nanovna-saver/NanoVNASaver/Analysis/BandPassAnalysis.py

363 wiersze
15 KiB
Python

# NanoVNASaver
#
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019, 2020 Rune B. Broberg
# Copyright (C) 2020,2021 NanoVNA-Saver Authors
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt5 import QtWidgets
from NanoVNASaver.Formatting import format_frequency
from NanoVNASaver.Analysis import Analysis
logger = logging.getLogger(__name__)
class BandPassAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
layout = QtWidgets.QFormLayout()
self._widget.setLayout(layout)
layout.addRow(QtWidgets.QLabel("Band pass filter analysis"))
layout.addRow(
QtWidgets.QLabel(
f"Please place {self.app.markers[0].name} in the filter passband."))
self.result_label = QtWidgets.QLabel()
self.lower_cutoff_label = QtWidgets.QLabel()
self.lower_six_db_label = QtWidgets.QLabel()
self.lower_sixty_db_label = QtWidgets.QLabel()
self.lower_db_per_octave_label = QtWidgets.QLabel()
self.lower_db_per_decade_label = QtWidgets.QLabel()
self.upper_cutoff_label = QtWidgets.QLabel()
self.upper_six_db_label = QtWidgets.QLabel()
self.upper_sixty_db_label = QtWidgets.QLabel()
self.upper_db_per_octave_label = QtWidgets.QLabel()
self.upper_db_per_decade_label = QtWidgets.QLabel()
layout.addRow("Result:", self.result_label)
layout.addRow(QtWidgets.QLabel(""))
self.center_frequency_label = QtWidgets.QLabel()
self.span_label = QtWidgets.QLabel()
self.six_db_span_label = QtWidgets.QLabel()
self.quality_label = QtWidgets.QLabel()
layout.addRow("Center frequency:", self.center_frequency_label)
layout.addRow("Bandwidth (-3 dB):", self.span_label)
layout.addRow("Quality factor:", self.quality_label)
layout.addRow("Bandwidth (-6 dB):", self.six_db_span_label)
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Lower side:"))
layout.addRow("Cutoff frequency:", self.lower_cutoff_label)
layout.addRow("-6 dB point:", self.lower_six_db_label)
layout.addRow("-60 dB point:", self.lower_sixty_db_label)
layout.addRow("Roll-off:", self.lower_db_per_octave_label)
layout.addRow("Roll-off:", self.lower_db_per_decade_label)
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Upper side:"))
layout.addRow("Cutoff frequency:", self.upper_cutoff_label)
layout.addRow("-6 dB point:", self.upper_six_db_label)
layout.addRow("-60 dB point:", self.upper_sixty_db_label)
layout.addRow("Roll-off:", self.upper_db_per_octave_label)
layout.addRow("Roll-off:", self.upper_db_per_decade_label)
def reset(self):
self.result_label.clear()
self.center_frequency_label.clear()
self.span_label.clear()
self.quality_label.clear()
self.six_db_span_label.clear()
self.upper_cutoff_label.clear()
self.upper_six_db_label.clear()
self.upper_sixty_db_label.clear()
self.upper_db_per_octave_label.clear()
self.upper_db_per_decade_label.clear()
self.lower_cutoff_label.clear()
self.lower_six_db_label.clear()
self.lower_sixty_db_label.clear()
self.lower_db_per_octave_label.clear()
self.lower_db_per_decade_label.clear()
def runAnalysis(self):
self.reset()
pass_band_location = self.app.markers[0].location
logger.debug("Pass band location: %d", pass_band_location)
if len(self.app.data.s21) == 0:
logger.debug("No data to analyse")
self.result_label.setText("No data to analyse.")
return
if pass_band_location < 0:
logger.debug("No location for %s", self.app.markers[0].name)
self.result_label.setText(
f"Please place {self.app.markers[0].name} in the passband.")
return
pass_band_db = self.app.data.s21[pass_band_location].gain
logger.debug("Initial passband gain: %d", pass_band_db)
initial_lower_cutoff_location = -1
for i in range(pass_band_location, -1, -1):
if (pass_band_db - self.app.data.s21[i].gain) > 3:
# We found a cutoff location
initial_lower_cutoff_location = i
break
if initial_lower_cutoff_location < 0:
self.result_label.setText("Lower cutoff location not found.")
return
initial_lower_cutoff_frequency = self.app.data.s21[initial_lower_cutoff_location].freq
logger.debug("Found initial lower cutoff frequency at %d", initial_lower_cutoff_frequency)
initial_upper_cutoff_location = -1
for i in range(pass_band_location, len(self.app.data.s21), 1):
if (pass_band_db - self.app.data.s21[i].gain) > 3:
# We found a cutoff location
initial_upper_cutoff_location = i
break
if initial_upper_cutoff_location < 0:
self.result_label.setText("Upper cutoff location not found.")
return
initial_upper_cutoff_frequency = self.app.data.s21[initial_upper_cutoff_location].freq
logger.debug("Found initial upper cutoff frequency at %d", initial_upper_cutoff_frequency)
peak_location = -1
peak_db = self.app.data.s21[initial_lower_cutoff_location].gain
for i in range(initial_lower_cutoff_location, initial_upper_cutoff_location, 1):
db = self.app.data.s21[i].gain
if db > peak_db:
peak_db = db
peak_location = i
logger.debug("Found peak of %f at %d", peak_db, self.app.data.s11[peak_location].freq)
lower_cutoff_location = -1
pass_band_db = peak_db
for i in range(peak_location, -1, -1):
if (pass_band_db - self.app.data.s21[i].gain) > 3:
# We found the cutoff location
lower_cutoff_location = i
break
lower_cutoff_frequency = self.app.data.s21[lower_cutoff_location].freq
lower_cutoff_gain = self.app.data.s21[lower_cutoff_location].gain - pass_band_db
if lower_cutoff_gain < -4:
logger.debug("Lower cutoff frequency found at %f dB"
" - insufficient data points for true -3 dB point.",
lower_cutoff_gain)
logger.debug("Found true lower cutoff frequency at %d", lower_cutoff_frequency)
self.lower_cutoff_label.setText(
f"{format_frequency(lower_cutoff_frequency)}"
f" ({round(lower_cutoff_gain, 1)} dB)")
self.app.markers[1].setFrequency(str(lower_cutoff_frequency))
self.app.markers[1].frequencyInput.setText(str(lower_cutoff_frequency))
upper_cutoff_location = -1
pass_band_db = peak_db
for i in range(peak_location, len(self.app.data.s21), 1):
if (pass_band_db - self.app.data.s21[i].gain) > 3:
# We found the cutoff location
upper_cutoff_location = i
break
upper_cutoff_frequency = self.app.data.s21[upper_cutoff_location].freq
upper_cutoff_gain = self.app.data.s21[upper_cutoff_location].gain - pass_band_db
if upper_cutoff_gain < -4:
logger.debug("Upper cutoff frequency found at %f dB"
" - insufficient data points for true -3 dB point.",
upper_cutoff_gain)
logger.debug("Found true upper cutoff frequency at %d", upper_cutoff_frequency)
self.upper_cutoff_label.setText(
f"{format_frequency(upper_cutoff_frequency)}"
f" ({round(upper_cutoff_gain, 1)} dB)")
self.app.markers[2].setFrequency(str(upper_cutoff_frequency))
self.app.markers[2].frequencyInput.setText(str(upper_cutoff_frequency))
span = upper_cutoff_frequency - lower_cutoff_frequency
center_frequency = math.sqrt(
lower_cutoff_frequency * upper_cutoff_frequency)
q = center_frequency / span
self.span_label.setText(format_frequency(span))
self.center_frequency_label.setText(
format_frequency(center_frequency))
self.quality_label.setText(str(round(q, 2)))
self.app.markers[0].setFrequency(str(round(center_frequency)))
self.app.markers[0].frequencyInput.setText(str(round(center_frequency)))
# Lower roll-off
lower_six_db_location = -1
for i in range(lower_cutoff_location, -1, -1):
if (pass_band_db - self.app.data.s21[i].gain) > 6:
# We found 6dB location
lower_six_db_location = i
break
if lower_six_db_location < 0:
self.result_label.setText("Lower 6 dB location not found.")
return
lower_six_db_cutoff_frequency = self.app.data.s21[lower_six_db_location].freq
self.lower_six_db_label.setText(
format_frequency(lower_six_db_cutoff_frequency))
ten_db_location = -1
for i in range(lower_cutoff_location, -1, -1):
if (pass_band_db - self.app.data.s21[i].gain) > 10:
# We found 6dB location
ten_db_location = i
break
twenty_db_location = -1
for i in range(lower_cutoff_location, -1, -1):
if (pass_band_db - self.app.data.s21[i].gain) > 20:
# We found 6dB location
twenty_db_location = i
break
sixty_db_location = -1
for i in range(lower_six_db_location, -1, -1):
if (pass_band_db - self.app.data.s21[i].gain) > 60:
# We found 60dB location! Wow.
sixty_db_location = i
break
if sixty_db_location > 0:
if sixty_db_location > 0:
sixty_db_cutoff_frequency = self.app.data.s21[sixty_db_location].freq
self.lower_sixty_db_label.setText(
format_frequency(sixty_db_cutoff_frequency))
elif ten_db_location != -1 and twenty_db_location != -1:
ten = self.app.data.s21[ten_db_location].freq
twenty = self.app.data.s21[twenty_db_location].freq
sixty_db_frequency = ten * \
10 ** (5 * (math.log10(twenty) - math.log10(ten)))
self.lower_sixty_db_label.setText(
f"{format_frequency(sixty_db_frequency)} (derived)")
else:
self.lower_sixty_db_label.setText("Not calculated")
if ten_db_location > 0 and twenty_db_location > 0 and ten_db_location != twenty_db_location:
octave_attenuation, decade_attenuation = self.calculateRolloff(
ten_db_location, twenty_db_location)
self.lower_db_per_octave_label.setText(
str(round(octave_attenuation, 3)) + " dB / octave")
self.lower_db_per_decade_label.setText(
str(round(decade_attenuation, 3)) + " dB / decade")
else:
self.lower_db_per_octave_label.setText("Not calculated")
self.lower_db_per_decade_label.setText("Not calculated")
# Upper roll-off
upper_six_db_location = -1
for i in range(upper_cutoff_location, len(self.app.data.s21), 1):
if (pass_band_db - self.app.data.s21[i].gain) > 6:
# We found 6dB location
upper_six_db_location = i
break
if upper_six_db_location < 0:
self.result_label.setText("Upper 6 dB location not found.")
return
upper_six_db_cutoff_frequency = self.app.data.s21[upper_six_db_location].freq
self.upper_six_db_label.setText(
format_frequency(upper_six_db_cutoff_frequency))
six_db_span = upper_six_db_cutoff_frequency - lower_six_db_cutoff_frequency
self.six_db_span_label.setText(
format_frequency(six_db_span))
ten_db_location = -1
for i in range(upper_cutoff_location, len(self.app.data.s21), 1):
if (pass_band_db - self.app.data.s21[i].gain) > 10:
# We found 6dB location
ten_db_location = i
break
twenty_db_location = -1
for i in range(upper_cutoff_location, len(self.app.data.s21), 1):
if (pass_band_db - self.app.data.s21[i].gain) > 20:
# We found 6dB location
twenty_db_location = i
break
sixty_db_location = -1
for i in range(upper_six_db_location, len(self.app.data.s21), 1):
if (pass_band_db - self.app.data.s21[i].gain) > 60:
# We found 60dB location! Wow.
sixty_db_location = i
break
if sixty_db_location > 0:
sixty_db_cutoff_frequency = self.app.data.s21[sixty_db_location].freq
self.upper_sixty_db_label.setText(
format_frequency(sixty_db_cutoff_frequency))
elif ten_db_location != -1 and twenty_db_location != -1:
ten = self.app.data.s21[ten_db_location].freq
twenty = self.app.data.s21[twenty_db_location].freq
sixty_db_frequency = ten * \
10 ** (5 * (math.log10(twenty) - math.log10(ten)))
self.upper_sixty_db_label.setText(
f"{format_frequency(sixty_db_frequency)} (derived)")
else:
self.upper_sixty_db_label.setText("Not calculated")
if ten_db_location > 0 and twenty_db_location > 0 and ten_db_location != twenty_db_location:
octave_attenuation, decade_attenuation = self.calculateRolloff(
ten_db_location, twenty_db_location)
self.upper_db_per_octave_label.setText(
f"{round(octave_attenuation, 3)} dB / octave")
self.upper_db_per_decade_label.setText(
f"{round(decade_attenuation, 3)} dB / decade")
else:
self.upper_db_per_octave_label.setText("Not calculated")
self.upper_db_per_decade_label.setText("Not calculated")
if upper_cutoff_gain < -4 or lower_cutoff_gain < -4:
self.result_label.setText(
f"Analysis complete ({len(self.app.data.s11)} points)\n"
f"Insufficient data for analysis. Increase segment count.")
else:
self.result_label.setText(
f"Analysis complete ({len(self.app.data.s11)} points)")