/* * The MIT License (MIT) * * Copyright (c) 2021 Peter Lawrence * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "bsp/board.h" #include "tusb.h" #include #include "hardware/resets.h" /* this is code that runs before main() and cannot be used once execution reaches main() (since it exists in RAM we have not reserved) */ __attribute__ (( section(".bootc") )) static void pll_init(pll_hw_t *pll, uint32_t refdiv, uint32_t vco_freq, uint32_t post_div1, uint8_t post_div2) { uint32_t ref_mhz = XOSC_MHZ / refdiv; // What are we multiplying the reference clock by to get the vco freq // (The regs are called div, because you divide the vco output and compare it to the refclk) uint32_t fbdiv = vco_freq / (ref_mhz * 1000000UL); // fbdiv assert(fbdiv >= 16 && fbdiv <= 320); // Check divider ranges assert((post_div1 >= 1 && post_div1 <= 7) && (post_div2 >= 1 && post_div2 <= 7)); // post_div1 should be >= post_div2 // from appnote page 11 // postdiv1 is designed to operate with a higher input frequency // than postdiv2 assert(post_div2 <= post_div1); // Check that reference frequency is no greater than vco / 16 assert(ref_mhz <= (vco_freq / 16)); // Set up post dividers - div1 feeds into div2 so if div1 is 5 and div2 is 2 then you get a divide by 10 uint32_t pdiv = (post_div1 << PLL_PRIM_POSTDIV1_LSB) | (post_div2 << PLL_PRIM_POSTDIV2_LSB); uint32_t pll_reset = (pll_usb_hw == pll) ? RESETS_RESET_PLL_USB_BITS : RESETS_RESET_PLL_SYS_BITS; reset_block(pll_reset); unreset_block_wait(pll_reset); // Turn off PLL in case it is already running pll->pwr = 0xffffffff; pll->fbdiv_int = 0; pll->cs = refdiv; // Put calculated value into feedback divider pll->fbdiv_int = fbdiv; // Turn on PLL uint32_t power = PLL_PWR_PD_BITS | // Main power PLL_PWR_VCOPD_BITS; // VCO Power hw_clear_bits(&pll->pwr, power); // Wait for PLL to lock while (!(pll->cs & PLL_CS_LOCK_BITS)); // Set up post dividers pll->prim = pdiv; // Turn on post divider hw_clear_bits(&pll->pwr, PLL_PWR_POSTDIVPD_BITS); } /* This is a more streamlined alternative to the current pico-sdk based TinyUSB board support package. Sticking to C and avoiding all that C++ yields a much smaller executable. */ /* overhaul of clock_configure() from pico-sdk to use much less memory */ __attribute__ (( section(".bootc") )) bool simple_clock_configure(enum clock_index clk_index, uint32_t src, uint32_t auxsrc, bool glitchless) { const uint32_t div = 0x100; /* always 1:1 ratio */ clock_hw_t *clock = &clocks_hw->clk[clk_index]; // If increasing divisor, set divisor before source. Otherwise set source // before divisor. This avoids a momentary overspeed when e.g. switching // to a faster source and increasing divisor to compensate. if (div > clock->div) clock->div = div; // If switching a glitchless slice (ref or sys) to an aux source, switch // away from aux *first* to avoid passing glitches when changing aux mux. // Assume (!!!) glitchless source 0 is no faster than the aux source. if (glitchless) { hw_clear_bits(&clock->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS); while (!(clock->selected & 1u)); } // If no glitchless mux, cleanly stop the clock to avoid glitches // propagating when changing aux mux. Note it would be a really bad idea // to do this on one of the glitchless clocks (clk_sys, clk_ref). else { hw_clear_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS); } // Set aux mux first, and then glitchless mux if this clock has one hw_write_masked(&clock->ctrl, (auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB), CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS ); if (glitchless) { hw_write_masked(&clock->ctrl, src << CLOCKS_CLK_REF_CTRL_SRC_LSB, CLOCKS_CLK_REF_CTRL_SRC_BITS ); while (!(clock->selected & (1u << src))); } hw_set_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS); // Now that the source is configured, we can trust that the user-supplied // divisor is a safe value. clock->div = div; return true; } __attribute__ (( section(".bootc") )) static void usb_clock_init(void) { hw_set_bits(&resets_hw->reset, RESETS_RESET_PLL_USB_BITS); hw_clear_bits(&resets_hw->reset, RESETS_RESET_PLL_USB_BITS); while (~resets_hw->reset_done & RESETS_RESET_PLL_USB_BITS); pll_init(pll_usb_hw, 1, 480 * 1000000, 5, 2); // CLK SYS = PLL USB (48MHz) / 1 = 48MHz simple_clock_configure(clk_sys, CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX, CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, true); // CLK USB = PLL USB (48MHz) / 1 = 48MHz simple_clock_configure(clk_usb, 0, // No GLMUX CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, false); } typedef void *(*rom_table_lookup_fn)(uint16_t *table, uint32_t code); #define rom_hword_as_ptr(rom_address) (void *)(uint32_t)(*(uint16_t *)rom_address) __attribute__ (( section(".bootc") )) static void *rom_func_lookup(uint32_t code) { rom_table_lookup_fn rom_table_lookup = (rom_table_lookup_fn)rom_hword_as_ptr(0x18); uint16_t *func_table = (uint16_t *)rom_hword_as_ptr(0x14); return rom_table_lookup(func_table, code); } __attribute__ (( section(".bootc") )) static void *rom_data_lookup(uint32_t code) { rom_table_lookup_fn rom_table_lookup = (rom_table_lookup_fn)rom_hword_as_ptr(0x18); uint16_t *data_table = (uint16_t *)rom_hword_as_ptr(0x16); return rom_table_lookup(data_table, code); } __attribute__ (( section(".bootc") )) static uint32_t rom_table_code(char c1, char c2) { return (c2 << 8) | c1; } typedef uint32_t (*pop_fn)(uint32_t); typedef void (*void_fn)(void); extern char unique_id[17]; __attribute__ (( section(".bootc") )) void SystemInit(void) { void_fn connect_internal_flash = rom_func_lookup(rom_table_code('I', 'F')); void_fn flash_exit_xip = rom_func_lookup(rom_table_code('E', 'X')); connect_internal_flash(); flash_exit_xip(); hw_write_masked(&ioqspi_hw->io[1].ctrl, IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_VALUE_LOW << IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_LSB, IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_BITS ); /* Unique ID command and 32-bits of pipeline delay */ for (int i = 0; i < 5; i++) { ssi_hw->dr0 = 0x4B; while (!(ssi_hw->sr & SSI_SR_RFNE_BITS)); (void)ssi_hw->dr0; } /* read the 64-bits and write as hex chars */ char *pnt = unique_id; for (int i = 0; i < 8; i++) { ssi_hw->dr0 = 0; while (!(ssi_hw->sr & SSI_SR_RFNE_BITS)); uint8_t byte = ssi_hw->dr0; *pnt++ = "0123456789ABCDEF"[(byte >> 4) & 0xf]; *pnt++ = "0123456789ABCDEF"[(byte >> 0) & 0xf]; } hw_write_masked(&ioqspi_hw->io[1].ctrl, IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_VALUE_HIGH << IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_LSB, IO_QSPI_GPIO_QSPI_SS_CTRL_OUTOVER_BITS ); usb_clock_init(); }