),
EmbThreadSew(181, 80, 102, "Wine", "65"),
EmbThreadSew(94, 87, 71, "Olive Drab", "66"),
EmbThreadSew(76, 136, 31, "Meadow", "67"),
EmbThreadSew(228, 220, 121, "Canary Yellow", "68"),
EmbThreadSew(203, 138, 26, "Toast", "69"),
EmbThreadSew(198, 170, 66, "Beige", "70"),
EmbThreadSew(236, 176, 44, "Honey Dew", "71"),
EmbThreadSew(248, 128, 64, "Tangerine", "72"),
EmbThreadSew(255, 229, 5, "Ocean Blue", "73"),
EmbThreadSew(250, 122, 122, "Sepia", "74"),
EmbThreadSew(107, 224, 0, "Royal Purple", "75"),
EmbThreadSew(56, 108, 174, "Yellow Ocher", "76"),
EmbThreadSew(208, 186, 176, "Beige Grey", "77"),
EmbThreadSew(227, 190, 129, "Bamboo", "78"),
]
class EmbThreadSew(EmbThread):
def __init__(self, red, green, blue, description, catalog_number):
EmbThread.__init__(self)
self.set_color(red, green, blue)
self.description = description
self.catalog_number = catalog_number
self.brand = "Sew"
self.chart = "Sew"

Wyświetl plik

@ -0,0 +1,59 @@
from .EmbThread import EmbThread
def get_thread_set():
return [
EmbThreadShv(0, 0, 0, "Black", "0"),
EmbThreadShv(0, 0, 255, "Blue", "1"),
EmbThreadShv(51, 204, 102, "Green", "2"),
EmbThreadShv(255, 0, 0, "Red", "3"),
EmbThreadShv(255, 0, 255, "Purple", "4"),
EmbThreadShv(255, 255, 0, "Yellow", "5"),
EmbThreadShv(127, 127, 127, "Gray", "6"),
EmbThreadShv(51, 154, 255, "Light Blue", "7"),
EmbThreadShv(0, 255, 0, "Light Green", "8"),
EmbThreadShv(255, 127, 0, "Orange", "9"),
EmbThreadShv(255, 160, 180, "Pink", "10"),
EmbThreadShv(153, 75, 0, "Brown", "11"),
EmbThreadShv(255, 255, 255, "White", "12"),
EmbThreadShv(0, 0, 0, "Black", "13"),
EmbThreadShv(0, 0, 0, "Black", "14"),
EmbThreadShv(0, 0, 0, "Black", "15"),
EmbThreadShv(0, 0, 0, "Black", "16"),
EmbThreadShv(0, 0, 0, "Black", "17"),
EmbThreadShv(0, 0, 0, "Black", "18"),
EmbThreadShv(255, 127, 127, "Light Red", "19"),
EmbThreadShv(255, 127, 255, "Light Purple", "20"),
EmbThreadShv(255, 255, 153, "Light Yellow", "21"),
EmbThreadShv(192, 192, 192, "Light Gray", "22"),
EmbThreadShv(0, 0, 0, "Black", "23"),
EmbThreadShv(0, 0, 0, "Black", "24"),
EmbThreadShv(255, 165, 65, "Light Orange", "25"),
EmbThreadShv(255, 204, 204, "Light Pink", "26"),
EmbThreadShv(175, 90, 10, "Light Brown", "27"),
EmbThreadShv(0, 0, 0, "Black", "28"),
EmbThreadShv(0, 0, 0, "Black", "29"),
EmbThreadShv(0, 0, 0, "Black", "30"),
EmbThreadShv(0, 0, 0, "Black", "31"),
EmbThreadShv(0, 0, 0, "Black", "32"),
EmbThreadShv(0, 0, 127, "Dark Blue", "33"),
EmbThreadShv(0, 127, 0, "Dark Green", "34"),
EmbThreadShv(127, 0, 0, "Dark Red", "35"),
EmbThreadShv(127, 0, 127, "Dark Purple", "36"),
EmbThreadShv(200, 200, 0, "Dark Yellow", "37"),
EmbThreadShv(60, 60, 60, "Dark Gray", "38"),
EmbThreadShv(0, 0, 0, "Black", "39"),
EmbThreadShv(0, 0, 0, "Black", "40"),
EmbThreadShv(232, 63, 0, "Dark Orange", "41"),
EmbThreadShv(255, 102, 122, "Dark Pink", "42")
]
class EmbThreadShv(EmbThread):
def __init__(self, red, green, blue, description, catalog_number):
EmbThread.__init__(self)
self.set_color(red, green, blue)
self.description = description
self.catalog_number = catalog_number
self.brand = "Shv"
self.chart = "Shv"

Wyświetl plik

@ -0,0 +1,45 @@
from .ReadHelper import signed8
def read_emd_stitches(f, out):
count = 0
while True:
count += 1
b = bytearray(f.read(2))
if len(b) != 2:
break
if b[0] != 0x80:
x = signed8(b[0])
y = -signed8(b[1])
out.stitch(x, y)
continue
control = b[1]
if control == 0x80:
b = bytearray(f.read(2))
if len(b) != 2:
break
x = signed8(b[0])
y = -signed8(b[1])
out.move(x, y)
continue
if control == 0x2A:
out.color_change()
continue
if control == 0x7D:
continue # Dunno, occurs at position 0.
if control == 0xAD:
out.trim()
continue
if control == 0x90:
out.trim() # Final command before returning to start.
continue
elif control == 0xFD:
break
break # Uncaught Control
out.end()
def read(f, out, settings=None):
f.seek(0x30, 0)
read_emd_stitches(f, out)

Wyświetl plik

@ -0,0 +1,40 @@
from .ReadHelper import signed8
def read_exp_stitches(f, out):
while True:
b = bytearray(f.read(2))
if len(b) != 2:
break
if b[0] != 0x80:
x = signed8(b[0])
y = -signed8(b[1])
out.stitch(x, y)
continue
control = b[1]
b = bytearray(f.read(2)) # 07 00
if len(b) != 2:
break
x = signed8(b[0])
y = -signed8(b[1])
if control == 0x80: # Trim
out.trim()
continue
elif control == 0x02:
out.stitch(x, y)
# This shouldn't exist.
continue
elif control == 0x04: # Jump
out.move(x, y)
continue
elif control == 0x01: # Colorchange
out.color_change()
out.move(x, y)
continue
break # Uncaught Control
out.end()
def read(f, out, settings=None):
read_exp_stitches(f, out)

Wyświetl plik

@ -0,0 +1,41 @@
from .EmbConstant import *
SEQUIN_CONTINGENCY = CONTINGENCY_SEQUIN_JUMP
FULL_JUMP = True
MAX_JUMP_DISTANCE = 127
MAX_STITCH_DISTANCE = 127
def write(pattern, f, settings=None):
stitches = pattern.stitches
xx = 0
yy = 0
for stitch in stitches:
x = stitch[0]
y = stitch[1]
data = stitch[2]
dx = int(round(x - xx))
dy = int(round(y - yy))
xx += dx
yy += dy
if data is STITCH:
# consider bounds checking the delta_x, delta_y and raising ValueError if exceeds.
delta_x = dx & 0xFF
delta_y = -dy & 0xFF
f.write(bytes(bytearray([delta_x, delta_y])))
elif data == JUMP:
delta_x = dx & 0xFF
delta_y = -dy & 0xFF
f.write(b'\x80\x04')
f.write(bytes(bytearray([delta_x, delta_y])))
elif data == TRIM:
f.write(b'\x80\x80\x07\x00')
continue
elif data == COLOR_CHANGE:
f.write(b'\x80\x01\x00\x00')
continue
elif data == STOP:
f.write(b'\x80\x01\x00\x00')
continue
elif data == END:
pass

Wyświetl plik

@ -0,0 +1,6 @@
from .DstReader import dst_read_stitches
def read(f, out, settings=None):
f.seek(0x100)
dst_read_stitches(f, out)

Wyświetl plik

@ -0,0 +1,6 @@
from .DszReader import z_stitch_encoding_read
def read(f, out, settings=None):
f.seek(0x100)
z_stitch_encoding_read(f, out)

Wyświetl plik

@ -0,0 +1,6 @@
from .DszReader import z_stitch_encoding_read
def read(f, out, settings=None):
f.seek(0x200)
z_stitch_encoding_read(f, out)

Wyświetl plik

@ -0,0 +1,34 @@
def read_inb_stitches(f, out):
count = 0
while True:
count += 1
byte = bytearray(f.read(3))
if len(byte) != 3:
break
x = byte[0]
y = -byte[1]
ctrl = byte[2]
if ctrl & 0x20 != 0:
y = -y
if ctrl & 0x40 != 0:
x = -x
if (ctrl & 0b1111) == 0x00:
out.stitch(x, y)
continue
if (ctrl & 0b1111) == 0x01:
out.color_change(x, y)
continue
if (ctrl & 0b1111) == 0x02:
out.move(x, y)
continue
if ctrl == 0x04:
break
break # Uncaught Control
out.end()
def read(f, out, settings=None):
f.seek(0x2000, 0)
read_inb_stitches(f, out)

Wyświetl plik

@ -0,0 +1,47 @@
from .EmbThreadJef import get_thread_set
from .ReadHelper import read_int_32le, signed8
def read_jef_stitches(f, out):
count = 0
while True:
count += 1
b = bytearray(f.read(2))
if len(b) != 2:
break
if b[0] != 0x80:
x = signed8(b[0])
y = -signed8(b[1])
out.stitch(x, y)
continue
ctrl = b[1]
b = bytearray(f.read(2))
if len(b) != 2:
break
x = signed8(b[0])
y = -signed8(b[1])
if ctrl == 0x02:
out.move(x, y)
continue
if ctrl == 0x01:
out.color_change(0, 0)
continue
if ctrl == 0x10:
break
break # Uncaught Control
out.end(0, 0)
def read(f, out, settings=None):
jef_threads = get_thread_set()
stitch_offset = read_int_32le(f)
f.seek(20, 1)
count_colors = read_int_32le(f)
f.seek(88, 1)
for i in range(0, count_colors):
index = abs(read_int_32le(f))
out.add_thread(jef_threads[index % len(jef_threads)])
f.seek(stitch_offset, 0)
read_jef_stitches(f, out)

Wyświetl plik

@ -0,0 +1,134 @@
from .EmbConstant import *
from .EmbThreadJef import get_thread_set
from .WriteHelper import write_string_utf8, write_int_32le, write_int_8
import datetime
SEQUIN_CONTINGENCY = CONTINGENCY_SEQUIN_JUMP
FULL_JUMP = True
MAX_JUMP_DISTANCE = 127
MAX_STITCH_DISTANCE = 127
# These are in mm, embroidery units are 1/10 mm
HOOP_110X110 = 0
HOOP_50X50 = 1
HOOP_140X200 = 2
HOOP_126X110 = 3
HOOP_200X200 = 4
def write(pattern, f, settings=None):
pattern.fix_color_count()
color_count = pattern.count_threads()
offsets = 0x74 + (color_count * 8)
write_int_32le(f, offsets)
write_int_32le(f, 0x14)
date_string = datetime.datetime.today().strftime('%Y%m%d%H%M%S')
# write_string_utf8(f, "20122017218088")
write_string_utf8(f, date_string)
write_int_8(f, 0)
write_int_8(f, 0)
write_int_32le(f, color_count)
point_count = 1 # 1 command for END statement
for stitch in pattern.stitches:
data = stitch[2]
if data == STITCH:
point_count += 1
elif data == JUMP:
point_count += 2
elif data == COLOR_CHANGE:
point_count += 2
elif data == END:
break
write_int_32le(f, point_count)
extends = pattern.extends()
design_width = int(round(extends[2] - extends[0]))
design_height = int(round(extends[3] - extends[1]))
write_int_32le(f, get_jef_hoop_size(design_width, design_height))
half_width = int(round(design_width / 2))
half_height = int(round(design_height / 2))
# distance from center of hoop.
write_int_32le(f, half_width)
write_int_32le(f, half_height)
write_int_32le(f, half_width)
write_int_32le(f, half_height)
# distance from default 110 x 110 hoop
x_hoop_edge = 550 - half_width
y_hoop_edge = 550 - half_height
write_hoop_edge_distance(f, x_hoop_edge, y_hoop_edge)
# distance from default 50 x 50 hoop
x_hoop_edge = 250 - half_width
y_hoop_edge = 250 - half_height
write_hoop_edge_distance(f, x_hoop_edge, y_hoop_edge)
# distance from default 140 x 200 hoop
x_hoop_edge = 700 - half_width
y_hoop_edge = 1000 - half_height
write_hoop_edge_distance(f, x_hoop_edge, y_hoop_edge)
# distance from custom hoop, but this should be accepted.
x_hoop_edge = 700 - half_width
y_hoop_edge = 1000 - half_height
write_hoop_edge_distance(f, x_hoop_edge, y_hoop_edge)
jef_threads = get_thread_set()
for thread in pattern.threadlist:
thread_index = thread.find_nearest_color_index(jef_threads)
write_int_32le(f, thread_index)
for i in range(0, color_count):
write_int_32le(f, 0x0D)
xx = 0
yy = 0
for stitch in pattern.stitches:
x = stitch[0]
y = stitch[1]
data = stitch[2]
dx = int(round(x - xx))
dy = int(round(y - yy))
xx += dx
yy += dy
if data == STITCH:
write_int_8(f, dx)
write_int_8(f, -dy)
continue
elif data == COLOR_CHANGE:
f.write(b'\x80\x01')
write_int_8(f, dx)
write_int_8(f, -dy)
continue
elif data == JUMP:
f.write(b'\x80\x02')
write_int_8(f, dx)
write_int_8(f, -dy)
continue
elif data == END:
break
f.write(b'\x80\x10')
def get_jef_hoop_size(width, height):
if width < 500 and height < 500:
return HOOP_50X50
if width < 1260 and height < 1100:
return HOOP_126X110
if width < 1400 and height < 2000:
return HOOP_140X200
if width < 2000 and height < 2000:
return HOOP_200X200
return HOOP_110X110
def write_hoop_edge_distance(f, x_hoop_edge, y_hoop_edge):
if min(x_hoop_edge, y_hoop_edge) >= 0:
write_int_32le(f, x_hoop_edge) # left
write_int_32le(f, y_hoop_edge) # top
write_int_32le(f, x_hoop_edge) # right
write_int_32le(f, y_hoop_edge) # bottom
else:
write_int_32le(f, -1)
write_int_32le(f, -1)
write_int_32le(f, -1)
write_int_32le(f, -1)

Wyświetl plik

@ -0,0 +1,48 @@
from .ReadHelper import signed8, read_int_32le
def read_jpx_stitches(f, out):
while True:
b = bytearray(f.read(2))
if len(b) != 2:
break
if b[0] != 0x80:
x = signed8(b[0])
y = -signed8(b[1])
out.stitch(x, y)
continue
ctrl = b[1]
b = bytearray(f.read(2))
if len(b) != 2:
break
x = signed8(b[0])
y = -signed8(b[1])
if ctrl == 0x02:
out.move(x, y)
continue
if ctrl == 0x01: # Colorchange
out.color_change()
if x != 0 and y != 0:
out.move(x, y)
continue
if ctrl == 0x10:
break
break # Uncaught Control
out.end()
def read(f, out, settings=None):
stitch_start_position = read_int_32le(f)
f.seek(0x1C, 1)
colors = read_int_32le(f)
f.seek(0x18, 1)
for i in range(0, colors):
color_index = read_int_32le(f)
if color_index is None:
break
out.add_thread({
"color": "random",
"name": "JPX index " + str(color_index)
})
f.seek(stitch_start_position, 0)
read_jpx_stitches(f, out)

Wyświetl plik

@ -0,0 +1,59 @@
def read_ksm_stitches(f, out):
trimmed = False
stitched_yet = False
count = 0
while True:
count += 1
byte = bytearray(f.read(3))
if len(byte) != 3:
break
y = -byte[0]
x = byte[1]
ctrl = byte[2]
if ctrl & 0x40 != 0:
x = -x
if ctrl & 0x20 != 0:
y = -y
ctrl &= 0b11111
if x != 0 or y != 0:
if trimmed: # any x, y gets executed regardless.
out.move(x, y)
else:
out.stitch(x, y)
stitched_yet = True
if ctrl == 0x00:
continue
# print(str(f), " ", str(count), " ", str("{0:b}").format(ctrl), " 0x%0.2X " % ctrl, x, " ", y)
if ctrl == 0x07 or ctrl == 0x13 or ctrl == 0x1D:
if stitched_yet:
out.trim()
trimmed = True
continue
if 0x17 <= ctrl <= 0x19: # start sewing again.
trimmed = False
continue
if 0x0B <= ctrl <= 0x12:
needle = ctrl - 0x0A
out.color_change()
trimmed = True
continue
if ctrl == 0x05:
out.stop()
continue
if ctrl == 0x1B: # Called before end command
trimmed = False
continue
if ctrl == 0x08: # End command #88 zero direction.
break
break # Uncaught Control
out.end()
def read(f, out, settings=None):
f.seek(0x200, 0)
read_ksm_stitches(f, out)

Wyświetl plik

@ -0,0 +1,17 @@
from .ReadHelper import read_int_8, read_int_32le, read_int_24le, signed24
def read(f, out, settings=None):
f.seek(0xD5, 0)
stitch_count = read_int_32le(f)
for i in range(0, stitch_count):
x = read_int_24le(f)
c0 = read_int_8(f)
y = read_int_24le(f)
c1 = read_int_8(f)
if c1 is None:
break
x = signed24(x)
y = signed24(y)
out.stitch_abs(x, y)
out.end()

Wyświetl plik

@ -0,0 +1,34 @@
def read(f, out, settings=None):
count = 0
previous_ctrl = -1
while True:
count += 1
byte = bytearray(f.read(2))
if len(byte) != 2:
break
x = byte[0] & 0x1F
y = - (byte[1] & 0x1F)
if byte[0] & 0b10000000:
x = -x
if byte[1] & 0b10000000:
y = -y
ctrl = ((byte[0] & 0x60) >> 3) | ((byte[1] & 0x60) >> 5)
if ctrl == 0b0111:
out.stitch(x, y)
previous_ctrl = ctrl
continue
elif ctrl == 0b1100:
out.move(x, y)
elif ctrl == 0b0100:
out.stitch(x, y)
elif ctrl == 0b0101:
out.stitch(x, y)
elif ctrl == 0b1000:
if previous_ctrl == 0b111:
out.color_change()
elif ctrl == 0b0000:
out.end() # 0 appears at end.
else:
out.stitch(x, y)
previous_ctrl = ctrl
out.end()

Wyświetl plik

@ -0,0 +1,34 @@
def new_stitch_encoding_read(f, out):
count = 0
while True:
count += 1
byte = bytearray(f.read(3))
if len(byte) != 3:
break
x = byte[0]
y = -byte[1]
ctrl = byte[2]
if ctrl & 0b01000000 != 0:
x = -x
if ctrl & 0b00100000 != 0:
y = -y
ctrl &= ~0b11100000
if ctrl == 0:
out.stitch(x, y)
continue
if ctrl == 0b00010001:
break
if ctrl & 0b00000010 != 0:
out.color_change()
continue
if ctrl & 0b00000001 != 0:
out.move(x, y)
continue
out.end()
def read(f, out, settings=None):
f.seek(2, 1) # stitchcount.
new_stitch_encoding_read(f, out)

Wyświetl plik

@ -0,0 +1,48 @@
from .ReadHelper import read_int_8, read_int_24be, read_int_24le, read_int_16le, signed24
from .EmbThread import EmbThread
PC_SIZE_CONVERSION_RATIO = 5.0 / 3.0
def read_pc_file(f, out, settings=None):
version = read_int_8(f)
hoop_size = read_int_8(f)
# 0 for PCD,
# 1 for PCQ (MAXI),
# 2 for PCS small hoop(80x80),
# 3 for PCS with large hoop.
color_count = read_int_16le(f)
for i in range(0, color_count):
thread = EmbThread()
thread.color = read_int_24be(f)
out.add_thread(thread)
f.seek(1, 1)
stitch_count = read_int_16le(f)
while True:
c0 = read_int_8(f)
x = read_int_24le(f)
c1 = read_int_8(f)
y = read_int_24le(f)
ctrl = read_int_8(f)
if ctrl is None:
break
x = signed24(x)
y = -signed24(y)
x *= PC_SIZE_CONVERSION_RATIO
y *= PC_SIZE_CONVERSION_RATIO
if ctrl == 0x00:
out.stitch_abs(x, y)
continue
if ctrl & 0x01:
out.color_change()
continue
if ctrl & 0x04:
out.move_abs(x, y)
continue
break # Uncaught Control
out.end()
def read(f, out, settings=None):
read_pc_file(f, out)

Wyświetl plik

@ -0,0 +1,63 @@
from .ReadHelper import read_int_8, read_int_24be, signed24, read_int_16be
PC_SIZE_CONVERSION_RATIO = 5.0 / 3.0
def read_pc_file(f, out, settings=None):
pcm_threads = [
{"color": 0x000000, "description": "PCM Color 1"},
{"color": 0x000080, "description": "PCM Color 2"},
{"color": 0x0000FF, "description": "PCM Color 3"},
{"color": 0x008080, "description": "PCM Color 4"},
{"color": 0x00FFFF, "description": "PCM Color 5"},
{"color": 0x800080, "description": "PCM Color 6"},
{"color": 0xFF00FF, "description": "PCM Color 7"},
{"color": 0x800000, "description": "PCM Color 8"},
{"color": 0xFF0000, "description": "PCM Color 9"},
{"color": 0x008000, "description": "PCM Color 10"},
{"color": 0x00FF00, "description": "PCM Color 11"},
{"color": 0x808000, "description": "PCM Color 12"},
{"color": 0xFFFF00, "description": "PCM Color 13"},
{"color": 0x808080, "description": "PCM Color 14"},
{"color": 0xC0C0C0, "description": "PCM Color 15"},
{"color": 0xFFFFFF, "description": "PCM Color 16"},
]
f.seek(2, 0)
colors = read_int_16be(f)
if colors is None:
return # File is blank.
for i in range(0, colors):
color_index = read_int_16be(f)
thread = pcm_threads[color_index]
out.add_thread(thread)
stitch_count = read_int_16be(f)
while True:
x = read_int_24be(f)
c0 = read_int_8(f)
y = read_int_24be(f)
c1 = read_int_8(f)
ctrl = read_int_8(f)
if ctrl is None:
break
x = signed24(x)
y = -signed24(y)
x *= PC_SIZE_CONVERSION_RATIO
y *= PC_SIZE_CONVERSION_RATIO
if ctrl == 0x00:
out.stitch_abs(x, y)
continue
if ctrl & 0x01:
out.color_change()
continue
if ctrl & 0x04:
out.move_abs(x, y)
continue
break # Uncaught Control
out.end()
def read(f, out, settings=None):
read_pc_file(f, out)

Wyświetl plik

@ -0,0 +1,48 @@
from .ReadHelper import read_int_8, read_int_24be, read_int_24le, read_int_16le, signed24
from .EmbThread import EmbThread
PC_SIZE_CONVERSION_RATIO = 5.0 / 3.0
def read_pc_file(f, out, settings=None):
version = read_int_8(f)
hoop_size = read_int_8(f)
# 0 for PCD,
# 1 for PCQ (MAXI),
# 2 for PCS small hoop(80x80),
# 3 for PCS with large hoop.
color_count = read_int_16le(f)
for i in range(0, color_count):
thread = EmbThread()
thread.color = read_int_24be(f)
out.add_thread(thread)
f.seek(1, 1)
stitch_count = read_int_16le(f)
while True:
c0 = read_int_8(f)
x = read_int_24le(f)
c1 = read_int_8(f)
y = read_int_24le(f)
ctrl = read_int_8(f)
if ctrl is None:
break
x = signed24(x)
y = -signed24(y)
x *= PC_SIZE_CONVERSION_RATIO
y *= PC_SIZE_CONVERSION_RATIO
if ctrl == 0x00:
out.stitch_abs(x, y)
continue
if ctrl & 0x01:
out.color_change()
continue
if ctrl & 0x04:
out.move_abs(x, y)
continue
break # Uncaught Control
out.end()
def read(f, out, settings=None):
read_pc_file(f, out)

Wyświetl plik

@ -0,0 +1,48 @@
from .ReadHelper import read_int_8, read_int_24be, read_int_24le, read_int_16le, signed24
from .EmbThread import EmbThread
PC_SIZE_CONVERSION_RATIO = 5.0 / 3.0
def read_pc_file(f, out, settings=None):
version = read_int_8(f)
hoop_size = read_int_8(f)
# 0 for PCD,
# 1 for PCQ (MAXI),
# 2 for PCS small hoop(80x80),
# 3 for PCS with large hoop.
color_count = read_int_16le(f)
for i in range(0, color_count):
thread = EmbThread()
thread.color = read_int_24be(f)
out.add_thread(thread)
f.seek(1, 1)
stitch_count = read_int_16le(f)
while True:
c0 = read_int_8(f)
x = read_int_24le(f)
c1 = read_int_8(f)
y = read_int_24le(f)
ctrl = read_int_8(f)
if ctrl is None:
break
x = signed24(x)
y = -signed24(y)
x *= PC_SIZE_CONVERSION_RATIO
y *= PC_SIZE_CONVERSION_RATIO
if ctrl == 0x00:
out.stitch_abs(x, y)
continue
if ctrl & 0x01:
out.color_change()
continue
if ctrl & 0x04:
out.move_abs(x, y)
continue
break # Uncaught Control
out.end()
def read(f, out, settings=None):
read_pc_file(f, out)

Wyświetl plik

@ -0,0 +1,164 @@
from math import floor
blank = [
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xF0, 0xFF, 0xFF, 0xFF, 0xFF, 0x0F,
0x08, 0x00, 0x00, 0x00, 0x00, 0x10,
0x04, 0x00, 0x00, 0x00, 0x00, 0x20,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x02, 0x00, 0x00, 0x00, 0x00, 0x40,
0x04, 0x00, 0x00, 0x00, 0x00, 0x20,
0x08, 0x00, 0x00, 0x00, 0x00, 0x10,
0xF0, 0xFF, 0xFF, 0xFF, 0xFF, 0x0F,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
]
def get_blank():
return [m for m in blank]
def create(width, height):
width /= 8
return [0x00] * width * height
def draw(points, graphic, stride=6):
for point in points:
try:
try:
graphic_mark_bit(graphic,
int(point.x),
int(point.y),
stride)
except AttributeError:
graphic_mark_bit(graphic,
int(point[0]),
int(point[1]),
stride)
except IndexError:
pass
def draw_scaled(extends, points, graphic, stride, buffer=5):
if extends is None:
draw(points, graphic, stride)
return
try:
left = extends.left
top = extends.top
right = extends.right
bottom = extends.bottom
except AttributeError:
left = extends[0]
top = extends[1]
right = extends[2]
bottom = extends[3]
diagram_width = right - left
diagram_height = bottom - top
graphic_width = stride * 8
graphic_height = len(graphic) / stride
if diagram_width == 0:
diagram_width = 1
if diagram_height == 0:
diagram_height = 1
scale_x = (graphic_width - buffer) / diagram_width
scale_y = (graphic_height - buffer) / diagram_height
scale = min(scale_x, scale_y)
cx = (right + left) / 2
cy = (bottom + top) / 2
translate_x = -cx
translate_y = -cy
translate_x *= scale
translate_y *= scale
translate_x += graphic_width / 2
translate_y += graphic_height / 2
for point in points:
try:
try:
graphic_mark_bit(graphic,
int(floor((point.x * scale) + translate_x)),
int(floor((point.y * scale) + translate_y)),
stride)
except AttributeError:
graphic_mark_bit(graphic,
int(floor((point[0] * scale) + translate_x)),
int(floor((point[1] * scale) + translate_y)),
stride)
except IndexError:
pass
def clear(graphic):
for b in graphic:
b = 0
def graphic_mark_bit(graphic, x, y, stride=6):
"""expressly sets the bit in the give graphic object"""
graphic[(y * stride) + int(x / 8)] |= 1 << (x % 8)
def graphic_unmark_bit(graphic, x, y, stride=6):
"""expressly unsets the bit in the give graphic object"""
graphic[(y * stride) + int(x / 8)] &= ~(1 << (x % 8))
def get_graphic_as_string(graphic, one="#", zero=" "):
"""Prints graphic object in text."""
stride = 6
if isinstance(graphic, tuple):
stride = graphic[1]
graphic = graphic[0]
if isinstance(graphic, str):
graphic = bytearray(graphic)
list_string = [
one if (byte >> i) & 1 else zero
for byte in graphic
for i in range(0, 8)
]
bit_stride = 8 * stride
bit_length = 8 * len(graphic)
return '\n'.join(
''.join(list_string[m:m + bit_stride])
for m in range(0, bit_length, bit_stride))

Wyświetl plik

@ -0,0 +1,157 @@
from .EmbThreadPec import get_thread_set
from .ReadHelper import read_string_8, read_int_8, read_int_24le
JUMP_CODE = 0x10
TRIM_CODE = 0x20
FLAG_LONG = 0x80
def read(f, out, settings=None):
pec_string = read_string_8(f, 8)
# pec_string must equal #PEC0001
read_pec(f, out)
def read_pec(f, out, pes_chart=None):
f.seek(3, 1) # LA:
label = read_string_8(f, 16) # Label
if label is not None:
out.metadata("Label", label.strip())
f.seek(0xF, 1) # Dunno, spaces then 0xFF 0x00
pec_graphic_byte_stride = read_int_8(f)
pec_graphic_icon_height = read_int_8(f)
f.seek(0xC, 1)
color_changes = read_int_8(f)
count_colors = color_changes + 1 # PEC uses cc - 1, 0xFF means 0.
color_bytes = bytearray(f.read(count_colors))
threads = []
map_pec_colors(color_bytes, out, pes_chart, threads)
f.seek(0x1D0 - color_changes, 1)
stitch_block_end = read_int_24le(f) - 5 + f.tell()
# The end of this value is already 5 into the stitchblock.
# 3 bytes, '\x31\xff\xf0', 6 2-byte shorts. 15 total.
f.seek(0x0F, 1)
read_pec_stitches(f, out)
f.seek(stitch_block_end, 0)
byte_size = pec_graphic_byte_stride * pec_graphic_icon_height
read_pec_graphics(f,
out,
byte_size,
pec_graphic_byte_stride,
count_colors + 1,
threads
)
def read_pec_graphics(f, out, size, stride, count, values):
values.insert(0, None)
for i in range(0, count):
graphic = bytearray(f.read(size))
if f is not None:
out.metadata(i, (graphic, stride, values[i]))
def process_pec_colors(colorbytes, out, values):
thread_set = get_thread_set()
max_value = len(thread_set)
for byte in colorbytes:
thread_value = thread_set[byte % max_value]
out.add_thread(thread_value)
values.append(thread_value)
def process_pec_table(colorbytes, out, chart, values):
# This is how PEC actually allocates pre-defined threads to blocks.
thread_set = get_thread_set()
max_value = len(thread_set)
thread_map = {}
for i in range(0, len(colorbytes)):
color_index = int(colorbytes[i] % max_value)
thread_value = thread_map.get(color_index, None)
if thread_value is None:
if len(chart) > 0:
thread_value = chart.pop(0)
else:
thread_value = thread_set[color_index]
thread_map[color_index] = thread_value
out.add_thread(thread_value)
values.append(thread_value)
def map_pec_colors(colorbytes, out, chart, values):
if chart is None or len(chart) == 0:
# Reading pec colors.
process_pec_colors(colorbytes, out, values)
elif len(chart) >= len(colorbytes):
# Reading threads in 1 : 1 mode.
for thread in chart:
out.add_thread(thread)
values.append(thread)
else:
# Reading tabled mode threads.
process_pec_table(colorbytes, out, chart, values)
def signed12(b):
b &= 0xFFF
if b > 0x7FF:
return - 0x1000 + b
else:
return b
def signed7(b):
if b > 63:
return - 128 + b
else:
return b
def read_pec_stitches(f, out):
while True:
val1 = read_int_8(f)
val2 = read_int_8(f)
if (val1 == 0xFF and val2 == 0x00) or val2 is None:
break
if val1 == 0xFE and val2 == 0xB0:
f.seek(1, 1)
out.color_change(0, 0)
continue
jump = False
trim = False
if val1 & FLAG_LONG != 0:
if val1 & TRIM_CODE != 0:
trim = True
if val1 & JUMP_CODE != 0:
jump = True
code = (val1 << 8) | val2
x = signed12(code)
val2 = read_int_8(f)
if val2 is None:
break
else:
x = signed7(val1)
if val2 & FLAG_LONG != 0:
if val2 & TRIM_CODE != 0:
trim = True
if val2 & JUMP_CODE != 0:
jump = True
val3 = read_int_8(f)
if val3 is None:
break
code = val2 << 8 | val3
y = signed12(code)
else:
y = signed7(val2)
if jump:
out.move(x, y)
elif trim:
out.trim(x, y)
else:
out.stitch(x, y)
out.end()

Wyświetl plik

@ -0,0 +1,195 @@
from .EmbConstant import *
from .EmbThreadPec import get_thread_set
from .PecGraphics import get_blank, draw_scaled
from .WriteHelper import write_int_8, write_int_16le, write_int_16be, \
write_int_24le, write_string_utf8
SEQUIN_CONTINGENCY = CONTINGENCY_SEQUIN_JUMP
FULL_JUMP = True
MAX_JUMP_DISTANCE = 2047
MAX_STITCH_DISTANCE = 2047
MASK_07_BIT = 0b01111111
JUMP_CODE = 0b00010000
TRIM_CODE = 0b00100000
FLAG_LONG = 0b10000000
PEC_ICON_WIDTH = 48
PEC_ICON_HEIGHT = 38
def write(pattern, f, settings=None):
f.write(bytes("#PEC0001".encode('utf8')))
write_pec(pattern, f)
def write_pec(pattern, f, threadlist=None):
if threadlist is None:
pattern.fix_color_count()
threadlist = pattern.threadlist
extends = pattern.extends()
write_pec_header(pattern, f, threadlist)
write_pec_block(pattern, f, extends)
write_pec_graphics(pattern, f, extends)
def write_pec_header(pattern, f, threadlist):
name = pattern.get_metadata("name", "Untitled")
write_string_utf8(f, "LA:%-16s\r" % name[:8])
f.write(b'\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\xFF\x00')
write_int_8(f, int(PEC_ICON_WIDTH / 8)) # PEC BYTE STRIDE
write_int_8(f, int(PEC_ICON_HEIGHT)) # PEC ICON HEIGHT
thread_set = get_thread_set()
if len(thread_set) <= len(threadlist):
threadlist = thread_set[:]
# Data is corrupt. Cheat so it won't crash.
chart = [None] * len(thread_set)
for thread in set(threadlist):
index = thread.find_nearest_color_index(thread_set)
thread_set[index] = None
chart[index] = thread
color_index_list = []
for thread in threadlist:
color_index_list.append(thread.find_nearest_color_index(chart))
current_thread_count = len(color_index_list)
if current_thread_count is not 0:
f.write(b'\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20')
add_value = current_thread_count - 1
color_index_list.insert(0, add_value)
f.write(bytes(bytearray(color_index_list)))
else:
f.write(b'\x20\x20\x20\x20\x64\x20\x00\x20\x00\x20\x20\x20\xFF')
for i in range(current_thread_count, 463):
f.write(b'\x20') # 520
def write_pec_block(pattern, f, extends):
width = extends[2] - extends[0]
height = extends[3] - extends[1]
stitch_block_start_position = f.tell()
f.write(b'\x00\x00')
write_int_24le(f, 0) # Space holder.
f.write(b'\x31\xff\xf0')
write_int_16le(f, int(round(width)))
write_int_16le(f, int(round(height)))
write_int_16le(f, 0x1E0)
write_int_16le(f, 0x1B0)
write_int_16be(f, 0x9000 | -int(round(extends[0])))
write_int_16be(f, 0x9000 | -int(round(extends[1])))
pec_encode(pattern, f)
stitch_block_length = f.tell() - stitch_block_start_position
current_position = f.tell()
f.seek(stitch_block_start_position + 2, 0)
write_int_24le(f, stitch_block_length)
f.seek(current_position, 0)
def write_pec_graphics(pattern, f, extends):
blank = get_blank()
for block in pattern.get_as_stitchblock():
stitches = block[0]
draw_scaled(extends, stitches, blank, 6, 4)
f.write(bytes(bytearray(blank)))
for block in pattern.get_as_colorblocks():
stitches = [s for s in block[0] if s[2] == STITCH]
blank = get_blank() # [ 0 ] * 6 * 38
draw_scaled(extends, stitches, blank, 6)
f.write(bytes(bytearray(blank)))
def encode_long_form(value):
value &= 0b0000111111111111
value |= 0b1000000000000000
return value
def flag_jump(longForm):
return longForm | (JUMP_CODE << 8)
def flag_trim(longForm):
return longForm | (TRIM_CODE << 8)
def pec_encode(pattern, f):
color_change_jump = False
color_two = True
jumping = False
stitches = pattern.stitches
xx = 0
yy = 0
for stitch in stitches:
x = stitch[0]
y = stitch[1]
data = stitch[2]
dx = int(round(x - xx))
dy = int(round(y - yy))
xx += dx
yy += dy
if data is STITCH:
if jumping and dx is not 0 and dy is not 0:
f.write(b'\x00\x00')
jumping = False
if -64 < dx < 63 and -64 < dy < 63:
f.write(bytes(bytearray([dx & MASK_07_BIT, dy & MASK_07_BIT])))
else:
dx = encode_long_form(dx)
dy = encode_long_form(dy)
data = [
(dx >> 8) & 0xFF,
dx & 0xFF,
(dy >> 8) & 0xFF,
dy & 0xFF]
f.write(bytes(bytearray(data)))
elif data == JUMP:
jumping = True
dx = encode_long_form(dx)
if color_change_jump:
dx = flag_jump(dx)
else:
dx = flag_trim(dx)
dy = encode_long_form(dy)
if color_change_jump:
dy = flag_jump(dy)
else:
dy = flag_trim(dy)
f.write(bytes(bytearray([
(dx >> 8) & 0xFF,
dx & 0xFF,
(dy >> 8) & 0xFF,
dy & 0xFF
])))
color_change_jump = False
elif data == COLOR_CHANGE:
if jumping:
f.write(b'\x00\x00')
jumping = False
f.write(b'\xfe\xb0')
if color_two:
f.write(b'\x02')
else:
f.write(b'\x01')
color_two = not color_two
elif data == STOP:
# if jumping:
# f.write(b'\x00\x00')
# jumping = False
# f.write(b'\x80\x01\x00\x00')
pass
elif data == END:
if jumping:
f.write(b'\x00\x00')
jumping = False
f.write(b'\xff')

Wyświetl plik

@ -0,0 +1,128 @@
from .PecReader import read_pec
from .EmbThread import EmbThread
from .ReadHelper import read_string_8, read_int_8, read_int_32le, read_int_24be, read_int_16le
def read(f, out, settings=None):
loaded_thread_values = []
pes_string = read_string_8(f, 8)
if pes_string == "#PEC0001":
read_pec(f, out, loaded_thread_values)
return
pec_block_position = read_int_32le(f)
# Ignoring several known PES versions, just abort and read PEC block
# All versions allow, abort and read PEC block.
# Metadata started appearing in V4
# Threads appeared in V5.
# We quickly abort if there's any complex items in the header.
# "#PES0100", "#PES0090" "#PES0080" "#PES0070", "#PES0040",
# "#PES0030", "#PES0022", "#PES0020"
if pes_string == "#PES0060":
read_pes_header_version_6(f, out, loaded_thread_values)
elif pes_string == "#PES0050":
read_pes_header_version_5(f, out, loaded_thread_values)
elif pes_string == "#PES0055":
read_pes_header_version_5(f, out, loaded_thread_values)
elif pes_string == "#PES0056":
read_pes_header_version_5(f, out, loaded_thread_values)
elif pes_string == "#PES0040":
read_pes_header_version_4(f, out)
elif pes_string == "#PES0001":
read_pes_header_version_1(f, out)
else:
pass # Header is unrecognised.
f.seek(pec_block_position, 0)
read_pec(f, out, loaded_thread_values)
def read_pes_string(f):
length = read_int_8(f)
if length == 0:
return None
return read_string_8(f, length)
def read_pes_metadata(f, out):
v = read_pes_string(f)
if v is not None and len(v) > 0:
out.metadata("name", v)
v = read_pes_string(f)
if v is not None and len(v) > 0:
out.metadata("category", v)
v = read_pes_string(f)
if v is not None and len(v) > 0:
out.metadata("author", v)
v = read_pes_string(f)
if v is not None and len(v) > 0:
out.metadata("keywords", v)
v = read_pes_string(f)
if v is not None and len(v) > 0:
out.metadata("comments", v)
def read_pes_thread(f, threadlist):
thread = EmbThread()
thread.catalog_number = read_pes_string(f)
thread.color = 0xFF000000 | read_int_24be(f)
f.seek(5, 1)
thread.description = read_pes_string(f)
thread.brand = read_pes_string(f)
thread.chart = read_pes_string(f)
threadlist.append(thread)
def read_pes_header_version_1(f, out):
# Nothing I care about.
pass
def read_pes_header_version_4(f, out):
f.seek(4, 1)
read_pes_metadata(f, out)
def read_pes_header_version_5(f, out, threadlist):
f.seek(4, 1)
read_pes_metadata(f, out)
f.seek(24, 1) # this is 36 in version 6 and 24 in version 5
v = read_pes_string(f)
if v is not None and len(v) > 0:
out.metadata("image", v)
f.seek(24, 1)
count_programmable_fills = read_int_16le(f)
if count_programmable_fills != 0:
return
count_motifs = read_int_16le(f)
if count_motifs != 0:
return
count_feather_patterns = read_int_16le(f)
if count_feather_patterns != 0:
return
count_threads = read_int_16le(f)
for i in range(0, count_threads):
read_pes_thread(f, threadlist)
def read_pes_header_version_6(f, out, threadlist):
f.seek(4, 1)
read_pes_metadata(f, out)
f.seek(36, 1) # this is 36 in version 6 and 24 in version 5
v = read_pes_string(f)
if v is not None and len(v) > 0:
out.metadata("image_file", v)
f.seek(24, 1)
count_programmable_fills = read_int_16le(f)
if count_programmable_fills != 0:
return
count_motifs = read_int_16le(f)
if count_motifs != 0:
return
count_feather_patterns = read_int_16le(f)
if count_feather_patterns != 0:
return
count_threads = read_int_16le(f)
for i in range(0, count_threads):
read_pes_thread(f, threadlist)

Wyświetl plik

@ -0,0 +1,350 @@
from .PecWriter import write_pec
from .EmbThreadPec import get_thread_set
from .WriteHelper import write_string_utf8, write_int_32le, write_int_16le, write_int_8, write_float_32le
from .EmbConstant import *
SEQUIN_CONTINGENCY = CONTINGENCY_SEQUIN_JUMP
FULL_JUMP = True
MAX_JUMP_DISTANCE = 2047
MAX_STITCH_DISTANCE = 2047
VERSION_1 = 1
VERSION_6 = 6
PES_VERSION_1_SIGNATURE = "#PES0001"
PES_VERSION_6_SIGNATURE = "#PES0060"
EMB_ONE = "CEmbOne"
EMB_SEG = "CSewSeg"
def write(pattern, f, settings=None):
if settings is not None:
version = settings.get("pes version", VERSION_6)
truncated = settings.get("truncated", False)
else:
version = VERSION_6
truncated = False
if truncated:
if version == VERSION_1:
write_truncated_version_1(pattern, f)
elif version == VERSION_6:
write_truncated_version_6(pattern, f)
else:
if version == VERSION_1:
write_version_1(pattern, f)
elif version == VERSION_6:
write_version_6(pattern, f)
def write_truncated_version_1(pattern, f):
write_string_utf8(f, PES_VERSION_1_SIGNATURE)
f.write(b'\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
write_pec(pattern, f)
def write_truncated_version_6(pattern, f):
chart = pattern.threadlist
write_string_utf8(f, PES_VERSION_6_SIGNATURE)
placeholder_pec_block = f.tell()
write_int_32le(f, 0) # Placeholder for PEC BLOCK
write_pes_header_v6(pattern, f, chart, 0)
write_int_16le(f, 0x0000)
write_int_16le(f, 0x0000)
current_position = f.tell()
f.seek(placeholder_pec_block, 0)
write_int_32le(f, current_position)
f.seek(current_position, 0)
# this might need that node table thing.
write_pec(pattern, f)
def write_version_1(pattern, f):
chart = get_thread_set()
write_string_utf8(f, PES_VERSION_1_SIGNATURE)
extends = pattern.extends()
cx = (extends[2] + extends[0]) / 2.0
cy = (extends[3] + extends[1]) / 2.0
left = extends[0] - cx
top = extends[1] - cy
right = extends[2] - cx
bottom = extends[3] - cy
placeholder_pec_block = f.tell()
write_int_32le(f, 0) # Placeholder for PEC BLOCK
if len(pattern.stitches) == 0:
write_pes_header_v1(f, 0)
write_int_16le(f, 0x0000)
write_int_16le(f, 0x0000)
else:
write_pes_header_v1(f, 1)
write_int_16le(f, 0xFFFF)
write_int_16le(f, 0x0000)
write_pes_blocks(f, pattern, chart, left, top, right, bottom, cx, cy)
current_position = f.tell()
f.seek(placeholder_pec_block, 0)
write_int_32le(f, current_position)
f.seek(current_position, 0)
write_pec(pattern, f)
def write_version_6(pattern, f):
pattern.fix_color_count()
chart = pattern.threadlist
write_string_utf8(f, PES_VERSION_6_SIGNATURE)
extends = pattern.extends()
cx = (extends[2] + extends[0]) / 2.0
cy = (extends[3] + extends[1]) / 2.0
left = extends[0] - cx
top = extends[1] - cy
right = extends[2] - cx
bottom = extends[3] - cy
placeholder_pec_block = f.tell()
write_int_32le(f, 0) # Placeholder for PEC BLOCK
if len(pattern.stitches) == 0:
write_pes_header_v6(pattern, f, chart, 0)
write_int_16le(f, 0x0000)
write_int_16le(f, 0x0000)
else:
write_pes_header_v6(pattern, f, chart, 1)
write_int_16le(f, 0xFFFF)
write_int_16le(f, 0x0000)
log = write_pes_blocks(f, pattern, chart, left, top, right, bottom, cx, cy)
# In version 6 there is some node, tree, order thing.
write_int_32le(f, 0)
write_int_32le(f, 0)
for i in range(0, len(log)):
write_int_32le(f, i)
write_int_32le(f, 0)
current_position = f.tell()
f.seek(placeholder_pec_block, 0)
write_int_32le(f, current_position)
f.seek(current_position, 0)
write_pec(pattern, f)
def write_pes_header_v1(f, distinct_block_objects):
write_int_16le(f, 0x01) # scale to fit
write_int_16le(f, 0x01) # 0 = 100x100, 130x180 hoop
write_int_16le(f, distinct_block_objects)
def write_pes_header_v6(pattern, f, chart, distinct_block_objects):
write_int_16le(f, 0x01) # 0 = 100x100, 130x180 hoop
f.write(b'02') # This is an 2-digit ascii number.
write_pes_string_8(f, pattern.get_metadata("name", None))
write_pes_string_8(f, pattern.get_metadata("category", None))
write_pes_string_8(f, pattern.get_metadata("author", None))
write_pes_string_8(f, pattern.get_metadata("keywords", None))
write_pes_string_8(f, pattern.get_metadata("comments", None))
write_int_16le(f, 0) # OptimizeHoopChange = False
write_int_16le(f, 0) # Design Page Is Custom = False
write_int_16le(f, 0x64) # Hoop Width
write_int_16le(f, 0x64) # Hoop Height
write_int_16le(f, 0) # Use Existing Design Area = False
write_int_16le(f, 0xC8) # designWidth
write_int_16le(f, 0xC8) # designHeight
write_int_16le(f, 0x64) # designPageSectionWidth
write_int_16le(f, 0x64) # designPageSectionHeight
write_int_16le(f, 0x64) # p6 # 100
write_int_16le(f, 0x07) # designPageBackgroundColor
write_int_16le(f, 0x13) # designPageForegroundColor
write_int_16le(f, 0x01) # ShowGrid
write_int_16le(f, 0x01) # WithAxes
write_int_16le(f, 0x00) # SnapToGrid
write_int_16le(f, 100) # GridInterval
write_int_16le(f, 0x01) # p9 curves?
write_int_16le(f, 0x00) # OptimizeEntryExitPoints
write_int_8(f, 0) # fromImageStringLength
# String FromImageFilename
write_float_32le(f, float(1))
write_float_32le(f, float(0))
write_float_32le(f, float(0))
write_float_32le(f, float(1))
write_float_32le(f, float(0))
write_float_32le(f, float(0))
write_int_16le(f, 0) # numberOfProgrammableFillPatterns
write_int_16le(f, 0) # numberOfMotifPatterns
write_int_16le(f, 0) # featherPatternCount
count_thread = len(chart)
write_int_16le(f, count_thread) # numberOfColors
for thread in chart:
write_pes_thread(f, thread)
write_int_16le(f, distinct_block_objects) # number ofdistinct blocks
def write_pes_string_8(f, string):
if string is None:
write_int_8(f, 0)
return
if len(string) > 255:
string = string[:255]
write_int_8(f, len(string))
write_string_utf8(f, string)
def write_pes_string_16(f, string):
if string is None:
write_int_16le(f, 0)
return
write_int_16le(f, len(string))
# 16 refers to the size write not the string encoding.
write_string_utf8(f, string)
def write_pes_thread(f, thread):
write_pes_string_8(f, thread.catalog_number)
write_int_8(f, thread.get_red())
write_int_8(f, thread.get_green())
write_int_8(f, thread.get_blue())
write_int_8(f, 0) # unknown
write_int_32le(f, 0xA) # A is custom color
write_pes_string_8(f, thread.description)
write_pes_string_8(f, thread.brand)
write_pes_string_8(f, thread.chart)
def write_pes_blocks(f, pattern, chart, left, top, right, bottom, cx, cy):
if len(pattern.stitches) == 0:
return
write_pes_string_16(f, EMB_ONE)
placeholder = write_pes_sewsegheader(f, left, top, right, bottom)
write_int_16le(f, 0xFFFF)
write_int_16le(f, 0x0000) # FFFF0000 means more blocks exist
write_pes_string_16(f, EMB_SEG)
data = write_pes_embsewseg_segments(f, pattern, chart, left, bottom, cx, cy)
sections = data[0]
colorlog = data[1]
current_position = f.tell()
f.seek(placeholder, 0)
write_int_16le(f, sections)
f.seek(current_position, 0) # patch final section count.
# If there were addition embsewsegheaders or segments they would go here.
write_int_16le(f, 0x0000)
write_int_16le(f, 0x0000) # 00000000 means no more blocks.
return colorlog
def write_pes_sewsegheader(f, left, top, right, bottom):
width = right - left
height = bottom - top
hoop_height = 1800
hoop_width = 1300
write_int_16le(f, 0) # left
write_int_16le(f, 0) # top
write_int_16le(f, 0) # right
write_int_16le(f, 0) # bottom
write_int_16le(f, 0) # left
write_int_16le(f, 0) # top
write_int_16le(f, 0) # right
write_int_16le(f, 0) # bottom
trans_x = 0
trans_y = 0
trans_x += float(350)
trans_y += float(100) + height
trans_x += hoop_width / 2
trans_y += hoop_height / 2
trans_x += -width / 2
trans_y += -height / 2
write_float_32le(f, float(1))
write_float_32le(f, float(0))
write_float_32le(f, float(0))
write_float_32le(f, float(1))
write_float_32le(f, float(trans_x))
write_float_32le(f, float(trans_y))
write_int_16le(f, 1)
write_int_16le(f, 0)
write_int_16le(f, 0)
write_int_16le(f, int(width))
write_int_16le(f, int(height))
f.write(b'\x00\x00\x00\x00\x00\x00\x00\x00')
placeholder_needs_section_data = f.tell()
# sections
write_int_16le(f, 0)
return placeholder_needs_section_data
def get_as_segments_blocks(pattern, chart, adjust_x, adjust_y):
color_index = 0
current_thread = pattern.get_thread_or_filler(color_index)
color_index += 1
color_code = current_thread.find_nearest_color_index(chart)
stitched_x = 0
stitched_y = 0
for command_block in pattern.get_as_command_blocks():
block = []
command = command_block[0][2]
if command == JUMP:
block.append([stitched_x - adjust_x, stitched_y - adjust_y])
last_pos = command_block[-1]
block.append([last_pos[0] - adjust_x, last_pos[1] - adjust_y])
flag = 1
elif command == COLOR_CHANGE:
current_thread = pattern.get_thread_or_filler(color_index)
color_index += 1
color_code = current_thread.find_nearest_color_index(chart)
flag = 1
continue
elif command == STITCH:
for stitch in command_block:
stitched_x = stitch[0]
stitched_y = stitch[1]
block.append([stitched_x - adjust_x, stitched_y - adjust_y])
flag = 0
else:
continue
yield (block, color_code, flag)
def write_pes_embsewseg_segments(f, pattern, chart, left, bottom, cx, cy):
section = 0
colorlog = []
previous_color_code = -1
flag = -1
adjust_x = left + cx
adjust_y = bottom + cy
for segs in get_as_segments_blocks(pattern, chart, adjust_x, adjust_y):
if flag != -1:
write_int_16le(f, 0x8003) # section end.
segments = segs[0]
color_code = segs[1]
flag = segs[2]
if previous_color_code != color_code:
colorlog.append([section, color_code])
previous_color_code = color_code
# This must trigger first segment.
write_int_16le(f, flag)
write_int_16le(f, color_code)
write_int_16le(f, len(segments))
for segs in segments:
write_int_16le(f, int(segs[0]))
write_int_16le(f, int(segs[1]))
section += 1
write_int_16le(f, len(colorlog))
for log_item in colorlog:
write_int_16le(f, log_item[0])
write_int_16le(f, log_item[1])
return section, colorlog # how many sections, how color transitions.

Wyświetl plik

@ -0,0 +1,30 @@
from .PecReader import read_pec_stitches
from .EmbThreadPec import get_thread_set
from .ReadHelper import read_int_8, read_int_32le, read_int_16le
def read(f, out, settings=None):
# should start #PHB0003
f.seek(0x71, 0)
color_count = read_int_16le(f)
threadset = get_thread_set()
for i in range(0, color_count):
out.add_thread(threadset[read_int_8(f) % len(threadset)])
file_offset = 0x52
f.seek(0x54, 0)
file_offset += read_int_32le(f)
f.seek(file_offset, 0)
file_offset += read_int_32le(f) + 2
f.seek(file_offset, 0)
file_offset += read_int_32le(f)
f.seek(file_offset + 14, 0)
color_count2 = read_int_8(f)
f.seek(color_count2 + 23, 1)
read_pec_stitches(f, out)

Wyświetl plik

@ -0,0 +1,37 @@
from .PecReader import read_pec_stitches, read_pec_graphics
from .EmbThreadPec import get_thread_set
from .ReadHelper import read_int_8, read_int_32le, read_int_16le
def read(f, out, settings=None):
f.seek(0x4A, 0)
pec_graphic_icon_height = read_int_8(f)
f.seek(1,1)
pec_graphic_byte_stride = read_int_8(f)
color_count = read_int_16le(f)
threadset = get_thread_set()
for i in range(0, color_count):
color_index = read_int_8(f)
if color_index is None:
return # File terminated before expected end.
out.add_thread(threadset[color_index % len(threadset)])
byte_size = pec_graphic_byte_stride * pec_graphic_icon_height
read_pec_graphics(f,
out,
byte_size,
pec_graphic_byte_stride,
color_count,
out.threadlist
)
f.seek(0x2B, 0)
pec_add = read_int_8(f)
f.seek(4, 1)
pec_offset = read_int_16le(f)
f.seek(pec_offset + pec_add, 0)
bytes_in_section = read_int_16le(f)
f.seek(bytes_in_section, 1)
bytes_in_section2 = read_int_32le(f)
f.seek(bytes_in_section2, 1)
bytes_in_section3 = read_int_16le(f)
f.seek(bytes_in_section3 + 0x12, 1)
read_pec_stitches(f, out)

Wyświetl plik

@ -0,0 +1,105 @@
from .ReadHelper import read_int_8, read_int_16le
def find_extends(stitches):
min_x = float('inf')
min_y = float('inf')
max_x = -float('inf')
max_y = -float('inf')
for stitch in stitches:
if stitch[0] > max_x:
max_x = stitch[0]
if stitch[0] < min_x:
min_x = stitch[0]
if stitch[1] > max_y:
max_y = stitch[1]
if stitch[1] < min_y:
min_y = stitch[1]
return min_x, min_y, max_x, max_y
def read_pmv_stitches(f, out, settings=None):
"""PMV files are stitch files, not embroidery."""
px = 0
# stitches = []
while True:
stitch_count = read_int_16le(f)
block_length = read_int_16le(f)
if block_length is None:
return
if block_length >= 256:
break
if stitch_count == 0:
continue
for i in range(0, stitch_count):
x = read_int_8(f)
y = read_int_8(f)
if y > 16:
y = -(32 - y) # This is 5 bit signed number.
if x > 32:
x = -(64 - x) # This is a 6 bit signed number.
x *= 2.5
y *= 2.5
dx = x
out.stitch_abs(px + x, y) # This is a hybrid relative, absolute value.
px += dx
# stitches.append((x, y))
out.end()
# f.seek(0x10, 1) # 16 bytes
# block_end = read_int_16le(f)
# if block_end != 256:
# return
# steps = []
# dunno0 = read_int_8(f)
# dunno1 = read_int_8(f)
# length_steps = read_int_8(f)
# steps_size = read_int_8(f)
# for i in range(0, steps_size):
# x = read_int_16le(f)
# y = read_int_16le(f)
# if x is None or y is None:
# break
# steps.append((x, y))
# width_units = read_int_8(f)
# steps2_size = read_int_8(f)
# steps2 = []
# for i in range(0, steps2_size):
# x = read_int_16le(f)
# y = read_int_16le(f)
# if x is None or y is None:
# break
# steps2.append((x, y))
# dunno4 = read_int_16le(f) # seems to be 0x12.
# f.seek(0x10, 1) # 16 bytes
# # EOF - This should be End of File.
# none_bytes = read_int_8(f)
# if none_bytes is None:
# pass
#
# extends = find_extends(stitches)
# print(f)
# print("Stitches: Total ", len(stitches), " : ", stitches)
# print("Unknown0:", dunno0)
# print("Unknown1:", dunno1)
# print("Length Position:", length_steps)
# print("Length Lookup: ", len(steps), " : ", steps)
# print("Length value:", steps[length_steps])
# length_max = extends[2] - extends[0]
# width_max = extends[3] - extends[1]
# print("Max Length:", length_max)
# print("Max dx+:", extends[2])
# print("Max dx-:", extends[0])
# print("Width Position:", width_units)
# print("Width Lookup:", len(steps2), " : ", steps2)
# print("Width value:", steps2[width_units])
# print("Max Width:", width_max)
#
# print("Unknown4:", dunno4)
out.end()
def read(f, out, settings=None):
f.seek(0x64, 0)
read_pmv_stitches(f, out)

Wyświetl plik

@ -0,0 +1,132 @@
from .EmbConstant import *
from .WriteHelper import write_string_utf8, write_int_8, write_int_16le
MAX_STITCH_DISTANCE = 70
MAX_PERMITTED_STITCHES = 100
def write(pattern, f, settings=None):
max_x = -200000000
min_x = +200000000
max_y = -200000000
min_y = +200000000
point_count = 0
for stitch in pattern.stitches:
data = stitch[2]
x = stitch[0]
y = stitch[1]
if data == STITCH or data == JUMP:
point_count += 1
if x > max_x:
max_x = x
if x < min_x:
min_x = x
if y > max_y:
max_y = y
if y < min_y:
min_y = y
if point_count >= MAX_PERMITTED_STITCHES:
break
center_y = (min_y + max_y) / 2.0
normal_max_y = max_y - center_y
if normal_max_y > 35.0: # 14 * 2.5 = 350
scale_y = 14.0 / normal_max_y # 1 / (normal_max_y / 14.0)
else:
scale_y = 1.0 / 2.5 # pure unit conversion.
scale_x = 1.0 / 2.5
write_string_utf8(f, "#PMV0001")
header = "...................................."
write_string_utf8(f, header[0:36])
f.write(b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01'
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
b'\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00'
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00')
write_int_16le(f, point_count)
write_int_16le(f, point_count * 2)
point_index = -1
max_x = -200000000
min_x = +200000000
max_y = -200000000
min_y = +200000000
xx = 0
for stitch in pattern.stitches:
point_index += 1
if point_index >= point_count:
break
data = stitch[2]
x = stitch[0]
y = stitch[1]
x *= scale_x
y -= center_y
y *= scale_y
y = int(round(y))
x = int(round(x - xx))
xx += x
if data == STITCH or data == JUMP:
if x > max_x:
max_x = x
if x < min_x:
min_x = x
if y > max_y:
max_y = y
if y < min_y:
min_y = y
if x < 0:
x += 64
if y < 0:
y += 32
write_int_8(f, x)
write_int_8(f, y)
continue
write_int_16le(f, 0)
write_int_16le(f, 256)
f.write(b'\x00\x00\x00\x00\x05\x00\x00\x00'
b'\x00\x00\x00\x00\x00\x00\x02\x00')
write_int_16le(f, 256)
write_int_8(f, 0)
write_int_8(f, 0)
length_range = max_x - min_x
write_length_lookup_table(f, length_range)
width_range = max_y - min_y
write_width_lookup_table(f, width_range)
write_int_16le(f, 0x12)
f.write(b'\x00\x00\x00\x00\x00\x00\x00\x00'
b'\x00\x00\x00\x00\x00\x00\x00\x00')
def write_length_lookup_table(f, length_range):
# I've not solved this for how they are actually made, writing a something that should work.
write_values = [(0, 0), (10, 71), (20, 143), (40, 214), (60, 286), (80, 357),
(100, 429), (120, 500), (140, 571), (160, 714), (180, 786), (200, 857),
(250, 1000), (300, 1286), (350, 1429), (400, 1571), (450, 1786), (500, 2000)]
write_int_8(f, 12)
steps = len(write_values)
write_int_8(f, steps)
for value in write_values:
length_at_step = value[0]
other_at_step = value[1]
write_int_16le(f, length_at_step)
write_int_16le(f, other_at_step)
def write_width_lookup_table(f, width_range):
pos = int(width_range / 2)
write_int_8(f, pos)
if width_range == 0:
write_int_8(f, 1)
write_int_16le(f, 8192)
write_int_16le(f, 1000)
return
steps = 15
write_int_8(f, steps)
second_max = other_step = 28000.0 / float(width_range)
second_step = second_max / float(steps - 1)
for i in range(0, steps):
width_at_step = 50 * i
other_at_step = second_step * i
write_int_16le(f, width_at_step)
write_int_16le(f, int(round(other_at_step)))

Wyświetl plik

@ -0,0 +1,553 @@
import os.path
from .EmbPattern import EmbPattern
import pyembroidery.DstWriter as DstWriter
import pyembroidery.PecWriter as PecWriter
import pyembroidery.PesWriter as PesWriter
import pyembroidery.ExpWriter as ExpWriter
import pyembroidery.Vp3Writer as Vp3Writer
import pyembroidery.JefWriter as JefWriter
import pyembroidery.SvgWriter as SvgWriter
import pyembroidery.CsvWriter as CsvWriter
import pyembroidery.U01Writer as U01Writer
import pyembroidery.DstReader as DstReader
import pyembroidery.PecReader as PecReader
import pyembroidery.PesReader as PesReader
import pyembroidery.ExpReader as ExpReader
import pyembroidery.Vp3Reader as Vp3Reader
import pyembroidery.JefReader as JefReader
import pyembroidery.XxxReader as XxxReader
import pyembroidery.SewReader as SewReader
import pyembroidery.U01Reader as U01Reader
import pyembroidery.ShvReader as ShvReader
import pyembroidery.A10oReader as A10oReader
import pyembroidery.A100Reader as A100Reader
import pyembroidery.BroReader as BroReader
import pyembroidery.DsbReader as DsbReader
import pyembroidery.DszReader as DszReader
import pyembroidery.EmdReader as EmdReader
import pyembroidery.InbReader as InbReader
import pyembroidery.TbfReader as TbfReader
import pyembroidery.KsmReader as KsmReader
import pyembroidery.TapReader as TapReader
import pyembroidery.StxReader as StxReader
import pyembroidery.PhbReader as PhbReader
import pyembroidery.PcdReader as PcdReader
import pyembroidery.PcmReader as PcmReader
import pyembroidery.PcqReader as PcqReader
import pyembroidery.PcsReader as PcsReader
import pyembroidery.MitReader as MitReader
import pyembroidery.NewReader as NewReader
import pyembroidery.ExyReader as ExyReader
import pyembroidery.FxyReader as FxyReader
import pyembroidery.GtReader as GtReader
import pyembroidery.DatReader as DatReader
import pyembroidery.PhcReader as PhcReader
import pyembroidery.MaxReader as MaxReader
import pyembroidery.JpxReader as JpxReader
import pyembroidery.StcReader as StcReader
# import pyembroidery.ZhsReader as ZhsReader
import pyembroidery.ZxyReader as ZxyReader
import pyembroidery.PmvReader as PmvReader
import pyembroidery.PmvWriter as PmvWriter
import pyembroidery.CsvReader as CsvReader
def supported_formats():
"""Generates dictionary entries for supported formats. Each entry will
always have description, extension, mimetype, and category. Reader
will provide the reader, if one exists, writer will provide the writer,
if one exists.
Metadata gives a list of metadata read and/or written by that type.
Options provides accepted options by the format and their accepted values.
"""
yield ({
"description": "Brother Embroidery Format",
"extension": "pec",
"mimetype": "application/x-pec",
"category": "embroidery",
"reader": PecReader,
"writer": PecWriter,
"metadata": ("name")
})
yield ({
"description": "Brother Embroidery Format",
"extension": "pes",
"mimetype": "application/x-pes",
"category": "embroidery",
"reader": PesReader,
"writer": PesWriter,
"options": {
"pes version": (1, 6),
"truncated": (True, False)
},
"metadata": ("name", "author", "category", "keywords", "comments")
})
yield ({
"description": "Melco Embroidery Format",
"extension": "exp",
"mimetype": "application/x-exp",
"category": "embroidery",
"reader": ExpReader,
"writer": ExpWriter,
})
yield ({
"description": "Tajima Embroidery Format",
"extension": "dst",
"mimetype": "application/x-dst",
"category": "embroidery",
"reader": DstReader,
"writer": DstWriter,
"options": {
"extended headers": (True, False)
},
"metadata": ("name")
})
yield ({
"description": "Janome Embroidery Format",
"extension": "jef",
"mimetype": "application/x-jef",
"category": "embroidery",
"reader": JefReader,
"writer": JefWriter,
})
yield ({
"description": "Pfaff Embroidery Format",
"extension": "vp3",
"mimetype": "application/x-vp3",
"category": "embroidery",
"reader": Vp3Reader,
"writer": Vp3Writer,
})
yield ({
"description": "Scalable Vector Graphics",
"extension": "svg",
"mimetype": "image/svg+xml",
"category": "vector",
"writer": SvgWriter,
})
yield ({
"description": "Comma-separated values",
"extension": "csv",
"mimetype": "text/csv",
"category": "debug",
"reader": CsvReader,
"writer": CsvWriter,
"options": {
"deltas": (True, False)
},
})
yield ({
"description": "Singer Embroidery Format",
"extension": "xxx",
"mimetype": "application/x-xxx",
"category": "embroidery",
"reader": XxxReader
})
yield ({
"description": "Janome Embroidery Format",
"extension": "sew",
"mimetype": "application/x-sew",
"category": "embroidery",
"reader": SewReader
})
yield ({
"description": "Barudan Embroidery Format",
"extension": "u01",
"mimetype": "application/x-u01",
"category": "embroidery",
"reader": U01Reader,
"writer": U01Writer
})
yield ({
"description": "Husqvarna Viking Embroidery Format",
"extension": "shv",
"mimetype": "application/x-shv",
"category": "embroidery",
"reader": ShvReader
})
yield ({
"description": "Toyota Embroidery Format",
"extension": "10o",
"mimetype": "application/x-10o",
"category": "embroidery",
"reader": A10oReader
})
yield ({
"description": "Toyota Embroidery Format",
"extension": "100",
"mimetype": "application/x-100",
"category": "embroidery",
"reader": A100Reader
})
yield ({
"description": "Bits & Volts Embroidery Format",
"extension": "bro",
"mimetype": "application/x-Bro",
"category": "embroidery",
"reader": BroReader
})
yield ({
"description": "Sunstar or Barudan Embroidery Format",
"extension": "dat",
"mimetype": "application/x-dat",
"category": "embroidery",
"reader": DatReader
})
yield ({
"description": "Tajima(Barudan) Embroidery Format",
"extension": "dsb",
"mimetype": "application/x-dsb",
"category": "embroidery",
"reader": DsbReader
})
yield ({
"description": "ZSK USA Embroidery Format",
"extension": "dsz",
"mimetype": "application/x-dsz",
"category": "embroidery",
"reader": DszReader
})
yield ({
"description": "Elna Embroidery Format",
"extension": "emd",
"mimetype": "application/x-emd",
"category": "embroidery",
"reader": EmdReader
})
yield ({
"description": "Eltac Embroidery Format",
"extension": "exy", # e??, e01
"mimetype": "application/x-exy",
"category": "embroidery",
"reader": ExyReader
})
yield ({
"description": "Fortron Embroidery Format",
"extension": "fxy", # f??, f01
"mimetype": "application/x-fxy",
"category": "embroidery",
"reader": FxyReader
})
yield ({
"description": "Gold Thread Embroidery Format",
"extension": "gt",
"mimetype": "application/x-exy",
"category": "embroidery",
"reader": GtReader
})
yield ({
"description": "Inbro Embroidery Format",
"extension": "inb",
"mimetype": "application/x-inb",
"category": "embroidery",
"reader": InbReader
})
yield ({
"description": "Tajima Embroidery Format",
"extension": "tbf",
"mimetype": "application/x-tbf",
"category": "embroidery",
"reader": TbfReader
})
yield ({
"description": "Pfaff Embroidery Format",
"extension": "ksm",
"mimetype": "application/x-ksm",
"category": "embroidery",
"reader": KsmReader
})
yield ({
"description": "Happy Embroidery Format",
"extension": "tap",
"mimetype": "application/x-tap",
"category": "embroidery",
"reader": TapReader
})
yield ({
"description": "Data Stitch Embroidery Format",
"extension": "stx",
"mimetype": "application/x-stx",
"category": "embroidery",
"reader": StxReader
})
yield ({
"description": "Brother Embroidery Format",
"extension": "phb",
"mimetype": "application/x-phb",
"category": "embroidery",
"reader": PhbReader
})
yield ({
"description": "Brother Embroidery Format",
"extension": "phc",
"mimetype": "application/x-phc",
"category": "embroidery",
"reader": PhcReader
})
yield ({
"description": "Ameco Embroidery Format",
"extension": "new",
"mimetype": "application/x-new",
"category": "embroidery",
"reader": NewReader
})
yield ({
"description": "Pfaff Embroidery Format",
"extension": "max",
"mimetype": "application/x-max",
"category": "embroidery",
"reader": MaxReader
})
yield ({
"description": "Mitsubishi Embroidery Format",
"extension": "mit",
"mimetype": "application/x-mit",
"category": "embroidery",
"reader": MitReader
})
yield ({
"description": "Pfaff Embroidery Format",
"extension": "pcd",
"mimetype": "application/x-pcd",
"category": "embroidery",
"reader": PcdReader
})
yield ({
"description": "Pfaff Embroidery Format",
"extension": "pcq",
"mimetype": "application/x-pcq",
"category": "embroidery",
"reader": PcqReader
})
yield ({
"description": "Pfaff Embroidery Format",
"extension": "pcm",
"mimetype": "application/x-pcm",
"category": "embroidery",
"reader": PcmReader
})
yield ({
"description": "Pfaff Embroidery Format",
"extension": "pcs",
"mimetype": "application/x-pcs",
"category": "embroidery",
"reader": PcsReader
})
yield ({
"description": "Janome Embroidery Format",
"extension": "jpx",
"mimetype": "application/x-jpx",
"category": "embroidery",
"reader": JpxReader
})
yield ({
"description": "Gunold Embroidery Format",
"extension": "stc",
"mimetype": "application/x-stc",
"category": "embroidery",
"reader": StcReader
})
# yield ({
# "description": "Zeng Hsing Embroidery Format",
# "extension": "zhs",
# "mimetype": "application/x-zhs",
# "category": "embroidery",
# "reader": ZhsReader
# })
yield ({
"description": "ZSK TC Embroidery Format",
"extension": "zxy",
"mimetype": "application/x-zxy",
"category": "embroidery",
"reader": ZxyReader
})
yield ({
"description": "Brother Stitch Format",
"extension": "pmv",
"mimetype": "application/x-pmv",
"category": "stitch",
"reader": PmvReader,
"writer": PmvWriter
})
def convert(filename_from, filename_to, settings=None):
pattern = read(filename_from, settings)
if pattern is None:
return
if settings is not None:
stable = settings.get("stable", True)
if stable:
pattern = pattern.get_stable_pattern()
else:
pattern = pattern.get_stable_pattern()
write(pattern, filename_to, settings)
def get_extension_by_filename(filename):
"""extracts he extension from a filename"""
return os.path.splitext(filename)[1][1:]
def read_embroidery(reader, f, settings=None, pattern=None):
"""Reads fileobject or filename with reader."""
if pattern is None:
pattern = EmbPattern()
if isinstance(f, str):
text_mode = False
try:
text_mode = reader.READ_FILE_IN_TEXT_MODE
except AttributeError:
pass
if text_mode:
try:
with open(f, "r") as stream:
reader.read(stream, pattern, settings)
stream.close()
except IOError:
pass
else:
try:
with open(f, "rb") as stream:
reader.read(stream, pattern, settings)
stream.close()
except IOError:
pass
else:
reader.read(f, pattern, settings)
return pattern
def read_dst(f, settings=None, pattern=None):
"""Reads fileobject as DST file"""
return read_embroidery(DstReader, f, settings, pattern)
def read_pec(f, settings=None, pattern=None):
"""Reads fileobject as PEC file"""
return read_embroidery(PecReader, f, settings, pattern)
def read_pes(f, settings=None, pattern=None):
"""Reads fileobject as PES file"""
return read_embroidery(PesReader, f, settings, pattern)
def read_exp(f, settings=None, pattern=None):
"""Reads fileobject as EXP file"""
return read_embroidery(ExpReader, f, settings, pattern)
def read_vp3(f, settings=None, pattern=None):
"""Reads fileobject as VP3 file"""
return read_embroidery(Vp3Reader, f, settings, pattern)
def read_jef(f, settings=None, pattern=None):
"""Reads fileobject as JEF file"""
return read_embroidery(JefReader, f, settings, pattern)
def read(filename, settings=None, pattern=None):
"""Reads file, assuming type by extension"""
extension = get_extension_by_filename(filename)
extension = extension.lower()
for file_type in supported_formats():
if file_type['extension'] != extension:
continue
reader = file_type.get("reader", None)
return read_embroidery(reader, filename, settings, pattern)
return None
def write_embroidery(writer, pattern, stream, settings=None):
if settings is None:
settings = {}
else:
settings = settings.copy()
if settings.get("encode", True):
if not ("max_jump" in settings):
try:
settings["max_jump"] = writer.MAX_JUMP_DISTANCE
except AttributeError:
pass
if not ("max_stitch" in settings):
try:
settings["max_stitch"] = writer.MAX_STITCH_DISTANCE
except AttributeError:
pass
if not ("full_jump" in settings):
try:
settings["full_jump"] = writer.FULL_JUMP
except AttributeError:
pass
if not ("strip_speeds" in settings):
try:
settings["strip_speeds"] = writer.STRIP_SPEEDS
except AttributeError:
pass
if not ("sequin_contingency" in settings):
try:
settings["sequin_contingency"] = writer.SEQUIN_CONTINGENCY
except AttributeError:
pass
pattern = pattern.get_normalized_pattern(settings)
if isinstance(stream, str):
with open(stream, "wb") as stream:
writer.write(pattern, stream, settings)
else:
writer.write(pattern, stream, settings)
def write_dst(pattern, stream, settings=None):
"""Writes fileobject as DST file"""
write_embroidery(DstWriter, pattern, stream, settings)
def write_pec(pattern, stream, settings=None):
"""Writes fileobject as DST file"""
write_embroidery(PecWriter, pattern, stream, settings)
def write_pes(pattern, stream, settings=None):
"""Writes fileobject as DST file"""
write_embroidery(PesWriter, pattern, stream, settings)
def write_exp(pattern, stream, settings=None):
"""Writes fileobject as DST file"""
write_embroidery(ExpWriter, pattern, stream, settings)
def write_vp3(pattern, stream, settings=None):
"""Writes fileobject as DST file"""
write_embroidery(Vp3Writer, pattern, stream, settings)
def write_jef(pattern, stream, settings=None):
"""Writes fileobject as DST file"""
write_embroidery(JefWriter, pattern, stream, settings)
def write_svg(pattern, stream, settings=None):
"""Writes fileobject as DST file"""
write_embroidery(SvgWriter, pattern, stream, settings)
def write(pattern, filename, settings=None):
"""Writes file, assuming type by extension"""
extension = get_extension_by_filename(filename)
extension = extension.lower()
for file_type in supported_formats():
if file_type['extension'] != extension:
continue
writer = file_type.get("writer", None)
if writer is None:
continue
write_embroidery(writer, pattern, filename, settings)

Wyświetl plik

@ -0,0 +1,105 @@
def signed8(b):
if b > 127:
return -256 + b
else:
return b
def signed16(v):
v &= 0xFFFF
if v > 0x7FFF:
return - 0x10000 + v
else:
return v
def signed24(v):
v &= 0xFFFFFF
if v > 0x7FFFFF:
return - 0x1000000 + v
else:
return v
def read_signed(stream, n):
byte = bytearray(stream.read(n))
signed_bytes = []
for b in byte:
signed_bytes.append(signed8(b))
return signed_bytes
def read_sint_8(stream):
byte = bytearray(stream.read(1))
if len(byte) is 1:
return signed8(byte[0])
return None
def read_int_8(stream):
byte = bytearray(stream.read(1))
if len(byte) is 1:
return byte[0]
return None
def read_int_16le(stream):
byte = bytearray(stream.read(2))
if len(byte) is 2:
return (byte[0] & 0xFF) + ((byte[1] & 0xFF) << 8)
return None
def read_int_16be(stream):
byte = bytearray(stream.read(2))
if len(byte) is 2:
return (byte[1] & 0xFF) + ((byte[0] & 0xFF) << 8)
return None
def read_int_24le(stream):
b = bytearray(stream.read(3))
if len(b) is 3:
return (b[0] & 0xFF) + ((b[1] & 0xFF) << 8) + \
((b[2] & 0xFF) << 16)
return None
def read_int_24be(stream):
b = bytearray(stream.read(3))
if len(b) is 3:
return (b[2] & 0xFF) + ((b[1] & 0xFF) << 8) + \
((b[0] & 0xFF) << 16)
return None
def read_int_32le(stream):
b = bytearray(stream.read(4))
if len(b) is 4:
return (b[0] & 0xFF) + ((b[1] & 0xFF) << 8) + \
((b[2] & 0xFF) << 16) + ((b[3] & 0xFF) << 24)
return None
def read_int_32be(stream):
b = bytearray(stream.read(4))
if len(b) is 4:
return (b[3] & 0xFF) + ((b[2] & 0xFF) << 8) + \
((b[1] & 0xFF) << 16) + ((b[0] & 0xFF) << 24)
return None
def read_string_8(stream, length):
byte = stream.read(length)
try:
return byte.decode('utf8')
except UnicodeDecodeError:
return None # Must be > 128 chars.
def read_string_16(stream, length):
byte = stream.read(length)
try:
return byte.decode('utf16')
except UnicodeDecodeError:
return None

Wyświetl plik

@ -0,0 +1,35 @@
from .ReadHelper import read_int_16le, signed8
from .EmbThreadSew import get_thread_set
def read(f, out, settings=None):
threads = get_thread_set()
colors = read_int_16le(f)
for c in range(0, colors):
index = read_int_16le(f)
index %= len(threads)
out.add_thread(threads[index])
f.seek(0x1D78, 0)
while True:
b = bytearray(f.read(2))
if len(b) != 2:
break
if b[0] != 0x80:
out.stitch(signed8(b[0]), -signed8(b[1]))
continue
control = b[1]
b = bytearray(f.read(2))
if len(b) != 2:
break
if control & 1:
out.color_change()
continue
if control == 0x04 or control == 0x02:
out.move(signed8(b[0]), -signed8(b[1]))
continue
if control == 0x10:
out.stitch(signed8(b[0]), -signed8(b[1]))
continue
break
out.end()

Wyświetl plik

@ -0,0 +1,72 @@
import math
from .ReadHelper import read_int_16be, read_int_32be, \
read_int_8, read_string_8, signed16, signed8
from .EmbThreadShv import get_thread_set
from .EmbConstant import *
def read(f, out, settings=None):
in_jump = False
f.seek(0x56, 1) # header text
length = read_int_8(f)
out.metadata("name", read_string_8(f, length))
design_width = read_int_8(f)
design_height = read_int_8(f)
skip = math.ceil(design_height / 2.0) * design_width
f.seek(4 + int(skip), 1)
colors = read_int_8(f)
f.seek(18, 1)
threads = get_thread_set()
stitch_per_color = {}
for i in range(colors):
stitch_count = read_int_32be(f)
color_code = read_int_8(f)
thread = threads[color_code % len(threads)]
out.add_thread(thread)
stitch_per_color[i] = stitch_count
f.seek(9, 1)
f.seek(-2, 1)
stitches_since_stop = 0
current_color_index = 0
try:
max_stitches = stitch_per_color[current_color_index]
except IndexError:
max_stitches = 0
while True:
flags = STITCH
if in_jump:
flags = JUMP
b0 = read_int_8(f)
b1 = read_int_8(f)
if b1 is None:
break
if stitches_since_stop >= max_stitches:
out.color_change()
stitches_since_stop = 0
current_color_index += 1
try:
max_stitches = stitch_per_color[current_color_index]
except KeyError:
max_stitches = 0xFFFFFFFF
if b0 == 0x80:
stitches_since_stop += 1
if b1 == 3:
continue
elif b1 == 2:
in_jump = False
continue
elif b1 == 1:
stitches_since_stop += 2
sx = signed16(read_int_16be(f))
sy = signed16(read_int_16be(f))
in_jump = True
out.move(sx, sy)
continue
dx = signed8(b0)
dy = signed8(b1)
stitches_since_stop += 1
out.add_stitch_relative(flags, dx, dy)
out.end()

Wyświetl plik

@ -0,0 +1,31 @@
from .ReadHelper import signed8
def stc_stitch_encoding_read(f, out):
count = 0
while True:
count += 1
byte = bytearray(f.read(3))
if len(byte) != 3:
break
x = signed8(byte[0])
y = -signed8(byte[1])
ctrl = byte[2]
if ctrl == 0x01:
out.stitch(x, y)
continue
if ctrl == 0x00:
out.move(x, y)
continue
if ctrl == 25:
break
else:
needle = ctrl - 2
out.color_change()
out.end()
def read(f, out, settings=None):
f.seek(0x28, 1) # DESIGN: xxxxxx STITCHES: xxxx.
stc_stitch_encoding_read(f, out)

Wyświetl plik

@ -0,0 +1,12 @@
from .ReadHelper import read_int_32le
from .ExpReader import read_exp_stitches
def read(f, out, settings=None):
# File starts with STX
f.seek(0x0C, 1)
color_start_position = read_int_32le(f)
dunno_block_start_position = read_int_32le(f)
stitch_start_position = read_int_32le(f)
f.seek(stitch_start_position, 0)
read_exp_stitches(f, out)

Wyświetl plik

@ -0,0 +1,65 @@
from xml.etree.cElementTree import Element, ElementTree, SubElement
from .EmbConstant import CONTINGENCY_SEQUIN_STITCH
SEQUIN_CONTINGENCY = CONTINGENCY_SEQUIN_STITCH
# technically I could use svg to draw a sequin as a 2 element circle path.
FULL_JUMP = False # just drops all jumps anyway.
MAX_JUMP_DISTANCE = float('inf')
MAX_STITCH_DISTANCE = float('inf')
NAME_SVG = "svg"
ATTR_VERSION = "version"
VALUE_SVG_VERSION = "1.1"
ATTR_XMLNS = "xmlns"
VALUE_XMLNS = "http://www.w3.org/2000/svg"
ATTR_XMLNS_LINK = "xmlns:xlink"
VALUE_XLINK = "http://www.w3.org/1999/xlink"
ATTR_XMLNS_EV = "xmlns:ev"
VALUE_XMLNS_EV = "http://www.w3.org/2001/xml-events"
ATTR_WIDTH = "width"
ATTR_HEIGHT = "height"
ATTR_VIEWBOX = "viewBox"
NAME_PATH = "path"
ATTR_DATA = "d"
ATTR_FILL = "fill"
ATTR_STROKE = "stroke"
ATTR_STROKE_WIDTH = "stroke-width"
VALUE_NONE = "none"
def write(pattern, f, settings=None):
"""Writes an svg file of the stitchblocks."""
root = Element(NAME_SVG)
root.set(ATTR_VERSION, VALUE_SVG_VERSION)
root.set(ATTR_XMLNS, VALUE_XMLNS)
root.set(ATTR_XMLNS_LINK, VALUE_XLINK)
root.set(ATTR_XMLNS_EV, VALUE_XMLNS_EV)
extends = pattern.extends()
width = extends[2] - extends[0]
height = extends[3] - extends[1]
root.set(ATTR_WIDTH, str(width))
root.set(ATTR_HEIGHT, str(height))
viewbox = \
str(extends[0]) + " " +\
str(extends[1]) + " " +\
str(width) + " " +\
str(height)
root.set(ATTR_VIEWBOX, viewbox)
for stitchblock in pattern.get_as_stitchblock():
block = stitchblock[0]
thread = stitchblock[1]
path = SubElement(root, NAME_PATH)
data = "M"
for stitch in block:
x = stitch[0]
y = stitch[1]
data += " " + str(x) + "," + str(y)
path.set(ATTR_DATA, data)
path.set(ATTR_FILL, VALUE_NONE)
path.set(ATTR_STROKE, thread.hex_color())
path.set(ATTR_STROKE_WIDTH, "3")
tree = ElementTree(root)
tree.write(f)

Wyświetl plik

@ -0,0 +1,5 @@
from .DstReader import dst_read_stitches
def read(f, out, settings=None):
dst_read_stitches(f, out)

Wyświetl plik

@ -0,0 +1,48 @@
from .ReadHelper import signed8, read_int_8, read_int_24be
from .EmbThread import EmbThread
def read(f, out, settings=None):
f.seek(0x20E, 0)
while True:
if read_int_8(f) == 0x45:
thread = EmbThread()
thread.color = read_int_24be(f)
read_int_8(f) # Should be 0x20 " "
out.add_thread(thread)
else:
break
f.seek(0x600, 0)
count = 0
while True:
count += 1
byte = bytearray(f.read(3))
if len(byte) != 3:
break
x = byte[0]
y = byte[1]
ctrl = byte[2]
if ctrl == 0x80:
out.stitch(signed8(x), -signed8(y))
continue
elif ctrl == 0x81:
if count > 1:
out.color_change()
elif ctrl == 0x90:
if x == 0 and y == 0:
out.trim()
else:
out.move(signed8(x), -signed8(y))
continue
elif ctrl == 0x40:
out.stop()
continue
elif ctrl == 0x86:
out.trim()
continue
elif ctrl == 0x8F:
break
else:
print("odd.")
out.end()

Wyświetl plik

@ -0,0 +1,80 @@
from .EmbConstant import *
def read_u01_stitches(f, out):
count = 0
while True:
count += 1
byte = bytearray(f.read(3))
if len(byte) != 3:
break
ctrl = byte[0]
dy = -byte[1]
dx = byte[2]
if (ctrl & 0x20) != 0:
dx = -dx
if (ctrl & 0x40) != 0:
dy = -dy
command = ctrl & 0b11111
# print(str(count), " ", str("{0:b}").format(ctrl), " 0x%0.2X " % ctrl, str(command), " " + str(dx), " ", str(dy))
if command == 0x0:
# Stitch
out.stitch(dx, dy)
continue
if command == 0x01:
# Jump
out.move(dx, dy)
continue
if command == 0x02:
# Fast
out.add_stitch_relative(FAST)
if dx != 0 or dy != 0:
out.stitch(dx, dy)
continue
if command == 0x03:
# Fast, Jump
out.add_stitch_relative(FAST)
if dx != 0 or dy != 0:
out.move(dx, dy)
continue
if command == 0x04:
# Slow
out.add_stitch_relative(SLOW)
if dx != 0 or dy != 0:
out.stitch(dx, dy)
continue
if command == 0x05:
# Slow, Jump
out.add_stitch_relative(SLOW)
if dx != 0 or dy != 0:
out.move(dx, dy)
continue
if command == 0x06:
# T1 Top Thread Trimming, TTrim.
out.trim(dx, dy)
continue
if command == 0x07:
# T2 Bobbin Threading
out.trim(dx, dy)
continue
if command == 0x08: # ww, stop file had proper A8 rather than E8 and displacement
# C00 Stop
out.stop(dx, dy)
continue
if 0x09 <= command <= 0x17:
# C01 - C14
if count > 1:
out.color_change(dx, dy)
continue
if command == 0x18:
break
if ctrl == 0x2B:
break # Rare postfix data from machine. Do not read this.
break # Uncaught Command
out.end()
def read(f, out, settings=None):
f.seek(0x80, 1)
f.seek(0x80, 1)
read_u01_stitches(f, out)

Wyświetl plik

@ -0,0 +1,88 @@
from .EmbConstant import *
from .WriteHelper import write_int_16le, write_int_32le
SEQUIN_CONTINGENCY = CONTINGENCY_SEQUIN_JUMP
STRIP_SPEEDS = False
FULL_JUMP = False
MAX_JUMP_DISTANCE = 127
MAX_STITCH_DISTANCE = 127
def write(pattern, f, settings=None):
stitches = pattern.stitches
stitch_count = len(stitches)
for i in range(0, 0x80):
f.write(b'0')
if stitch_count == 0:
return
extends = pattern.extends()
write_int_16le(f, int(extends[0]))
write_int_16le(f, -int(extends[3]))
write_int_16le(f, int(extends[2]))
write_int_16le(f, -int(extends[1]))
write_int_32le(f, 0) # Dunno.
write_int_32le(f, stitch_count + 1) # force write first needle position
last_stitch = stitches[stitch_count - 1]
write_int_16le(f, int(last_stitch[0]))
write_int_16le(f, -int(last_stitch[1]))
for i in range(f.tell(), 0x100):
f.write(b'\x00')
xx = 0
yy = 0
needle = 1
f.write(b'\xE9\x00\x00') # Needle to C1
trigger_fast = False
trigger_slow = False
for stitch in stitches:
x = stitch[0]
y = stitch[1]
data = stitch[2]
dx = int(round(x - xx))
dy = int(round(y - yy))
xx += dx
yy += dy
if data == SLOW:
trigger_slow = True
continue
if data == FAST:
trigger_fast = True
continue
cmd = 0x80
if dy >= 0:
cmd |= 0x40
if dx <= 0:
cmd |= 0x20
delta_x = abs(dx)
delta_y = abs(dy)
if data == STITCH:
if trigger_fast:
trigger_fast = False
cmd |= 0x02
if trigger_slow:
trigger_slow = False
cmd |= 0x04
f.write(bytes(bytearray([cmd, delta_y, delta_x])))
elif data == JUMP: # If you did both FAST, SLOW, and JUMP, you'd get a trim.
if trigger_fast:
trigger_fast = False
cmd |= 0x02
if trigger_slow:
trigger_slow = False
cmd |= 0x04
cmd |= 0x01
f.write(bytes(bytearray([cmd, delta_y, delta_x])))
elif data == STOP:
cmd |= 0x08
f.write(bytes(bytearray([cmd, delta_y, delta_x])))
elif data == TRIM:
cmd |= 0x07
f.write(bytes(bytearray([cmd, delta_y, delta_x])))
elif data == COLOR_CHANGE:
needle %= 7
needle += 1
cmd = cmd + 8 + needle
f.write(bytes(bytearray([cmd, delta_y, delta_x])))
elif data == END:
f.write(b'\xF8\x00\x00')
break

Wyświetl plik

@ -0,0 +1,118 @@
from .EmbThread import EmbThread
from .ReadHelper import read_int_16be, read_int_8, read_int_32be, read_int_24be, read_signed, read_string_8, \
read_string_16
def read_vp3_string_16(stream):
# Reads the header strings which are 16le numbers of size followed by
# utf-16 text
string_length = read_int_16be(stream)
return read_string_16(stream, string_length)
def read_vp3_string_8(stream):
# Reads the body strings which are 16be numbers followed by utf-8 text
string_length = read_int_16be(stream)
return read_string_8(stream, string_length)
def skip_vp3_string(stream):
string_length = read_int_16be(stream)
stream.seek(string_length, 1)
def signed32(b):
b &= 0xFFFFFFFF
if b > 0x7FFFFFFF:
return - 0x100000000 + b
else:
return b
def signed16(b0, b1):
b0 &= 0xFF
b1 &= 0xFF
b = (b0 << 8) | b1
if b > 0x7FFF:
return - 0x10000 + b
else:
return b
def read(f, out, settings=None):
b = f.read(6)
# magic code: %vsm%\0
skip_vp3_string(f) # "Produced by Software Ltd"
f.seek(7, 1)
skip_vp3_string(f) # "" comments and note string.
f.seek(32, 1)
center_x = (signed32(read_int_32be(f)) / 100)
center_y = -(signed32(read_int_32be(f)) / 100)
f.seek(27, 1)
skip_vp3_string(f) # ""
f.seek(24, 1)
skip_vp3_string(f) # "Produced by Software Ltd"
count_colors = read_int_16be(f)
for i in range(0, count_colors):
vp3_read_colorblock(f, out, center_x, center_y)
def vp3_read_colorblock(f, read_object, center_x, center_y):
bytescheck = f.read(3) # \x00\x05\x00
distance_to_next_block_050 = read_int_32be(f)
block_end_position = distance_to_next_block_050 + f.tell()
start_position_x = (signed32(read_int_32be(f)) / 100)
start_position_y = -(signed32(read_int_32be(f)) / 100)
abs_x = start_position_x + center_x
abs_y = start_position_y + center_y
if abs_x != 0 and abs_y != 0:
read_object.move_abs(abs_x, abs_y)
thread = vp3_read_thread(f)
read_object.add_thread(thread)
f.seek(15, 1)
bytescheck = f.read(3) # \x0A\xF6\x00
stitch_byte_length = block_end_position - f.tell()
stitch_bytes = read_signed(f, stitch_byte_length)
i = 0
while i < len(stitch_bytes) - 1:
x = stitch_bytes[i]
y = stitch_bytes[i + 1]
i += 2
if (x & 0xFF) == 0x80:
if y == 0x01:
x = signed16(stitch_bytes[i], stitch_bytes[i + 1])
i += 2
y = signed16(stitch_bytes[i], stitch_bytes[i + 1])
i += 2
if abs(x) > 255 or abs(y) > 255:
read_object.trim(0, 0)
read_object.move(x, y)
else:
read_object.stitch(x, y)
elif y == 0x02:
pass # ends long stitch mode.
elif y == 0x03:
read_object.end(0, 0)
return
else:
read_object.stitch(x, y)
read_object.trim(0, 0)
read_object.color_change(0, 0)
def vp3_read_thread(f):
thread = EmbThread()
colors = read_int_8(f)
transition = read_int_8(f)
for m in range(0, colors):
thread.color = read_int_24be(f)
parts = read_int_8(f)
color_length = read_int_16be(f)
thread_type = read_int_8(f)
weight = read_int_8(f)
thread.catalog_number = read_vp3_string_8(f)
thread.description = read_vp3_string_8(f)
thread.brand = read_vp3_string_8(f)
return thread

Wyświetl plik

@ -0,0 +1,262 @@
from .EmbConstant import *
from .WriteHelper import write_int_8, write_int_24be, \
write_int_32be, write_int_16be, write_string_utf8, write_string
SEQUIN_CONTINGENCY = CONTINGENCY_SEQUIN_JUMP
FULL_JUMP = False
# Since jump is stitch, full jump will result in pointless double stitch.
# Vp3 can encode signed 16 bit deltas.
MAX_JUMP_DISTANCE = 3200
# coded beyond 255 tho, they count as jumps.
MAX_STITCH_DISTANCE = 255
def vp3_write_string_8(stream, string):
write_int_16be(stream, len(string))
write_string_utf8(stream, string)
# vp3_write_length_and_bytes(stream, bytestring)
def vp3_write_string_16(stream, string):
write_int_16be(stream, len(string) * 2)
write_string(stream, string, "UTF-16BE")
# vp3_write_length_and_bytes(stream, bytestring)
def vp3_write_length_and_bytes(stream, bytestring):
write_int_16be(stream, len(bytestring))
stream.write(bytestring)
def vp3_patch_byte_offset(stream, offset):
currentPos = stream.tell()
stream.seek(offset, 0) # Absolute position seek.
position = currentPos - offset - 4 # 4 bytes int32
write_int_32be(stream, position)
stream.seek(currentPos, 0) # Absolute position seek.
def get_as_colorblocks(pattern):
thread_index = 0
last_pos = 0
end = len(pattern.stitches)
for pos, stitch in enumerate(pattern.stitches):
if stitch[2] != COLOR_CHANGE:
continue
thread = pattern.get_thread_or_filler(thread_index)
thread_index += 1
yield (pattern.stitches[last_pos:pos], thread)
last_pos = pos
thread = pattern.get_thread_or_filler(thread_index)
thread_index += 1
yield (pattern.stitches[last_pos:end], thread)
def write(pattern, f, settings=None):
pattern.fix_color_count()
write_string_utf8(f, "%vsm%")
write_int_8(f, 0)
vp3_write_string_16(f, "Produced by Software Ltd")
write_file(pattern, f)
def write_file(pattern, f):
f.write(b'\x00\x02\x00')
placeholder_distance_end_of_file_block_020 = f.tell()
write_int_32be(f, 0) # placeholder
# This refers to the end of the final block, not entire bytes.
vp3_write_string_16(f, "")
# This is global notes and settings string.
# "Setting:" followed by settings text.
count_stitches = len(pattern.stitches)
colorblocks = [i for i in get_as_colorblocks(pattern)]
count_colorblocks_total = len(colorblocks)
extends = pattern.extends()
write_int_32be(f, int(extends[2] * 100)) # right
write_int_32be(f, int(extends[1] * -100)) # -top
write_int_32be(f, int(extends[0] * 100)) # left
write_int_32be(f, int(extends[3] * -100)) # -bottom
# EmbroiderModder Comment:
# "this would be some(unknown) function of thread length"
# Wilcom: 0C 54 == 3156
# Note, this is the total stitch count, sans end command.
ends = pattern.count_stitch_commands(END)
count_just_stitches = count_stitches - ends
write_int_32be(f, count_just_stitches)
write_int_8(f, 0)
write_int_8(f, count_colorblocks_total)
write_int_8(f, 12) # 0xC
write_int_8(f, 0)
count_designs = 1
write_int_8(f, count_designs) # Number of designs.
for i in range(0, count_designs):
write_design_block(f, extends, colorblocks)
vp3_patch_byte_offset(f, placeholder_distance_end_of_file_block_020)
def write_design_block(f, extends, colorblocks):
f.write(b'\x00\x03\x00')
placeholder_distance_end_of_design_block_030 = f.tell()
write_int_32be(f, 0)
count_colorblocks_total = len(colorblocks)
width = extends[2] - extends[0]
height = extends[3] - extends[1]
half_width = width / 2
half_height = height / 2
center_x = extends[2] - half_width
center_y = extends[3] - half_height
write_int_32be(f, int(center_x) * 100) # initial x
write_int_32be(f, int(center_y) * -100) # initial y
write_int_8(f, 0)
write_int_8(f, 0)
write_int_8(f, 0)
# extends 2
write_int_32be(f, int(half_width) * -100)
write_int_32be(f, int(half_width) * 100)
write_int_32be(f, int(half_height) * -100)
write_int_32be(f, int(half_height) * 100)
write_int_32be(f, int(width) * 100)
write_int_32be(f, int(height) * 100)
vp3_write_string_16(f, "") # This is notes and settings string.
f.write(b'\x64\x64') # write_int_16be(f, 25700)
# maybe b'dd', maybe 100, 100
write_int_32be(f, 4096) # b'\x00\x00\x10\x00'
write_int_32be(f, 0) # b'\x00\x00\x00\x00'
write_int_32be(f, 0) # b'\x00\x00\x10\x00'
write_int_32be(f, 4096) # b'\x00\x00\x10\x00'
f.write(b'xxPP\x01\x00')
vp3_write_string_16(f, "Produced by Software Ltd")
write_int_16be(f, count_colorblocks_total)
first = True
for colorblock in colorblocks:
stitches = colorblock[0]
thread = colorblock[1]
write_vp3_colorblock(f, first, center_x, center_y, stitches, thread)
first = False
vp3_patch_byte_offset(f, placeholder_distance_end_of_design_block_030)
def write_vp3_colorblock(f, first, center_x, center_y, stitches, thread):
f.write(b'\x00\x05\x00')
placeholder_distance_end_of_color_block_050 = f.tell()
write_int_32be(f, 0)
if len(stitches) > 0:
first_pos_x = stitches[0][0]
first_pos_y = stitches[0][1]
if first:
first_pos_x = 0
first_pos_y = 0
last_pos_x = stitches[-1][0]
last_pos_y = stitches[-1][1]
else:
first_pos_x = 0
first_pos_y = 0
last_pos_x = 0
last_pos_y = 0
start_position_from_center_x = first_pos_x - center_x
start_position_from_center_y = -(first_pos_y - center_y)
write_int_32be(f, int(start_position_from_center_x) * 100)
write_int_32be(f, int(start_position_from_center_y) * 100)
vp3_write_thread(f, thread)
block_shift_x = last_pos_x - first_pos_x
block_shift_y = -(last_pos_y - first_pos_y)
write_int_32be(f, int(block_shift_x) * 100)
write_int_32be(f, int(block_shift_y) * 100)
write_stitches_block(f, stitches, first_pos_x, first_pos_y)
write_int_8(f, 0)
vp3_patch_byte_offset(f, placeholder_distance_end_of_color_block_050)
def vp3_write_thread(f, thread):
f.write(b'\x01\x00') # Single color, no transition.
write_int_24be(f, thread.color)
f.write(b'\x00\x00\x00\x05\x28') # no parts, no length, Rayon 40-weight
if thread.catalog_number is not None:
vp3_write_string_8(f, thread.catalog_number)
else:
vp3_write_string_8(f, "")
if thread.description is not None:
vp3_write_string_8(f, thread.description)
else:
vp3_write_string_8(f, thread.hex_color())
if thread.brand is not None:
vp3_write_string_8(f, thread.brand)
else:
vp3_write_string_8(f, "")
def write_stitches_block(f, stitches, first_pos_x, first_pos_y):
# Embroidermodder code has
# vp3_write_string(f, "\x00");
# The 0, x, 0 bytes come before placeholders
# Given this consisistency, it's doubtful this is a string.
# Those aren't
f.write(b'\x00\x01\x00')
placeholder_distance_to_end_of_stitches_block_010 = f.tell()
write_int_32be(f, 0) # placeholder
f.write(b'\x0A\xF6\x00')
last_x = first_pos_x
last_y = first_pos_y
for stitch in stitches:
x = stitch[0]
y = stitch[1]
flags = stitch[2]
if flags == END:
f.write(b'\x80\x03')
break
elif flags == COLOR_CHANGE:
continue
elif flags == TRIM:
continue
elif flags == SEQUIN_MODE:
continue
elif flags == SEQUIN_EJECT:
continue
elif flags == STOP:
# Not sure what to do here.
# f.write(b'\x80\x04')
continue
elif flags == JUMP:
# Since VP3.Jump == VP3.Stitch, we combine jumps.
continue
dx = int(x - last_x)
dy = int(y - last_y)
last_x += dx
last_y += dy
if flags == STITCH:
if -127 <= dx <= 127 and -127 <= dy <= 127:
write_int_8(f, dx)
write_int_8(f, dy)
else:
f.write(b'\x80\x01')
write_int_16be(f, dx)
write_int_16be(f, dy)
f.write(b'\x80\x02')
# VSM gave ending stitches as 80 03 35 A5, so, 80 03 isn't strictly end.
vp3_patch_byte_offset(f, placeholder_distance_to_end_of_stitches_block_010)

Wyświetl plik

@ -0,0 +1,172 @@
import pyembroidery.EmbPattern as EmbPattern
import math
def distance_squared(x0, y0, x1, y1):
dx = x1 - x0
dy = y1 - y0
dx *= dx
dy *= dy
return dx + dy
def distance(x0, y0, x1, y1):
return math.sqrt(distance_squared(x0, y0, x1, y1))
def towards(a, b, amount):
return (amount * (b - a)) + a
def angleR(x0, y0, x1, y1):
return math.atan2(y1 - y0, x1 - x0)
def oriented(x0, y0, x1, y1, r):
radians = angleR(x0, y0, x1, y1)
return (x0 + (r * math.cos(radians)), y0 + (r * math.sin(radians)))
class WriteEncoder():
def __init__(self):
self.max_jump = float('inf') # type: float
self.max_stitch = float('inf') # type: float
self.tie_on = False # type: bool
self.tie_off = False # type: bool
self.needle_x = 0 # type: float
self.needle_y = 0 # type: float
self.translate_x = 0 # type: float
self.translate_y = 0 # type: float
def set_translation(self, x, y):
self.translate_x = x
self.translate_y = y
def jumpTo(self, transcode, x, y):
self.step_to(transcode, x, y, self.max_jump, EmbPattern.JUMP)
transcode.append([x, y, EmbPattern.JUMP])
def stitchTo(self, transcode, x, y):
self.step_to(transcode, x, y, self.max_stitch, EmbPattern.STITCH)
transcode.append([x, y, EmbPattern.STITCH])
def step_to(self, transcode, x, y, length, data):
distance_x = x - self.needle_x
distance_y = y - self.needle_y
if abs(distance_x) > length or abs(distance_y) > length:
stepsX = math.ceil(abs(distance_x / length))
stepsY = math.ceil(abs(distance_y / length))
if (stepsX > stepsY):
steps = stepsX
else:
steps = stepsY
stepSizeX = distance_x / steps
stepSizeY = distance_y / steps
q = 0
qe = steps
qx = self.needle_x
qy = self.needle_y
while q < qe:
transcode.append([round(qx), round(qy), data])
q += 1
qx += stepSizeX
qy += stepSizeY
def lock_stitch(self, transcode, lock_x, lock_y, anchor_x, anchor_y):
dist = distance(lock_x, lock_y, anchor_x, anchor_y)
if dist > self.max_stitch:
p = oriented(lock_x, lock_y, anchor_x, anchor_y, self.max_stitch)
anchor_x = p[0]
anchor_y = p[1]
f = (towards(lock_x, anchor_x, .33), towards(lock_y, anchor_y, .33))
s = (towards(lock_x, anchor_x, .66), towards(lock_y, anchor_y, .66))
self.stitchTo(transcode, lock_x, lock_y)
self.stitchTo(transcode, f[0], f[1])
self.stitchTo(transcode, s[0], s[1])
self.stitchTo(transcode, f[0], f[1])
def process(self, p):
self.needle_x = 0
self.needle_y = 0
copy = EmbPattern.EmbPattern()
EmbPattern.set(p, copy)
layer = copy.stitches
for stitch in layer:
stitch[0] = round(stitch[0] - self.translate_x)
stitch[1] = round(stitch[1] - self.translate_y)
p.stitches = []
p.threadlist = []
self.write_code(copy, p)
self.write_thread(copy, p)
return p
def write_thread(self, pattern_from, pattern_to):
threads_to = pattern_to.threadlist
threads_to.extend(pattern_from.threadlist)
def write_code(self, pattern_source, pattern_dest):
source = pattern_source.stitches
dest = pattern_dest.stitches
flags = EmbPattern.NO_COMMAND
trimmed = True
for i, stitch in enumerate(source):
x = stitch[0]
y = stitch[1]
flags = stitch[2]
if flags == EmbPattern.STITCH:
if trimmed:
self.jumpTo(dest, x, y)
self.needle_x = x
self.needle_y = y
if self.tie_on:
b = source[i + 1]
bx = b[0]
by = b[1]
self.lock_stitch(dest, x, y, bx, by)
dest.append([x, y, EmbPattern.STITCH])
trimmed = False;
else:
self.stitchTo(dest, x, y)
elif flags == EmbPattern.FRAME_EJECT:
if not trimmed:
dest.append([self.needle_x, self.needle_y, EmbPattern.TRIM])
trimmed = True
self.jumpTo(dest, x, y)
dest.append([x, y, EmbPattern.STOP])
elif flags == EmbPattern.BREAK:
if not trimmed:
dest.append([self.needle_x, self.needle_y, EmbPattern.TRIM])
trimmed = True
continue # do not update the needle.
elif flags == EmbPattern.BREAK_COLOR:
if not trimmed:
dest.append([self.needle_x, self.needle_y, EmbPattern.TRIM])
trimmed = True
dest.append([x, y, EmbPattern.COLOR_CHANGE])
continue # do not update the needle.
elif flags == EmbPattern.STITCH_FINAL:
if self.tie_off:
b = source[i - 1]
bx = b[0]
by = b[1]
self.lock_stitch(dest, x, y, bx, by)
self.stitchTo(dest, x, y)
dest.append([x, y, EmbPattern.TRIM])
trimmed = True
elif flags == EmbPattern.STITCH_FINAL_COLOR:
if self.tie_off:
b = source[i - 1]
bx = b[0]
by = b[1]
self.lock_stitch(dest, x, y, bx, by)
self.stitchTo(dest, x, y)
dest.append([x, y, EmbPattern.TRIM])
dest.append([x, y, EmbPattern.COLOR_CHANGE])
trimmed = True
else:
dest.append(stitch)
self.needle_x = x
self.needle_y = y
if flags != EmbPattern.END:
dest.append([self.needle_x, self.needle_y, EmbPattern.END])

Wyświetl plik

@ -0,0 +1,90 @@
import struct
def write_int_array_8(stream, int_array):
for value in int_array:
v = bytes(bytearray([
value & 0xFF,
]))
stream.write(v)
def write_int_8(stream, value):
v = bytes(bytearray([
value & 0xFF,
]))
stream.write(v)
def write_int_16le(stream, value):
v = bytes(bytearray([
(value >> 0) & 0xFF,
(value >> 8) & 0xFF,
]))
stream.write(v)
def write_int_16be(stream, value):
v = bytes(bytearray([
(value >> 8) & 0xFF,
(value >> 0) & 0xFF,
]))
stream.write(v)
def write_int_24le(stream, value):
v = bytes(bytearray([
(value >> 0) & 0xFF,
(value >> 8) & 0xFF,
(value >> 16) & 0xFF,
]))
stream.write(v)
def write_int_24be(stream, value):
v = bytes(bytearray([
(value >> 16) & 0xFF,
(value >> 8) & 0xFF,
(value >> 0) & 0xFF,
]))
stream.write(v)
def write_int_32le(stream, value):
v = bytes(bytearray([
(value >> 0) & 0xFF,
(value >> 8) & 0xFF,
(value >> 16) & 0xFF,
(value >> 24) & 0xFF
]))
stream.write(v)
def write_int_32be(stream, value):
v = bytes(bytearray([
(value >> 24) & 0xFF,
(value >> 16) & 0xFF,
(value >> 8) & 0xFF,
(value >> 0) & 0xFF
]))
stream.write(v)
def write_float_32le(stream, value):
stream.write(struct.pack("<f", float(value)))
def write_string(stream, string, encoding='utf8'):
# python 2,3 code
try:
stream.write(bytes(string).encode(encoding))
except TypeError:
stream.write(bytes(string, encoding))
def write_string_utf8(stream, string):
# python 2,3 code
try:
stream.write(bytes(string).encode('utf8'))
except TypeError:
stream.write(bytes(string, 'utf8'))

Wyświetl plik

@ -0,0 +1,45 @@
from .ReadHelper import read_int_16le, read_int_8, read_int_32be, signed8, signed16
from .EmbThread import EmbThread
# 7F 08 00 00 is color change.
# 7F 01 xx yy is unstitched.
# 7F 7F 02 14 is end.
def read(f, out, settings=None):
f.seek(0x27, 1)
num_of_colors = read_int_16le(f)
f.seek(0x100, 0)
while True:
b1 = read_int_8(f)
if b1 == 0x7D or b1 == 0x7E: # not seen a 7E big jump code
x = read_int_16le(f)
y = read_int_16le(f)
out.move(signed16(x), -signed16(y))
continue
b2 = read_int_8(f)
if b1 == 0x7F:
b3 = read_int_8(f)
b4 = read_int_8(f)
if b2 == 0x01:
out.move(signed8(b3), -signed8(b4))
continue
elif b2 == 0x08:
out.color_change()
continue
if b2 == 0x7F:
out.end(0)
break
else:
pass
else:
out.stitch(signed8(b1), -signed8(b2))
out.end()
f.seek(2, 1)
for i in range(0, num_of_colors + 1):
thread = EmbThread()
thread.color = read_int_32be(f)
if thread.color is None:
break
else:
out.add_thread(thread)

Wyświetl plik

@ -0,0 +1,34 @@
from .ReadHelper import signed8, read_int_32le
def read_zhs_stitches(f, out):
count = 0
while True:
count += 1
b = bytearray(f.read(3))
if len(b) != 3:
break
ctrl = b[0]
if ctrl == 0x10:
pass
x = signed8(b[1])
y = signed8(b[2])
if ctrl == 0x02:
out.stitch(x, y)
continue
if ctrl == 0x01:
out.move(x, y)
continue
if ctrl == 0x04:
out.color_change()
continue
if ctrl == 0x80:
break
out.end()
def read(f, out, settings=None):
f.seek(0x0F, 0)
stitch_start_position = read_int_32le(f)
f.seek(stitch_start_position, 0)
read_zhs_stitches(f, out)

Wyświetl plik

@ -0,0 +1,37 @@
from .ReadHelper import signed8, read_int_32le, read_int_16be
def read_zxy_stitches(f, out):
count = 0
while True:
count += 1
b = bytearray(f.read(3))
if len(b) != 3:
break
ctrl = b[0]
x = b[1]
y = -b[2]
if ctrl & 0x08:
x = -x
if ctrl & 0x04:
y = -y
ctrl &= ~0x0C
if ctrl == 0:
out.stitch(x, y)
continue
if ctrl & 0x02:
out.move(x, y)
continue
if ctrl & 0x20:
if b[1] == 0xFF:
break
out.color_change()
needle = b[2]
out.end()
def read(f, out, settings=None):
f.seek(0x01, 0)
stitch_start_distance = read_int_16be(f)
f.seek(stitch_start_distance, 1)
read_zxy_stitches(f, out)

Wyświetl plik

@ -0,0 +1,9 @@
name = "pyembroidery"
# items available at the top level (e.g. pyembroidery.read)
from .PyEmbroidery import *
from .EmbConstant import *
from .EmbPattern import EmbPattern
# items available in a sub-heirarchy (e.g. pyembroidery.PecGraphics.get_graphic_as_string)
from .PecGraphics import get_graphic_as_string

22
setup.py 100644
Wyświetl plik

@ -0,0 +1,22 @@
import setuptools
with open("README.md", "r") as fh:
long_description = fh.read()
setuptools.setup(
name="pyembroidery",
version="1.2.25",
author="Tatarize",
author_email="tatarize@gmail.com",
description="Embroidery IO library",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/pyembroidery/pyembroidery",
packages=setuptools.find_packages(),
classifiers=(
"Programming Language :: Python :: 2",
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
),
)

Wyświetl plik

@ -0,0 +1,50 @@
from __future__ import print_function
from pyembroidery import *
def value_input(prompt):
try:
return str(raw_input(prompt))
except NameError:
return str(input(prompt))
pattern = EmbPattern()
while True:
triple = False
prompt = value_input("(T)riple/(S)ingle/(Q)uit?")
if "t" in prompt or "T" in prompt:
triple = True
if "s" in prompt or "S" in prompt:
triple = False
if "q" in prompt or "Q" in prompt:
break
while True:
needle_position = value_input(" - :")
try:
int_needle = int(needle_position)
except ValueError:
break
fabric_position = value_input(" | : ")
try:
int_fabric = int(fabric_position)
except ValueError:
break
int_needle -= 7
int_needle *= 2
pattern.stitch_abs(int_fabric * 2.5, int_needle * 2.5)
if triple:
try:
previous = pattern.stitches[-2]
pattern.stitch_abs(previous[0], previous[1])
pattern.stitch_abs(int_fabric * 2.5, int_needle * 2.5)
except IndexError:
pass
filename = value_input("Filename? ")
if filename is None:
filename = "stitch.pmv"
if filename[:3] != 'pmv':
filename += '.pmv'
write(pattern, filename)

47
test.py 100644
Wyświetl plik

@ -0,0 +1,47 @@
from __future__ import print_function
import test_fractals
from pyembroidery import *
pattern = EmbPattern()
pattern.add_thread({
"rgb": 0x0000FF,
"name": "Blue Test",
"catalog": "0033",
"brand": "PyEmbroidery Brand Thread"
})
pattern.add_thread({
"rgb": 0x00FF00,
"name": "Green",
"catalog": "0034",
"brand": "PyEmbroidery Brand Thread"
})
test_fractals.generate(pattern)
settings = {
"tie_on": True,
"tie_off": True
}
write(pattern, "generated.u01", settings)
write(pattern, "generated.pec", settings)
write(pattern, "generated.pes", settings)
write(pattern, "generated.exp", settings)
write(pattern, "generated.dst", settings)
settings["extended header"] = True
write(pattern, "generated-eh.dst", settings)
write(pattern, "generated.jef", settings)
write(pattern, "generated.vp3", settings)
settings["pes version"] = 1,
write(pattern, "generatedv1.pes", settings)
settings["truncated"] = True
write(pattern, "generatedv1t.pes", settings)
settings["pes version"] = 6,
write(pattern, "generatedv6t.pes", settings)
convert("generated.exp", "genconvert.dst",
{"stable": False, "encode": False})

81
test_fractals.py 100644
Wyświetl plik

@ -0,0 +1,81 @@
import pyembroidery.EmbPattern as EmbPattern
from pyembroidery.EmbConstant import *
import math
def evaluate_lsystem(symbol, rules, depth):
if depth <= 0 or symbol not in rules:
symbol()
else:
for produced_symbol in rules[symbol]:
evaluate_lsystem(produced_symbol, rules, depth - 1)
class Turtle:
def __init__(self, pattern):
self.pattern = pattern
self.angle = 0
self.x = 0
self.y = 0
import math
self.turn_amount = math.pi / 3
def forward(self, distance):
self.x += distance * math.cos(self.angle)
self.y += distance * math.sin(self.angle)
self.pattern.add_stitch_absolute(STITCH, self.x, self.y)
# self.pattern.add_stitch_absolute(SEQUIN_EJECT, self.x, self.y)
def turn(self, angle):
self.angle += angle
def move(self, distance):
self.x += distance * math.cos(self.angle)
self.y += distance * math.sin(self.angle)
def add_gosper(self):
a = lambda: self.forward(20)
b = lambda: self.forward(20)
l = lambda: self.turn(self.turn_amount)
r = lambda: self.turn(-self.turn_amount)
initial = lambda: None
rules = {
initial: [a],
a: [a, l, b, l, l, b, r, a, r, r, a, a, r, b, l],
b: [r, a, l, b, b, l, l, b, l, a, r, r, a, r, b]
}
evaluate_lsystem(initial, rules, 3) # 4
def add_serp(self):
a = lambda: self.forward(20)
b = lambda: self.forward(20)
l = lambda: self.turn(self.turn_amount)
r = lambda: self.turn(-self.turn_amount)
initial = lambda: None
rules = {
initial: [a],
a: [b, l, a, l, b],
b: [a, r, b, r, a]
}
evaluate_lsystem(initial, rules, 3) # 6
def generate(pattern):
turtle = Turtle(pattern);
turtle.add_gosper()
pattern.add_command(COLOR_BREAK)
turtle.move(500)
turtle.add_serp()
pattern.add_command(SEQUENCE_BREAK)
pattern.add_command(STOP)
turtle.move(50)
turtle.add_serp()
pattern.add_command(SEQUENCE_BREAK)
turtle.turn(-math.pi / 3)
turtle.move(500)
turtle.add_serp()
pattern.add_command(COLOR_BREAK)
turtle.turn(-math.pi / 3)
turtle.move(500) # 260, -450
turtle.add_gosper()
pattern.add_command(END)