pimoroni-pico/micropython/examples/inventor2040w/motors/position_wave.py

114 wiersze
3.5 KiB
Python

import time
import math
from pimoroni import PID, REVERSED_DIR
from inventor import Inventor2040W, NUM_MOTORS, MOTOR_A, MOTOR_B, LED_GP0, LED_SERVO_6
"""
A demonstration of driving both of Inventor 2040 W's motor outputs between
positions, with the help of their attached encoders and PID control.
Press "User" to exit the program.
"""
ENCODER_NAMES = ["A", "B"]
GEAR_RATIO = 50 # The gear ratio of the motors
SPEED_SCALE = 5.4 # The scaling to apply to each motor's speed to match its real-world speed
UPDATES = 100 # How many times to update the motor per second
UPDATE_RATE = 1 / UPDATES
TIME_FOR_EACH_MOVE = 2 # The time to travel between each value
UPDATES_PER_MOVE = TIME_FOR_EACH_MOVE * UPDATES
PRINT_DIVIDER = 4 # How many of the updates should be printed (i.e. 2 would be every other update)
# LED constant
BRIGHTNESS = 0.4 # The brightness of the RGB LED
# PID values
POS_KP = 0.14 # Position proportional (P) gain
POS_KI = 0.0 # Position integral (I) gain
POS_KD = 0.0022 # Position derivative (D) gain
# Create a new Inventor2040W
board = Inventor2040W(motor_gear_ratio=GEAR_RATIO)
# Set the speed scale of the motors
board.motors[MOTOR_A].speed_scale(SPEED_SCALE)
board.motors[MOTOR_B].speed_scale(SPEED_SCALE)
# Reverse the direction of the left motor and encoder
board.motors[MOTOR_A].direction(REVERSED_DIR)
board.encoders[MOTOR_A].direction(REVERSED_DIR)
# Create PID objects for position control
pos_pids = [PID(POS_KP, POS_KI, POS_KD, UPDATE_RATE) for i in range(NUM_MOTORS)]
# Enable all motors
for m in board.motors:
m.enable()
update = 0
print_count = 0
# Set the initial and end values
start_value = 0.0
end_value = 270.0
captures = [None] * NUM_MOTORS
# Continually move the motor until the user button is pressed
while not board.switch_pressed():
# Capture the state of all the encoders
for i in range(NUM_MOTORS):
captures[i] = board.encoders[i].capture()
# Calculate how far along this movement to be
percent_along = min(update / UPDATES_PER_MOVE, 1.0)
for i in range(NUM_MOTORS):
# Move the motor between values using cosine
pos_pids[i].setpoint = (((-math.cos(percent_along * math.pi) + 1.0) / 2.0) * (end_value - start_value)) + start_value
# Calculate the velocity to move the motor closer to the position setpoint
vel = pos_pids[i].calculate(captures[i].degrees, captures[i].degrees_per_second)
# Set the new motor driving speed
board.motors[i].speed(vel)
# Update the LEDs
board.leds.set_hsv(LED_GP0, percent_along, 1.0, BRIGHTNESS)
board.leds.set_hsv(LED_SERVO_6, percent_along, 1.0, BRIGHTNESS)
# Print out the current motor values and their setpoints, but only on every multiple
if print_count == 0:
for i in range(NUM_MOTORS):
print(ENCODER_NAMES[i], "=", captures[i].degrees, end=", ")
print()
# Increment the print count, and wrap it
print_count = (print_count + 1) % PRINT_DIVIDER
update += 1 # Move along in time
# Have we reached the end of this movement?
if update >= UPDATES_PER_MOVE:
update = 0 # Reset the counter
# Swap the start and end values
temp = start_value
start_value = end_value
end_value = temp
time.sleep(UPDATE_RATE)
# Stop all the motors
for m in board.motors:
m.disable()
# Turn off the LEDs
board.leds.clear()