pimoroni-pico/libraries/pico_unicorn/pico_unicorn.cpp

350 wiersze
12 KiB
C++

#include "hardware/dma.h"
#include "hardware/irq.h"
#include "common/pimoroni_common.hpp"
#ifndef NO_QSTR
#include "pico_unicorn.pio.h"
#endif
#include "pico_unicorn.hpp"
// pixel data is stored as a stream of bits delivered in the
// order the PIO needs to manage the shift registers, row
// selects, delays, and latching/blanking
//
// the data consists of 7 rows each of which has 14 frames of
// bcd timing data
//
// each row looks like this:
//
// 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, 0b00000000, # pixel data
// 0b00000000, # dummy byte to 32-bit align the frame (could be used to extend row select in future)
// 0b01111111, # row 0 select (7-bit row address, 1-bit dummy data)
// 0b00001111, 0b11111111, # bcd tick count (0-65536)
//
// .. next BCD frame for this row (repeat for 14 frames)
//
// .. next row (repeat for 7 rows)
//
// pixels are encoded as 4 bits: r, g, b, dummy to conveniently
// pack them into nibbles
enum pin {
LED_DATA = 8,
LED_CLOCK = 9,
LED_LATCH = 10,
LED_BLANK = 11,
ROW_0 = 22,
ROW_1 = 21,
ROW_2 = 20,
ROW_3 = 19,
ROW_4 = 18,
ROW_5 = 17,
ROW_6 = 16,
A = 12,
B = 13,
X = 14,
Y = 15,
};
static uint32_t dma_channel;
static uint32_t dma_ctrl_channel;
namespace pimoroni {
PicoUnicorn* PicoUnicorn::unicorn = nullptr;
PIO PicoUnicorn::bitstream_pio = pio0;
uint PicoUnicorn::bitstream_sm = 0;
uint PicoUnicorn::bitstream_sm_offset = 0;
PicoUnicorn::~PicoUnicorn() {
if(unicorn == this) {
partial_teardown();
dma_channel_unclaim(dma_ctrl_channel); // This works now the teardown behaves correctly
dma_channel_unclaim(dma_channel); // This works now the teardown behaves correctly
pio_sm_unclaim(bitstream_pio, bitstream_sm);
pio_remove_program(bitstream_pio, &unicorn_program, bitstream_sm_offset);
unicorn = nullptr;
}
}
void PicoUnicorn::partial_teardown() {
// Stop the bitstream SM
pio_sm_set_enabled(bitstream_pio, bitstream_sm, false);
// Make sure the display is off and switch it to an invisible row, to be safe
const uint pins_to_set = 0b1111111 << ROW_6;
pio_sm_set_pins_with_mask(bitstream_pio, bitstream_sm, pins_to_set, pins_to_set);
dma_hw->ch[dma_ctrl_channel].al1_ctrl = (dma_hw->ch[dma_ctrl_channel].al1_ctrl & ~DMA_CH0_CTRL_TRIG_CHAIN_TO_BITS) | (dma_ctrl_channel << DMA_CH0_CTRL_TRIG_CHAIN_TO_LSB);
dma_hw->ch[dma_channel].al1_ctrl = (dma_hw->ch[dma_channel].al1_ctrl & ~DMA_CH0_CTRL_TRIG_CHAIN_TO_BITS) | (dma_channel << DMA_CH0_CTRL_TRIG_CHAIN_TO_LSB);
// Abort any in-progress DMA transfer
dma_safe_abort(dma_ctrl_channel);
dma_safe_abort(dma_channel);
}
[[deprecated("Handled by constructor.")]]
void PicoUnicorn::init() {
return;
}
PicoUnicorn::PicoUnicorn() {
if(unicorn != nullptr) {
partial_teardown();
}
// setup pins
gpio_init(pin::LED_DATA); gpio_set_dir(pin::LED_DATA, GPIO_OUT);
gpio_init(pin::LED_CLOCK); gpio_set_dir(pin::LED_CLOCK, GPIO_OUT);
gpio_init(pin::LED_LATCH); gpio_set_dir(pin::LED_LATCH, GPIO_OUT);
gpio_init(pin::LED_BLANK); gpio_set_dir(pin::LED_BLANK, GPIO_OUT);
gpio_init(pin::ROW_0); gpio_set_dir(pin::ROW_0, GPIO_OUT);
gpio_init(pin::ROW_1); gpio_set_dir(pin::ROW_1, GPIO_OUT);
gpio_init(pin::ROW_2); gpio_set_dir(pin::ROW_2, GPIO_OUT);
gpio_init(pin::ROW_3); gpio_set_dir(pin::ROW_3, GPIO_OUT);
gpio_init(pin::ROW_4); gpio_set_dir(pin::ROW_4, GPIO_OUT);
gpio_init(pin::ROW_5); gpio_set_dir(pin::ROW_5, GPIO_OUT);
gpio_init(pin::ROW_6); gpio_set_dir(pin::ROW_6, GPIO_OUT);
// initialise the bcd timing values and row selects in the bitstream
for(uint8_t row = 0; row < HEIGHT; row++) {
for(uint8_t frame = 0; frame < BCD_FRAMES; frame++) {
// determine offset in the buffer for this row/frame
uint16_t offset = (row * ROW_BYTES * BCD_FRAMES) + (ROW_BYTES * frame);
uint16_t row_select_offset = offset + 9;
uint16_t bcd_offset = offset + 10;
// the last bcd frame is used to allow the fets to discharge to avoid ghosting
if(frame == BCD_FRAMES - 1) {
bitstream[row_select_offset] = 0b11111111;
uint16_t bcd_ticks = 65535;
bitstream[bcd_offset + 1] = (bcd_ticks & 0xff00) >> 8;
bitstream[bcd_offset] = (bcd_ticks & 0xff);
for(uint8_t col = 0; col < 6; col++) {
bitstream[offset + col] = 0xff;
}
}else{
uint8_t row_select_mask = ~(1 << (7 - row));
bitstream[row_select_offset] = row_select_mask;
uint16_t bcd_ticks = 1 << frame;
bitstream[bcd_offset + 1] = (bcd_ticks & 0xff00) >> 8;
bitstream[bcd_offset] = (bcd_ticks & 0xff);
}
}
}
// setup button inputs
gpio_set_function(pin::A, GPIO_FUNC_SIO); gpio_set_dir(pin::A, GPIO_IN); gpio_pull_up(pin::A);
gpio_set_function(pin::B, GPIO_FUNC_SIO); gpio_set_dir(pin::B, GPIO_IN); gpio_pull_up(pin::B);
gpio_set_function(pin::X, GPIO_FUNC_SIO); gpio_set_dir(pin::X, GPIO_IN); gpio_pull_up(pin::X);
gpio_set_function(pin::Y, GPIO_FUNC_SIO); gpio_set_dir(pin::Y, GPIO_IN); gpio_pull_up(pin::Y);
// setup the pio
bitstream_pio = pio0;
if(unicorn == nullptr) {
bitstream_sm = pio_claim_unused_sm(bitstream_pio, true);
bitstream_sm_offset = pio_add_program(bitstream_pio, &unicorn_program);
}
pio_gpio_init(bitstream_pio, pin::LED_DATA);
pio_gpio_init(bitstream_pio, pin::LED_CLOCK);
pio_gpio_init(bitstream_pio, pin::LED_LATCH);
pio_gpio_init(bitstream_pio, pin::LED_BLANK);
pio_gpio_init(bitstream_pio, pin::ROW_0);
pio_gpio_init(bitstream_pio, pin::ROW_1);
pio_gpio_init(bitstream_pio, pin::ROW_2);
pio_gpio_init(bitstream_pio, pin::ROW_3);
pio_gpio_init(bitstream_pio, pin::ROW_4);
pio_gpio_init(bitstream_pio, pin::ROW_5);
pio_gpio_init(bitstream_pio, pin::ROW_6);
pio_sm_set_consecutive_pindirs(bitstream_pio, bitstream_sm, pin::LED_DATA, 4, true);
pio_sm_set_consecutive_pindirs(bitstream_pio, bitstream_sm, pin::ROW_6, 7, true);
pio_sm_config c = unicorn_program_get_default_config(bitstream_sm_offset);
// osr shifts right, autopull on, autopull threshold 8
sm_config_set_out_shift(&c, true, false, 32);
// configure out, set, and sideset pins
sm_config_set_out_pins(&c, pin::ROW_6, 7);
sm_config_set_sideset_pins(&c, pin::LED_CLOCK);
sm_config_set_set_pins(&c, pin::LED_DATA, 4);
// join fifos as only tx needed (gives 8 deep fifo instead of 4)
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
// setup chained dma transfer for pixel data to the pio
dma_channel = dma_claim_unused_channel(true);
dma_ctrl_channel = dma_claim_unused_channel(true);
dma_channel_config ctrl_config = dma_channel_get_default_config(dma_ctrl_channel);
channel_config_set_transfer_data_size(&ctrl_config, DMA_SIZE_32);
channel_config_set_read_increment(&ctrl_config, false);
channel_config_set_write_increment(&ctrl_config, false);
channel_config_set_chain_to(&ctrl_config, dma_channel);
dma_channel_configure(
dma_ctrl_channel,
&ctrl_config,
&dma_hw->ch[dma_channel].read_addr,
&bitstream_addr,
1,
false
);
dma_channel_config config = dma_channel_get_default_config(dma_channel);
channel_config_set_transfer_data_size(&config, DMA_SIZE_32);
channel_config_set_bswap(&config, false); // byte swap to reverse little endian
channel_config_set_dreq(&config, pio_get_dreq(bitstream_pio, bitstream_sm, true));
channel_config_set_chain_to(&config, dma_ctrl_channel);
dma_channel_configure(
dma_channel,
&config,
&bitstream_pio->txf[bitstream_sm],
NULL,
BITSTREAM_LENGTH / 4,
false);
pio_sm_init(bitstream_pio, bitstream_sm, bitstream_sm_offset, &c);
pio_sm_set_enabled(bitstream_pio, bitstream_sm, true);
// start the control channel
dma_start_channel_mask(1u << dma_ctrl_channel);
unicorn = this;
}
void PicoUnicorn::clear() {
for(uint8_t y = 0; y < HEIGHT; y++) {
for(uint8_t x = 0; x < WIDTH; x++) {
set_pixel(x, y, 0);
}
}
}
void PicoUnicorn::set_pixel(uint8_t x, uint8_t y, uint8_t r, uint8_t g, uint8_t b) {
if(x < 0 || x >= WIDTH || y < 0 || y >= HEIGHT) return;
// make those coordinates sane
x = (WIDTH - 1) - x;
// work out the byte offset of this pixel
uint8_t byte_offset = x / 2;
// check if it's the high or low nibble and create mask and shift value
uint8_t shift = x % 2 == 0 ? 0 : 4;
uint8_t nibble_mask = 0b00001111 << shift;
uint16_t gr = pimoroni::GAMMA_14BIT[r];
uint16_t gg = pimoroni::GAMMA_14BIT[g];
uint16_t gb = pimoroni::GAMMA_14BIT[b];
// set the appropriate bits in the separate bcd frames
for(uint8_t frame = 0; frame < BCD_FRAMES; frame++) {
// determine offset in the buffer for this row/frame
uint16_t offset = (y * ROW_BYTES * BCD_FRAMES) + (ROW_BYTES * frame);
uint8_t rgbd = ((gr & 0b1) << 1) | ((gg & 0b1) << 3) | ((gb & 0b1) << 2);
// shift to correct nibble
rgbd <<= shift;
// clear existing data
bitstream[offset + byte_offset] &= ~nibble_mask;
// set new data
bitstream[offset + byte_offset] |= rgbd;
gr >>= 1;
gg >>= 1;
gb >>= 1;
}
}
void PicoUnicorn::set_pixel(uint8_t x, uint8_t y, uint8_t v) {
set_pixel(x, y, v, v, v);
}
bool PicoUnicorn::is_pressed(uint8_t button) {
return !gpio_get(button);
}
void PicoUnicorn::dma_safe_abort(uint channel) {
// Tear down the DMA channel.
// This is copied from: https://github.com/raspberrypi/pico-sdk/pull/744/commits/5e0e8004dd790f0155426e6689a66e08a83cd9fc
uint32_t irq0_save = dma_hw->inte0 & (1u << channel);
hw_clear_bits(&dma_hw->inte0, irq0_save);
dma_hw->abort = 1u << channel;
// To fence off on in-flight transfers, the BUSY bit should be polled
// rather than the ABORT bit, because the ABORT bit can clear prematurely.
while (dma_hw->ch[channel].ctrl_trig & DMA_CH0_CTRL_TRIG_BUSY_BITS) tight_loop_contents();
// Clear the interrupt (if any) and restore the interrupt masks.
dma_hw->ints0 = 1u << channel;
hw_set_bits(&dma_hw->inte0, irq0_save);
}
void PicoUnicorn::update(PicoGraphics *graphics) {
if(unicorn == this) {
if(graphics->pen_type == PicoGraphics::PEN_RGB888) {
uint32_t *p = (uint32_t *)graphics->frame_buffer;
for(int y = 0; y < HEIGHT; y++) {
for(int x = 0; x < WIDTH; x++) {
uint32_t col = *p;
uint8_t r = (col & 0xff0000) >> 16;
uint8_t g = (col & 0x00ff00) >> 8;
uint8_t b = (col & 0x0000ff) >> 0;
p++;
set_pixel(x, y, r, g, b);
}
}
}
else if(graphics->pen_type == PicoGraphics::PEN_RGB565) {
uint16_t *p = (uint16_t *)graphics->frame_buffer;
for(int y = 0; y < HEIGHT; y++) {
for(int x = 0; x < WIDTH; x++) {
uint16_t col = __builtin_bswap16(*p);
uint8_t r = (col & 0b1111100000000000) >> 8;
uint8_t g = (col & 0b0000011111100000) >> 3;
uint8_t b = (col & 0b0000000000011111) << 3;
p++;
set_pixel(x, y, r, g, b);
}
}
}
else if(graphics->pen_type == PicoGraphics::PEN_P8 || graphics->pen_type == PicoGraphics::PEN_P4) {
int offset = 0;
graphics->frame_convert(PicoGraphics::PEN_RGB888, [this, offset](void *data, size_t length) mutable {
uint32_t *p = (uint32_t *)data;
for(auto i = 0u; i < length / 4; i++) {
int x = offset % WIDTH;
int y = offset / WIDTH;
uint32_t col = *p;
uint8_t r = (col & 0xff0000) >> 16;
uint8_t g = (col & 0x00ff00) >> 8;
uint8_t b = (col & 0x0000ff) >> 0;
set_pixel(x, y, r, g, b);
offset++;
p++;
}
});
}
}
}
}