nanovna-saver/NanoVNASaver/Analysis/BandStopAnalysis.py

281 wiersze
12 KiB
Python

# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt5 import QtWidgets
from NanoVNASaver.Analysis.BandPassAnalysis import BandPassAnalysis
from NanoVNASaver.Formatting import format_frequency
logger = logging.getLogger(__name__)
class BandStopAnalysis(BandPassAnalysis):
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
layout = QtWidgets.QFormLayout()
self._widget.setLayout(layout)
layout.addRow(QtWidgets.QLabel("Band stop filter analysis"))
self.result_label = QtWidgets.QLabel()
self.lower_cutoff_label = QtWidgets.QLabel()
self.lower_six_db_label = QtWidgets.QLabel()
self.lower_sixty_db_label = QtWidgets.QLabel()
self.lower_db_per_octave_label = QtWidgets.QLabel()
self.lower_db_per_decade_label = QtWidgets.QLabel()
self.upper_cutoff_label = QtWidgets.QLabel()
self.upper_six_db_label = QtWidgets.QLabel()
self.upper_sixty_db_label = QtWidgets.QLabel()
self.upper_db_per_octave_label = QtWidgets.QLabel()
self.upper_db_per_decade_label = QtWidgets.QLabel()
layout.addRow("Result:", self.result_label)
layout.addRow(QtWidgets.QLabel(""))
self.center_frequency_label = QtWidgets.QLabel()
self.span_label = QtWidgets.QLabel()
self.six_db_span_label = QtWidgets.QLabel()
self.quality_label = QtWidgets.QLabel()
layout.addRow("Center frequency:", self.center_frequency_label)
layout.addRow("Bandwidth (-3 dB):", self.span_label)
layout.addRow("Quality factor:", self.quality_label)
layout.addRow("Bandwidth (-6 dB):", self.six_db_span_label)
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Lower side:"))
layout.addRow("Cutoff frequency:", self.lower_cutoff_label)
layout.addRow("-6 dB point:", self.lower_six_db_label)
layout.addRow("-60 dB point:", self.lower_sixty_db_label)
layout.addRow("Roll-off:", self.lower_db_per_octave_label)
layout.addRow("Roll-off:", self.lower_db_per_decade_label)
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Upper side:"))
layout.addRow("Cutoff frequency:", self.upper_cutoff_label)
layout.addRow("-6 dB point:", self.upper_six_db_label)
layout.addRow("-60 dB point:", self.upper_sixty_db_label)
layout.addRow("Roll-off:", self.upper_db_per_octave_label)
layout.addRow("Roll-off:", self.upper_db_per_decade_label)
def reset(self):
self.result_label.clear()
self.span_label.clear()
self.quality_label.clear()
self.six_db_span_label.clear()
self.upper_cutoff_label.clear()
self.upper_six_db_label.clear()
self.upper_sixty_db_label.clear()
self.upper_db_per_octave_label.clear()
self.upper_db_per_decade_label.clear()
self.lower_cutoff_label.clear()
self.lower_six_db_label.clear()
self.lower_sixty_db_label.clear()
self.lower_db_per_octave_label.clear()
self.lower_db_per_decade_label.clear()
def runAnalysis(self):
if not self.app.data.s21:
logger.debug("No data to analyse")
self.result_label.setText("No data to analyse.")
return
self.reset()
s21 = self.app.data.s21
gains = [d.gain for d in s21]
peak_location, pass_band_db = max(enumerate(gains), key=lambda i: i[1])
logger.debug("Found peak of %f at %d",
pass_band_db, s21[peak_location].freq)
lower_cutoff_location = next(
(i for i in range(len(s21)) if (pass_band_db - s21[i].gain) > 3), -1)
lower_cutoff_frequency = s21[lower_cutoff_location].freq
lower_cutoff_gain = (
s21[lower_cutoff_location].gain - pass_band_db)
if lower_cutoff_gain < -4:
logger.debug("Lower cutoff frequency found at %f dB"
" - insufficient data points for true -3 dB point.",
lower_cutoff_gain)
logger.debug("Found true lower cutoff frequency at %d",
lower_cutoff_frequency)
self.lower_cutoff_label.setText(
f"{format_frequency(lower_cutoff_frequency)}"
f" ({round(lower_cutoff_gain, 1)} dB)")
self.app.markers[1].setFrequency(str(lower_cutoff_frequency))
self.app.markers[1].frequencyInput.setText(str(lower_cutoff_frequency))
upper_cutoff_location = next((i for i in range(
len(s21) - 1, -1, -1) if (pass_band_db - s21[i].gain) > 3), -1)
upper_cutoff_frequency = (
s21[upper_cutoff_location].freq)
upper_cutoff_gain = (
s21[upper_cutoff_location].gain - pass_band_db)
if upper_cutoff_gain < -4:
logger.debug("Upper cutoff frequency found at %f dB"
" - insufficient data points for true -3 dB point.",
upper_cutoff_gain)
logger.debug("Found true upper cutoff frequency at %d",
upper_cutoff_frequency)
self.upper_cutoff_label.setText(
f"{format_frequency(upper_cutoff_frequency)}"
f" ({round(upper_cutoff_gain, 1)} dB)")
self.app.markers[2].setFrequency(str(upper_cutoff_frequency))
self.app.markers[2].frequencyInput.setText(str(upper_cutoff_frequency))
span = upper_cutoff_frequency - lower_cutoff_frequency
center_frequency = math.sqrt(
lower_cutoff_frequency * upper_cutoff_frequency)
q = center_frequency / span
self.span_label.setText(format_frequency(span))
self.center_frequency_label.setText(
format_frequency(center_frequency))
self.quality_label.setText(str(round(q, 2)))
self.app.markers[0].setFrequency(str(round(center_frequency)))
self.app.markers[0].frequencyInput.setText(
str(round(center_frequency)))
lower_six_db_location = next((i for i in range(
lower_cutoff_location, len(s21)) if (pass_band_db - s21[i].gain) > 6), -1)
if lower_six_db_location < 0:
self.result_label.setText("Lower 6 dB location not found.")
return
lower_six_db_cutoff_frequency = (
s21[lower_six_db_location].freq)
self.lower_six_db_label.setText(
format_frequency(lower_six_db_cutoff_frequency))
ten_db_location = next((i for i in range(lower_cutoff_location, len(
s21)) if (pass_band_db - s21[i].gain) > 10), -1)
twenty_db_location = next((i for i in range(
lower_cutoff_location, len(s21)) if (pass_band_db - s21[i].gain) > 20), -1)
sixty_db_location = next((i for i in range(
lower_six_db_location, len(s21)) if (pass_band_db - s21[i].gain) > 60), -1)
if sixty_db_location > 0:
sixty_db_cutoff_frequency = (
s21[sixty_db_location].freq)
self.lower_sixty_db_label.setText(
format_frequency(sixty_db_cutoff_frequency))
elif ten_db_location != -1 and twenty_db_location != -1:
ten = s21[ten_db_location].freq
twenty = s21[twenty_db_location].freq
sixty_db_frequency = ten * \
10 ** (5 * (math.log10(twenty) - math.log10(ten)))
self.lower_sixty_db_label.setText(
f"{format_frequency(sixty_db_frequency)} (derived)")
else:
self.lower_sixty_db_label.setText("Not calculated")
if (ten_db_location > 0 and
twenty_db_location > 0 and
ten_db_location != twenty_db_location):
octave_attenuation, decade_attenuation = self.calculateRolloff(
ten_db_location, twenty_db_location)
self.lower_db_per_octave_label.setText(
f"{round(octave_attenuation, 3)} dB / octave")
self.lower_db_per_decade_label.setText(
f"{round(decade_attenuation, 3)} dB / decade")
else:
self.lower_db_per_octave_label.setText("Not calculated")
self.lower_db_per_decade_label.setText("Not calculated")
upper_six_db_location = next((i for i in range(
upper_cutoff_location, -1, -1) if (pass_band_db - s21[i].gain) > 6), -1)
if upper_six_db_location < 0:
self.result_label.setText("Upper 6 dB location not found.")
return
upper_six_db_cutoff_frequency = (
s21[upper_six_db_location].freq)
self.upper_six_db_label.setText(
format_frequency(upper_six_db_cutoff_frequency))
six_db_span = (
upper_six_db_cutoff_frequency - lower_six_db_cutoff_frequency)
self.six_db_span_label.setText(
format_frequency(six_db_span))
ten_db_location = next((i for i in range(
upper_cutoff_location, -1, -1) if (pass_band_db - s21[i].gain) > 10), -1)
twenty_db_location = next((i for i in range(
upper_cutoff_location, -1, -1) if (pass_band_db - s21[i].gain) > 20), -1)
sixty_db_location = next((i for i in range(
upper_six_db_location, -1, -1) if (pass_band_db - s21[i].gain) > 60), -1)
if sixty_db_location > 0:
sixty_db_cutoff_frequency = (
s21[sixty_db_location].freq)
self.upper_sixty_db_label.setText(
format_frequency(sixty_db_cutoff_frequency))
elif ten_db_location != -1 and twenty_db_location != -1:
ten = s21[ten_db_location].freq
twenty = s21[twenty_db_location].freq
sixty_db_frequency = ten * 10 ** (
5 * (math.log10(twenty) - math.log10(ten)))
self.upper_sixty_db_label.setText(
f"{format_frequency(sixty_db_frequency)} (derived)")
else:
self.upper_sixty_db_label.setText("Not calculated")
if (ten_db_location > 0 and
twenty_db_location > 0 and
ten_db_location != twenty_db_location):
octave_attenuation, decade_attenuation = self.calculateRolloff(
ten_db_location, twenty_db_location)
self.upper_db_per_octave_label.setText(
f"{round(octave_attenuation, 3)} dB / octave")
self.upper_db_per_decade_label.setText(
f"{round(decade_attenuation, 3)} dB / decade")
else:
self.upper_db_per_octave_label.setText("Not calculated")
self.upper_db_per_decade_label.setText("Not calculated")
if upper_cutoff_gain < -4 or lower_cutoff_gain < -4:
self.result_label.setText(
f"Analysis complete ({len(self.app.data.s11)} points)\n"
f"Insufficient data for analysis. Increase segment count.")
return
self.result_label.setText(
f"Analysis complete ({len(self.app.data.s11)} points)")