pico-stuff/apps/tcp_server/main.c

379 wiersze
11 KiB
C

// Initial TinyUSB RNDIS written by Peter Lawrence.
// Modifications were made by Luigi Cruz.
#include <stdio.h>
#include "pico/stdlib.h"
#include "hardware/adc.h"
#include "hardware/dma.h"
#include "hardware/irq.h"
#include "hardware/pwm.h"
#include "hardware/clocks.h"
#include "bsp/board.h"
#include "tusb.h"
#include "dhserver.h"
#include "dnserver.h"
#include "lwip/init.h"
#include "lwip/timeouts.h"
#include "lwip/api.h"
#include "lwip/sys.h"
#include "lwip/tcp.h"
/* lwip context */
static struct netif netif_data;
/* shared between tud_network_recv_cb() and service_traffic() */
static struct pbuf *received_frame;
/* this is used by this code, ./class/net/net_driver.c, and usb_descriptors.c */
/* ideally speaking, this should be generated from the hardware's unique ID (if available) */
/* it is suggested that the first byte is 0x02 to indicate a link-local address */
const uint8_t tud_network_mac_address[6] = {0x02,0x02,0x84,0x6A,0x96,0x00};
/* network parameters of this MCU */
static const ip_addr_t ipaddr = IPADDR4_INIT_BYTES(192, 168, 7, 1);
static const ip_addr_t netmask = IPADDR4_INIT_BYTES(255, 255, 255, 0);
static const ip_addr_t gateway = IPADDR4_INIT_BYTES(0, 0, 0, 0);
/* database IP addresses that can be offered to the host; this must be in RAM to store assigned MAC addresses */
static dhcp_entry_t entries[] = {
/* mac ip address lease time */
{ {0}, IPADDR4_INIT_BYTES(192, 168, 7, 2), 24 * 60 * 60 },
{ {0}, IPADDR4_INIT_BYTES(192, 168, 7, 3), 24 * 60 * 60 },
{ {0}, IPADDR4_INIT_BYTES(192, 168, 7, 4), 24 * 60 * 60 },
};
static const dhcp_config_t dhcp_config = {
.router = IPADDR4_INIT_BYTES(0, 0, 0, 0), /* router address (if any) */
.port = 67, /* listen port */
.dns = IPADDR4_INIT_BYTES(192, 168, 7, 1), /* dns server (if any) */
"usb", /* dns suffix */
TU_ARRAY_SIZE(entries), /* num entry */
entries /* entries */
};
static err_t linkoutput_fn(struct netif *netif, struct pbuf *p) {
(void)netif;
for (;;) {
/* if TinyUSB isn't ready, we must signal back to lwip that there is nothing we can do */
if (!tud_ready()) return ERR_USE;
/* if the network driver can accept another packet, we make it happen */
if (tud_network_can_xmit()) {
tud_network_xmit(p, 0 /* unused for this example */);
return ERR_OK;
}
/* transfer execution to TinyUSB in the hopes that it will finish transmitting the prior packet */
tud_task();
}
}
static err_t output_fn(struct netif *netif, struct pbuf *p, const ip_addr_t *addr) {
return etharp_output(netif, p, addr);
}
static err_t netif_init_cb(struct netif *netif) {
LWIP_ASSERT("netif != NULL", (netif != NULL));
netif->mtu = CFG_TUD_NET_MTU;
netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_LINK_UP | NETIF_FLAG_UP;
netif->state = NULL;
netif->name[0] = 'E';
netif->name[1] = 'X';
netif->linkoutput = linkoutput_fn;
netif->output = output_fn;
return ERR_OK;
}
static void init_lwip(void) {
struct netif *netif = &netif_data;
lwip_init();
/* the lwip virtual MAC address must be different from the host's; to ensure this, we toggle the LSbit */
netif->hwaddr_len = sizeof(tud_network_mac_address);
memcpy(netif->hwaddr, tud_network_mac_address, sizeof(tud_network_mac_address));
netif->hwaddr[5] ^= 0x01;
netif = netif_add(netif, &ipaddr, &netmask, &gateway, NULL, netif_init_cb, ip_input);
netif_set_default(netif);
}
/* handle any DNS requests from dns-server */
bool dns_query_proc(const char *name, ip_addr_t *addr)
{
if (0 == strcmp(name, "tiny.usb"))
{
*addr = ipaddr;
return true;
}
return false;
}
bool tud_network_recv_cb(const uint8_t *src, uint16_t size) {
/* this shouldn't happen, but if we get another packet before
parsing the previous, we must signal our inability to accept it */
if (received_frame) return false;
if (size) {
struct pbuf *p = pbuf_alloc(PBUF_RAW, size, PBUF_POOL);
if (p) {
/* pbuf_alloc() has already initialized struct; all we need to do is copy the data */
memcpy(p->payload, src, size);
/* store away the pointer for service_traffic() to later handle */
received_frame = p;
}
}
return true;
}
uint16_t tud_network_xmit_cb(uint8_t *dst, void *ref, uint16_t arg) {
struct pbuf *p = (struct pbuf *)ref;
struct pbuf *q;
uint16_t len = 0;
(void)arg; /* unused for this example */
/* traverse the "pbuf chain"; see ./lwip/src/core/pbuf.c for more info */
for(q = p; q != NULL; q = q->next) {
memcpy(dst, (char *)q->payload, q->len);
dst += q->len;
len += q->len;
if (q->len == q->tot_len) break;
}
return len;
}
static void service_traffic(void)
{
/* handle any packet received by tud_network_recv_cb() */
if (received_frame) {
ethernet_input(received_frame, &netif_data);
pbuf_free(received_frame);
received_frame = NULL;
tud_network_recv_renew();
}
sys_check_timeouts();
}
void tud_network_init_cb(void) {
/* if the network is re-initializing and we have a leftover packet, we must do a cleanup */
if (received_frame) {
pbuf_free(received_frame);
received_frame = NULL;
}
}
bool streaming = false;
struct tcp_pcb* client;
struct repeating_timer timer;
//#define DEBUG
#define CAPTURE_CHANNEL 0
#define CAPTURE_DEPTH 500
uint dma_chan_a, dma_chan_b;
uint8_t capture_buf_a[CAPTURE_DEPTH];
uint8_t capture_buf_b[CAPTURE_DEPTH];
void dma_handler(uint8_t* buffer, int id) {
#ifdef DEBUG
char str[64];
int len = sprintf(str, "DMA IRQ %d [%d %d ... %d]\n", id, buffer[0], buffer[1], buffer[CAPTURE_DEPTH-1]);
tcp_write(client, str, len, 0);
tcp_output(client);
#else
tcp_write(client, buffer, CAPTURE_DEPTH, 0x01);
tcp_output(client);
#endif
}
void dma_handler_a() {
dma_handler((uint8_t*)&capture_buf_a, 0);
dma_hw->ints0 = 1u << dma_chan_a;
dma_channel_set_write_addr(dma_chan_a, &capture_buf_a, false);
}
void dma_handler_b() {
dma_handler((uint8_t*)&capture_buf_b, 1);
dma_hw->ints1 = 1u << dma_chan_b;
dma_channel_set_write_addr(dma_chan_b, &capture_buf_b, false);
}
static void init_adc_dma_chain() {
adc_gpio_init(26 + CAPTURE_CHANNEL);
adc_init();
adc_select_input(CAPTURE_CHANNEL);
adc_fifo_setup(
true, // Write to FIFO
true, // Enable DREQ
1, // Trigger DREQ with at least one sample
false, // No ERR bit
true // Shift each sample by 8 bits
);
adc_set_clkdiv(0);
dma_channel_config dma_cfg_a, dma_cfg_b;
dma_chan_a = dma_claim_unused_channel(true);
dma_chan_b = dma_claim_unused_channel(true);
dma_cfg_a = dma_channel_get_default_config(dma_chan_a);
dma_cfg_b = dma_channel_get_default_config(dma_chan_b);
channel_config_set_transfer_data_size(&dma_cfg_a, DMA_SIZE_8);
channel_config_set_transfer_data_size(&dma_cfg_b, DMA_SIZE_8);
channel_config_set_read_increment(&dma_cfg_a, false);
channel_config_set_read_increment(&dma_cfg_b, false);
channel_config_set_write_increment(&dma_cfg_a, true);
channel_config_set_write_increment(&dma_cfg_b, true);
channel_config_set_dreq(&dma_cfg_a, DREQ_ADC);
channel_config_set_dreq(&dma_cfg_b, DREQ_ADC);
channel_config_set_chain_to(&dma_cfg_a, dma_chan_b);
channel_config_set_chain_to(&dma_cfg_b, dma_chan_a);
dma_channel_configure(dma_chan_a, &dma_cfg_a,
capture_buf_a, // dst
&adc_hw->fifo, // src
CAPTURE_DEPTH, // transfer count
true // start now
);
dma_channel_configure(dma_chan_b, &dma_cfg_b,
capture_buf_b, // dst
&adc_hw->fifo, // src
CAPTURE_DEPTH, // transfer count
false // start now
);
dma_channel_set_irq0_enabled(dma_chan_a, true);
irq_set_exclusive_handler(DMA_IRQ_0, dma_handler_a);
irq_set_enabled(DMA_IRQ_0, true);
dma_channel_set_irq1_enabled(dma_chan_b, true);
irq_set_exclusive_handler(DMA_IRQ_1, dma_handler_b);
irq_set_enabled(DMA_IRQ_1, true);
adc_run(false);
}
static void start_stream() {
dma_channel_set_write_addr(dma_chan_a, &capture_buf_a, true);
dma_channel_set_write_addr(dma_chan_b, &capture_buf_b, false);
adc_run(true);
gpio_put(PICO_DEFAULT_LED_PIN, 1);
streaming = true;
}
static void stop_stream() {
adc_run(false);
adc_fifo_drain();
dma_channel_set_write_addr(dma_chan_a, &capture_buf_a, false);
dma_channel_set_write_addr(dma_chan_b, &capture_buf_b, false);
gpio_put(PICO_DEFAULT_LED_PIN, 0);
streaming = false;
}
static void srv_close(struct tcp_pcb *pcb){
stop_stream();
tcp_arg(pcb, NULL);
tcp_sent(pcb, NULL);
tcp_recv(pcb, NULL);
tcp_close(pcb);
}
static void srv_err(void *arg, err_t err) {
// Probably an indication that the client connection went kaput! Stopping stream...
srv_close(client);
}
static err_t srv_receive(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err) {
if (err != ERR_OK && p != NULL)
goto exception;
tcp_recved(pcb, p->tot_len);
tcp_sent(pcb, NULL);
// The connection is closed if the client sends "X".
if (((char*)p->payload)[0] == 'X')
srv_close(pcb);
exception:
pbuf_free(p);
return err;
}
static err_t srv_accept(void * arg, struct tcp_pcb * pcb, err_t err) {
if (err != ERR_OK)
return err;
tcp_setprio(pcb, TCP_PRIO_MAX);
tcp_recv(pcb, srv_receive);
tcp_err(pcb, srv_err);
tcp_poll(pcb, NULL, 4);
client = pcb;
start_stream();
return err;
}
bool led_timer(struct repeating_timer *t) {
if (!streaming) {
int current = gpio_get(PICO_DEFAULT_LED_PIN);
gpio_put(PICO_DEFAULT_LED_PIN, !current);
}
return true;
}
int main(void) {
board_init();
// Init built-in LED.
gpio_init(PICO_DEFAULT_LED_PIN);
gpio_set_dir(PICO_DEFAULT_LED_PIN, GPIO_OUT);
// Init ADC DMA chain.
init_adc_dma_chain();
// Init network stack.
tusb_init();
init_lwip();
// Startup lwIP stack.
while (!netif_is_up(&netif_data));
while (dhserv_init(&dhcp_config) != ERR_OK);
while (dnserv_init(&ipaddr, 53, dns_query_proc) != ERR_OK);
// Start TCP server.
struct tcp_pcb* pcb = tcp_new();
pcb->so_options |= SOF_KEEPALIVE;
pcb->keep_intvl = 75000000;
tcp_bind(pcb, IP_ADDR_ANY, 7777);
// Start listening for connections.
struct tcp_pcb* listen = tcp_listen(pcb);
tcp_accept(listen, srv_accept);
// Start blinking LED indicator.
add_repeating_timer_ms(250, led_timer, NULL, &timer);
// Listen to events.
while (1) {
tud_task();
service_traffic();
}
return 0;
}