Merge branch 'split-file_Analysis.py' into development

pull/185/head
Holger Mueller 2020-06-15 10:08:22 +02:00 zatwierdzone przez Holger Müller
commit ac29bd4153
8 zmienionych plików z 1394 dodań i 1210 usunięć

Plik diff jest za duży Load Diff

Wyświetl plik

@ -0,0 +1,335 @@
# NanoVNASaver
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019. Rune B. Broberg
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt5 import QtWidgets
from NanoVNASaver.RFTools import RFTools
from scipy import signal
import numpy as np
logger = logging.getLogger(__name__)
class BandPassAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
layout = QtWidgets.QFormLayout()
self._widget.setLayout(layout)
layout.addRow(QtWidgets.QLabel("Band pass filter analysis"))
layout.addRow(QtWidgets.QLabel("Please place " + self.app.markers[0].name + " in the filter passband."))
self.result_label = QtWidgets.QLabel()
self.lower_cutoff_label = QtWidgets.QLabel()
self.lower_six_db_label = QtWidgets.QLabel()
self.lower_sixty_db_label = QtWidgets.QLabel()
self.lower_db_per_octave_label = QtWidgets.QLabel()
self.lower_db_per_decade_label = QtWidgets.QLabel()
self.upper_cutoff_label = QtWidgets.QLabel()
self.upper_six_db_label = QtWidgets.QLabel()
self.upper_sixty_db_label = QtWidgets.QLabel()
self.upper_db_per_octave_label = QtWidgets.QLabel()
self.upper_db_per_decade_label = QtWidgets.QLabel()
layout.addRow("Result:", self.result_label)
layout.addRow(QtWidgets.QLabel(""))
self.center_frequency_label = QtWidgets.QLabel()
self.span_label = QtWidgets.QLabel()
self.six_db_span_label = QtWidgets.QLabel()
self.quality_label = QtWidgets.QLabel()
layout.addRow("Center frequency:", self.center_frequency_label)
layout.addRow("Bandwidth (-3 dB):", self.span_label)
layout.addRow("Quality factor:", self.quality_label)
layout.addRow("Bandwidth (-6 dB):", self.six_db_span_label)
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Lower side:"))
layout.addRow("Cutoff frequency:", self.lower_cutoff_label)
layout.addRow("-6 dB point:", self.lower_six_db_label)
layout.addRow("-60 dB point:", self.lower_sixty_db_label)
layout.addRow("Roll-off:", self.lower_db_per_octave_label)
layout.addRow("Roll-off:", self.lower_db_per_decade_label)
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Upper side:"))
layout.addRow("Cutoff frequency:", self.upper_cutoff_label)
layout.addRow("-6 dB point:", self.upper_six_db_label)
layout.addRow("-60 dB point:", self.upper_sixty_db_label)
layout.addRow("Roll-off:", self.upper_db_per_octave_label)
layout.addRow("Roll-off:", self.upper_db_per_decade_label)
def reset(self):
self.result_label.clear()
self.center_frequency_label.clear()
self.span_label.clear()
self.quality_label.clear()
self.six_db_span_label.clear()
self.upper_cutoff_label.clear()
self.upper_six_db_label.clear()
self.upper_sixty_db_label.clear()
self.upper_db_per_octave_label.clear()
self.upper_db_per_decade_label.clear()
self.lower_cutoff_label.clear()
self.lower_six_db_label.clear()
self.lower_sixty_db_label.clear()
self.lower_db_per_octave_label.clear()
self.lower_db_per_decade_label.clear()
def runAnalysis(self):
self.reset()
pass_band_location = self.app.markers[0].location
logger.debug("Pass band location: %d", pass_band_location)
if len(self.app.data21) == 0:
logger.debug("No data to analyse")
self.result_label.setText("No data to analyse.")
return
if pass_band_location < 0:
logger.debug("No location for %s", self.app.markers[0].name)
self.result_label.setText("Please place " + self.app.markers[0].name + " in the passband.")
return
pass_band_db = self.app.data21[pass_band_location].gain
logger.debug("Initial passband gain: %d", pass_band_db)
initial_lower_cutoff_location = -1
for i in range(pass_band_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 3:
# We found a cutoff location
initial_lower_cutoff_location = i
break
if initial_lower_cutoff_location < 0:
self.result_label.setText("Lower cutoff location not found.")
return
initial_lower_cutoff_frequency = self.app.data21[initial_lower_cutoff_location].freq
logger.debug("Found initial lower cutoff frequency at %d", initial_lower_cutoff_frequency)
initial_upper_cutoff_location = -1
for i in range(pass_band_location, len(self.app.data21), 1):
if (pass_band_db - self.app.data21[i].gain) > 3:
# We found a cutoff location
initial_upper_cutoff_location = i
break
if initial_upper_cutoff_location < 0:
self.result_label.setText("Upper cutoff location not found.")
return
initial_upper_cutoff_frequency = self.app.data21[initial_upper_cutoff_location].freq
logger.debug("Found initial upper cutoff frequency at %d", initial_upper_cutoff_frequency)
peak_location = -1
peak_db = self.app.data21[initial_lower_cutoff_location].gain
for i in range(initial_lower_cutoff_location, initial_upper_cutoff_location, 1):
db = self.app.data21[i].gain
if db > peak_db:
peak_db = db
peak_location = i
logger.debug("Found peak of %f at %d", peak_db, self.app.data[peak_location].freq)
lower_cutoff_location = -1
pass_band_db = peak_db
for i in range(peak_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 3:
# We found the cutoff location
lower_cutoff_location = i
break
lower_cutoff_frequency = self.app.data21[lower_cutoff_location].freq
lower_cutoff_gain = self.app.data21[lower_cutoff_location].gain - pass_band_db
if lower_cutoff_gain < -4:
logger.debug("Lower cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
lower_cutoff_gain)
logger.debug("Found true lower cutoff frequency at %d", lower_cutoff_frequency)
self.lower_cutoff_label.setText(RFTools.formatFrequency(lower_cutoff_frequency) +
" (" + str(round(lower_cutoff_gain, 1)) + " dB)")
self.app.markers[1].setFrequency(str(lower_cutoff_frequency))
self.app.markers[1].frequencyInput.setText(str(lower_cutoff_frequency))
upper_cutoff_location = -1
pass_band_db = peak_db
for i in range(peak_location, len(self.app.data21), 1):
if (pass_band_db - self.app.data21[i].gain) > 3:
# We found the cutoff location
upper_cutoff_location = i
break
upper_cutoff_frequency = self.app.data21[upper_cutoff_location].freq
upper_cutoff_gain = self.app.data21[upper_cutoff_location].gain - pass_band_db
if upper_cutoff_gain < -4:
logger.debug("Upper cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
upper_cutoff_gain)
logger.debug("Found true upper cutoff frequency at %d", upper_cutoff_frequency)
self.upper_cutoff_label.setText(RFTools.formatFrequency(upper_cutoff_frequency) +
" (" + str(round(upper_cutoff_gain, 1)) + " dB)")
self.app.markers[2].setFrequency(str(upper_cutoff_frequency))
self.app.markers[2].frequencyInput.setText(str(upper_cutoff_frequency))
span = upper_cutoff_frequency - lower_cutoff_frequency
center_frequency = math.sqrt(lower_cutoff_frequency * upper_cutoff_frequency)
q = center_frequency / span
self.span_label.setText(RFTools.formatFrequency(span))
self.center_frequency_label.setText(RFTools.formatFrequency(center_frequency))
self.quality_label.setText(str(round(q, 2)))
self.app.markers[0].setFrequency(str(round(center_frequency)))
self.app.markers[0].frequencyInput.setText(str(round(center_frequency)))
# Lower roll-off
lower_six_db_location = -1
for i in range(lower_cutoff_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 6:
# We found 6dB location
lower_six_db_location = i
break
if lower_six_db_location < 0:
self.result_label.setText("Lower 6 dB location not found.")
return
lower_six_db_cutoff_frequency = self.app.data21[lower_six_db_location].freq
self.lower_six_db_label.setText(RFTools.formatFrequency(lower_six_db_cutoff_frequency))
ten_db_location = -1
for i in range(lower_cutoff_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 10:
# We found 6dB location
ten_db_location = i
break
twenty_db_location = -1
for i in range(lower_cutoff_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 20:
# We found 6dB location
twenty_db_location = i
break
sixty_db_location = -1
for i in range(lower_six_db_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 60:
# We found 60dB location! Wow.
sixty_db_location = i
break
if sixty_db_location > 0:
if sixty_db_location > 0:
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
self.lower_sixty_db_label.setText(RFTools.formatFrequency(sixty_db_cutoff_frequency))
elif ten_db_location != -1 and twenty_db_location != -1:
ten = self.app.data21[ten_db_location].freq
twenty = self.app.data21[twenty_db_location].freq
sixty_db_frequency = ten * 10 ** (5 * (math.log10(twenty) - math.log10(ten)))
self.lower_sixty_db_label.setText(RFTools.formatFrequency(sixty_db_frequency) + " (derived)")
else:
self.lower_sixty_db_label.setText("Not calculated")
if ten_db_location > 0 and twenty_db_location > 0 and ten_db_location != twenty_db_location:
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
self.lower_db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
self.lower_db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
else:
self.lower_db_per_octave_label.setText("Not calculated")
self.lower_db_per_decade_label.setText("Not calculated")
# Upper roll-off
upper_six_db_location = -1
for i in range(upper_cutoff_location, len(self.app.data21), 1):
if (pass_band_db - self.app.data21[i].gain) > 6:
# We found 6dB location
upper_six_db_location = i
break
if upper_six_db_location < 0:
self.result_label.setText("Upper 6 dB location not found.")
return
upper_six_db_cutoff_frequency = self.app.data21[upper_six_db_location].freq
self.upper_six_db_label.setText(RFTools.formatFrequency(upper_six_db_cutoff_frequency))
six_db_span = upper_six_db_cutoff_frequency - lower_six_db_cutoff_frequency
self.six_db_span_label.setText(RFTools.formatFrequency(six_db_span))
ten_db_location = -1
for i in range(upper_cutoff_location, len(self.app.data21), 1):
if (pass_band_db - self.app.data21[i].gain) > 10:
# We found 6dB location
ten_db_location = i
break
twenty_db_location = -1
for i in range(upper_cutoff_location, len(self.app.data21), 1):
if (pass_band_db - self.app.data21[i].gain) > 20:
# We found 6dB location
twenty_db_location = i
break
sixty_db_location = -1
for i in range(upper_six_db_location, len(self.app.data21), 1):
if (pass_band_db - self.app.data21[i].gain) > 60:
# We found 60dB location! Wow.
sixty_db_location = i
break
if sixty_db_location > 0:
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
self.upper_sixty_db_label.setText(RFTools.formatFrequency(sixty_db_cutoff_frequency))
elif ten_db_location != -1 and twenty_db_location != -1:
ten = self.app.data21[ten_db_location].freq
twenty = self.app.data21[twenty_db_location].freq
sixty_db_frequency = ten * 10 ** (5 * (math.log10(twenty) - math.log10(ten)))
self.upper_sixty_db_label.setText(RFTools.formatFrequency(sixty_db_frequency) + " (derived)")
else:
self.upper_sixty_db_label.setText("Not calculated")
if ten_db_location > 0 and twenty_db_location > 0 and ten_db_location != twenty_db_location:
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
self.upper_db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
self.upper_db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
else:
self.upper_db_per_octave_label.setText("Not calculated")
self.upper_db_per_decade_label.setText("Not calculated")
if upper_cutoff_gain < -4 or lower_cutoff_gain < -4:
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)\n" +
"Insufficient data for analysis. Increase segment count.")
else:
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)")

Wyświetl plik

@ -0,0 +1,290 @@
# NanoVNASaver
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019. Rune B. Broberg
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt5 import QtWidgets
from NanoVNASaver.RFTools import RFTools
from scipy import signal
import numpy as np
logger = logging.getLogger(__name__)
class BandStopAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
layout = QtWidgets.QFormLayout()
self._widget.setLayout(layout)
layout.addRow(QtWidgets.QLabel("Band stop filter analysis"))
self.result_label = QtWidgets.QLabel()
self.lower_cutoff_label = QtWidgets.QLabel()
self.lower_six_db_label = QtWidgets.QLabel()
self.lower_sixty_db_label = QtWidgets.QLabel()
self.lower_db_per_octave_label = QtWidgets.QLabel()
self.lower_db_per_decade_label = QtWidgets.QLabel()
self.upper_cutoff_label = QtWidgets.QLabel()
self.upper_six_db_label = QtWidgets.QLabel()
self.upper_sixty_db_label = QtWidgets.QLabel()
self.upper_db_per_octave_label = QtWidgets.QLabel()
self.upper_db_per_decade_label = QtWidgets.QLabel()
layout.addRow("Result:", self.result_label)
layout.addRow(QtWidgets.QLabel(""))
self.center_frequency_label = QtWidgets.QLabel()
self.span_label = QtWidgets.QLabel()
self.six_db_span_label = QtWidgets.QLabel()
self.quality_label = QtWidgets.QLabel()
layout.addRow("Center frequency:", self.center_frequency_label)
layout.addRow("Bandwidth (-3 dB):", self.span_label)
layout.addRow("Quality factor:", self.quality_label)
layout.addRow("Bandwidth (-6 dB):", self.six_db_span_label)
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Lower side:"))
layout.addRow("Cutoff frequency:", self.lower_cutoff_label)
layout.addRow("-6 dB point:", self.lower_six_db_label)
layout.addRow("-60 dB point:", self.lower_sixty_db_label)
layout.addRow("Roll-off:", self.lower_db_per_octave_label)
layout.addRow("Roll-off:", self.lower_db_per_decade_label)
layout.addRow(QtWidgets.QLabel(""))
layout.addRow(QtWidgets.QLabel("Upper side:"))
layout.addRow("Cutoff frequency:", self.upper_cutoff_label)
layout.addRow("-6 dB point:", self.upper_six_db_label)
layout.addRow("-60 dB point:", self.upper_sixty_db_label)
layout.addRow("Roll-off:", self.upper_db_per_octave_label)
layout.addRow("Roll-off:", self.upper_db_per_decade_label)
def reset(self):
self.result_label.clear()
self.span_label.clear()
self.quality_label.clear()
self.six_db_span_label.clear()
self.upper_cutoff_label.clear()
self.upper_six_db_label.clear()
self.upper_sixty_db_label.clear()
self.upper_db_per_octave_label.clear()
self.upper_db_per_decade_label.clear()
self.lower_cutoff_label.clear()
self.lower_six_db_label.clear()
self.lower_sixty_db_label.clear()
self.lower_db_per_octave_label.clear()
self.lower_db_per_decade_label.clear()
def runAnalysis(self):
self.reset()
if len(self.app.data21) == 0:
logger.debug("No data to analyse")
self.result_label.setText("No data to analyse.")
return
peak_location = -1
peak_db = self.app.data21[0].gain
for i in range(len(self.app.data21)):
db = self.app.data21[i].gain
if db > peak_db:
peak_db = db
peak_location = i
logger.debug("Found peak of %f at %d", peak_db, self.app.data[peak_location].freq)
lower_cutoff_location = -1
pass_band_db = peak_db
for i in range(len(self.app.data21)):
if (pass_band_db - self.app.data21[i].gain) > 3:
# We found the cutoff location
lower_cutoff_location = i
break
lower_cutoff_frequency = self.app.data21[lower_cutoff_location].freq
lower_cutoff_gain = self.app.data21[lower_cutoff_location].gain - pass_band_db
if lower_cutoff_gain < -4:
logger.debug("Lower cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
lower_cutoff_gain)
logger.debug("Found true lower cutoff frequency at %d", lower_cutoff_frequency)
self.lower_cutoff_label.setText(RFTools.formatFrequency(lower_cutoff_frequency) +
" (" + str(round(lower_cutoff_gain, 1)) + " dB)")
self.app.markers[1].setFrequency(str(lower_cutoff_frequency))
self.app.markers[1].frequencyInput.setText(str(lower_cutoff_frequency))
upper_cutoff_location = -1
for i in range(len(self.app.data21)-1, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 3:
# We found the cutoff location
upper_cutoff_location = i
break
upper_cutoff_frequency = self.app.data21[upper_cutoff_location].freq
upper_cutoff_gain = self.app.data21[upper_cutoff_location].gain - pass_band_db
if upper_cutoff_gain < -4:
logger.debug("Upper cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
upper_cutoff_gain)
logger.debug("Found true upper cutoff frequency at %d", upper_cutoff_frequency)
self.upper_cutoff_label.setText(RFTools.formatFrequency(upper_cutoff_frequency) +
" (" + str(round(upper_cutoff_gain, 1)) + " dB)")
self.app.markers[2].setFrequency(str(upper_cutoff_frequency))
self.app.markers[2].frequencyInput.setText(str(upper_cutoff_frequency))
span = upper_cutoff_frequency - lower_cutoff_frequency
center_frequency = math.sqrt(lower_cutoff_frequency * upper_cutoff_frequency)
q = center_frequency / span
self.span_label.setText(RFTools.formatFrequency(span))
self.center_frequency_label.setText(RFTools.formatFrequency(center_frequency))
self.quality_label.setText(str(round(q, 2)))
self.app.markers[0].setFrequency(str(round(center_frequency)))
self.app.markers[0].frequencyInput.setText(str(round(center_frequency)))
# Lower roll-off
lower_six_db_location = -1
for i in range(lower_cutoff_location, len(self.app.data21)):
if (pass_band_db - self.app.data21[i].gain) > 6:
# We found 6dB location
lower_six_db_location = i
break
if lower_six_db_location < 0:
self.result_label.setText("Lower 6 dB location not found.")
return
lower_six_db_cutoff_frequency = self.app.data21[lower_six_db_location].freq
self.lower_six_db_label.setText(RFTools.formatFrequency(lower_six_db_cutoff_frequency))
ten_db_location = -1
for i in range(lower_cutoff_location, len(self.app.data21)):
if (pass_band_db - self.app.data21[i].gain) > 10:
# We found 6dB location
ten_db_location = i
break
twenty_db_location = -1
for i in range(lower_cutoff_location, len(self.app.data21)):
if (pass_band_db - self.app.data21[i].gain) > 20:
# We found 6dB location
twenty_db_location = i
break
sixty_db_location = -1
for i in range(lower_six_db_location, len(self.app.data21)):
if (pass_band_db - self.app.data21[i].gain) > 60:
# We found 60dB location! Wow.
sixty_db_location = i
break
if sixty_db_location > 0:
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
self.lower_sixty_db_label.setText(RFTools.formatFrequency(sixty_db_cutoff_frequency))
elif ten_db_location != -1 and twenty_db_location != -1:
ten = self.app.data21[ten_db_location].freq
twenty = self.app.data21[twenty_db_location].freq
sixty_db_frequency = ten * 10 ** (5 * (math.log10(twenty) - math.log10(ten)))
self.lower_sixty_db_label.setText(RFTools.formatFrequency(sixty_db_frequency) + " (derived)")
else:
self.lower_sixty_db_label.setText("Not calculated")
if ten_db_location > 0 and twenty_db_location > 0 and ten_db_location != twenty_db_location:
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
self.lower_db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
self.lower_db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
else:
self.lower_db_per_octave_label.setText("Not calculated")
self.lower_db_per_decade_label.setText("Not calculated")
# Upper roll-off
upper_six_db_location = -1
for i in range(upper_cutoff_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 6:
# We found 6dB location
upper_six_db_location = i
break
if upper_six_db_location < 0:
self.result_label.setText("Upper 6 dB location not found.")
return
upper_six_db_cutoff_frequency = self.app.data21[upper_six_db_location].freq
self.upper_six_db_label.setText(RFTools.formatFrequency(upper_six_db_cutoff_frequency))
six_db_span = upper_six_db_cutoff_frequency - lower_six_db_cutoff_frequency
self.six_db_span_label.setText(RFTools.formatFrequency(six_db_span))
ten_db_location = -1
for i in range(upper_cutoff_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 10:
# We found 6dB location
ten_db_location = i
break
twenty_db_location = -1
for i in range(upper_cutoff_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 20:
# We found 6dB location
twenty_db_location = i
break
sixty_db_location = -1
for i in range(upper_six_db_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 60:
# We found 60dB location! Wow.
sixty_db_location = i
break
if sixty_db_location > 0:
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
self.upper_sixty_db_label.setText(RFTools.formatFrequency(sixty_db_cutoff_frequency))
elif ten_db_location != -1 and twenty_db_location != -1:
ten = self.app.data21[ten_db_location].freq
twenty = self.app.data21[twenty_db_location].freq
sixty_db_frequency = ten * 10 ** (5 * (math.log10(twenty) - math.log10(ten)))
self.upper_sixty_db_label.setText(RFTools.formatFrequency(sixty_db_frequency) + " (derived)")
else:
self.upper_sixty_db_label.setText("Not calculated")
if ten_db_location > 0 and twenty_db_location > 0 and ten_db_location != twenty_db_location:
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
self.upper_db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
self.upper_db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
else:
self.upper_db_per_octave_label.setText("Not calculated")
self.upper_db_per_decade_label.setText("Not calculated")
if upper_cutoff_gain < -4 or lower_cutoff_gain < -4:
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)\n" +
"Insufficient data for analysis. Increase segment count.")
else:
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)")

Wyświetl plik

@ -0,0 +1,183 @@
# NanoVNASaver
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019. Rune B. Broberg
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt5 import QtWidgets
from NanoVNASaver.RFTools import RFTools
from scipy import signal
import numpy as np
logger = logging.getLogger(__name__)
class HighPassAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
layout = QtWidgets.QFormLayout()
self._widget.setLayout(layout)
layout.addRow(QtWidgets.QLabel("High pass filter analysis"))
layout.addRow(QtWidgets.QLabel("Please place " + self.app.markers[0].name + " in the filter passband."))
self.result_label = QtWidgets.QLabel()
self.cutoff_label = QtWidgets.QLabel()
self.six_db_label = QtWidgets.QLabel()
self.sixty_db_label = QtWidgets.QLabel()
self.db_per_octave_label = QtWidgets.QLabel()
self.db_per_decade_label = QtWidgets.QLabel()
layout.addRow("Result:", self.result_label)
layout.addRow("Cutoff frequency:", self.cutoff_label)
layout.addRow("-6 dB point:", self.six_db_label)
layout.addRow("-60 dB point:", self.sixty_db_label)
layout.addRow("Roll-off:", self.db_per_octave_label)
layout.addRow("Roll-off:", self.db_per_decade_label)
def reset(self):
self.result_label.clear()
self.cutoff_label.clear()
self.six_db_label.clear()
self.sixty_db_label.clear()
self.db_per_octave_label.clear()
self.db_per_decade_label.clear()
def runAnalysis(self):
self.reset()
pass_band_location = self.app.markers[0].location
logger.debug("Pass band location: %d", pass_band_location)
if len(self.app.data21) == 0:
logger.debug("No data to analyse")
self.result_label.setText("No data to analyse.")
return
if pass_band_location < 0:
logger.debug("No location for %s", self.app.markers[0].name)
self.result_label.setText("Please place " + self.app.markers[0].name + " in the passband.")
return
pass_band_db = self.app.data21[pass_band_location].gain
logger.debug("Initial passband gain: %d", pass_band_db)
initial_cutoff_location = -1
for i in range(pass_band_location, -1, -1):
db = self.app.data21[i].gain
if (pass_band_db - db) > 3:
# We found a cutoff location
initial_cutoff_location = i
break
if initial_cutoff_location < 0:
self.result_label.setText("Cutoff location not found.")
return
initial_cutoff_frequency = self.app.data21[initial_cutoff_location].freq
logger.debug("Found initial cutoff frequency at %d", initial_cutoff_frequency)
peak_location = -1
peak_db = self.app.data21[initial_cutoff_location].gain
for i in range(len(self.app.data21) - 1, initial_cutoff_location - 1, -1):
if self.app.data21[i].gain > peak_db:
peak_db = db
peak_location = i
logger.debug("Found peak of %f at %d", peak_db, self.app.data[peak_location].freq)
self.app.markers[0].setFrequency(str(self.app.data21[peak_location].freq))
self.app.markers[0].frequencyInput.setText(str(self.app.data21[peak_location].freq))
cutoff_location = -1
pass_band_db = peak_db
for i in range(peak_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 3:
# We found the cutoff location
cutoff_location = i
break
cutoff_frequency = self.app.data21[cutoff_location].freq
cutoff_gain = self.app.data21[cutoff_location].gain - pass_band_db
if cutoff_gain < -4:
logger.debug("Cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
cutoff_gain)
logger.debug("Found true cutoff frequency at %d", cutoff_frequency)
self.cutoff_label.setText(RFTools.formatFrequency(cutoff_frequency) +
" (" + str(round(cutoff_gain, 1)) + " dB)")
self.app.markers[1].setFrequency(str(cutoff_frequency))
self.app.markers[1].frequencyInput.setText(str(cutoff_frequency))
six_db_location = -1
for i in range(cutoff_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 6:
# We found 6dB location
six_db_location = i
break
if six_db_location < 0:
self.result_label.setText("6 dB location not found.")
return
six_db_cutoff_frequency = self.app.data21[six_db_location].freq
self.six_db_label.setText(RFTools.formatFrequency(six_db_cutoff_frequency))
ten_db_location = -1
for i in range(cutoff_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 10:
# We found 6dB location
ten_db_location = i
break
twenty_db_location = -1
for i in range(cutoff_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 20:
# We found 6dB location
twenty_db_location = i
break
sixty_db_location = -1
for i in range(six_db_location, -1, -1):
if (pass_band_db - self.app.data21[i].gain) > 60:
# We found 60dB location! Wow.
sixty_db_location = i
break
if sixty_db_location > 0:
if sixty_db_location > 0:
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
self.sixty_db_label.setText(RFTools.formatFrequency(sixty_db_cutoff_frequency))
elif ten_db_location != -1 and twenty_db_location != -1:
ten = self.app.data21[ten_db_location].freq
twenty = self.app.data21[twenty_db_location].freq
sixty_db_frequency = ten * 10 ** (5 * (math.log10(twenty) - math.log10(ten)))
self.sixty_db_label.setText(RFTools.formatFrequency(sixty_db_frequency) + " (derived)")
else:
self.sixty_db_label.setText("Not calculated")
if ten_db_location > 0 and twenty_db_location > 0 and ten_db_location != twenty_db_location:
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
self.db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
self.db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
else:
self.db_per_octave_label.setText("Not calculated")
self.db_per_decade_label.setText("Not calculated")
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)")

Wyświetl plik

@ -0,0 +1,187 @@
# NanoVNASaver
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019. Rune B. Broberg
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt5 import QtWidgets
from NanoVNASaver.RFTools import RFTools
from scipy import signal
import numpy as np
logger = logging.getLogger(__name__)
class LowPassAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
layout = QtWidgets.QFormLayout()
self._widget.setLayout(layout)
layout.addRow(QtWidgets.QLabel("Low pass filter analysis"))
layout.addRow(QtWidgets.QLabel("Please place " + self.app.markers[0].name + " in the filter passband."))
self.result_label = QtWidgets.QLabel()
self.cutoff_label = QtWidgets.QLabel()
self.six_db_label = QtWidgets.QLabel()
self.sixty_db_label = QtWidgets.QLabel()
self.db_per_octave_label = QtWidgets.QLabel()
self.db_per_decade_label = QtWidgets.QLabel()
layout.addRow("Result:", self.result_label)
layout.addRow("Cutoff frequency:", self.cutoff_label)
layout.addRow("-6 dB point:", self.six_db_label)
layout.addRow("-60 dB point:", self.sixty_db_label)
layout.addRow("Roll-off:", self.db_per_octave_label)
layout.addRow("Roll-off:", self.db_per_decade_label)
def reset(self):
self.result_label.clear()
self.cutoff_label.clear()
self.six_db_label.clear()
self.sixty_db_label.clear()
self.db_per_octave_label.clear()
self.db_per_decade_label.clear()
def runAnalysis(self):
self.reset()
pass_band_location = self.app.markers[0].location
logger.debug("Pass band location: %d", pass_band_location)
if len(self.app.data21) == 0:
logger.debug("No data to analyse")
self.result_label.setText("No data to analyse.")
return
if pass_band_location < 0:
logger.debug("No location for %s", self.app.markers[0].name)
self.result_label.setText("Please place " + self.app.markers[0].name + " in the passband.")
return
pass_band_db = self.app.data21[pass_band_location].gain
logger.debug("Initial passband gain: %d", pass_band_db)
initial_cutoff_location = -1
for i in range(pass_band_location, len(self.app.data21)):
db = self.app.data21[i].gain
if (pass_band_db - db) > 3:
# We found a cutoff location
initial_cutoff_location = i
break
if initial_cutoff_location < 0:
self.result_label.setText("Cutoff location not found.")
return
initial_cutoff_frequency = self.app.data21[initial_cutoff_location].freq
logger.debug("Found initial cutoff frequency at %d", initial_cutoff_frequency)
peak_location = -1
peak_db = self.app.data21[initial_cutoff_location].gain
for i in range(0, initial_cutoff_location):
db = self.app.data21[i].gain
if db > peak_db:
peak_db = db
peak_location = i
logger.debug("Found peak of %f at %d", peak_db, self.app.data[peak_location].freq)
self.app.markers[0].setFrequency(str(self.app.data21[peak_location].freq))
self.app.markers[0].frequencyInput.setText(str(self.app.data21[peak_location].freq))
cutoff_location = -1
pass_band_db = peak_db
for i in range(peak_location, len(self.app.data21)):
db = self.app.data21[i].gain
if (pass_band_db - db) > 3:
# We found the cutoff location
cutoff_location = i
break
cutoff_frequency = self.app.data21[cutoff_location].freq
cutoff_gain = self.app.data21[cutoff_location].gain - pass_band_db
if cutoff_gain < -4:
logger.debug("Cutoff frequency found at %f dB - insufficient data points for true -3 dB point.",
cutoff_gain)
logger.debug("Found true cutoff frequency at %d", cutoff_frequency)
self.cutoff_label.setText(RFTools.formatFrequency(cutoff_frequency) +
" (" + str(round(cutoff_gain, 1)) + " dB)")
self.app.markers[1].setFrequency(str(cutoff_frequency))
self.app.markers[1].frequencyInput.setText(str(cutoff_frequency))
six_db_location = -1
for i in range(cutoff_location, len(self.app.data21)):
db = self.app.data21[i].gain
if (pass_band_db - db) > 6:
# We found 6dB location
six_db_location = i
break
if six_db_location < 0:
self.result_label.setText("6 dB location not found.")
return
six_db_cutoff_frequency = self.app.data21[six_db_location].freq
self.six_db_label.setText(RFTools.formatFrequency(six_db_cutoff_frequency))
ten_db_location = -1
for i in range(cutoff_location, len(self.app.data21)):
db = self.app.data21[i].gain
if (pass_band_db - db) > 10:
# We found 6dB location
ten_db_location = i
break
twenty_db_location = -1
for i in range(cutoff_location, len(self.app.data21)):
db = self.app.data21[i].gain
if (pass_band_db - db) > 20:
# We found 6dB location
twenty_db_location = i
break
sixty_db_location = -1
for i in range(six_db_location, len(self.app.data21)):
db = self.app.data21[i].gain
if (pass_band_db - db) > 60:
# We found 60dB location! Wow.
sixty_db_location = i
break
if sixty_db_location > 0:
sixty_db_cutoff_frequency = self.app.data21[sixty_db_location].freq
self.sixty_db_label.setText(RFTools.formatFrequency(sixty_db_cutoff_frequency))
elif ten_db_location != -1 and twenty_db_location != -1:
ten = self.app.data21[ten_db_location].freq
twenty = self.app.data21[twenty_db_location].freq
sixty_db_frequency = ten * 10 ** (5 * (math.log10(twenty) - math.log10(ten)))
self.sixty_db_label.setText(RFTools.formatFrequency(sixty_db_frequency) + " (derived)")
else:
self.sixty_db_label.setText("Not calculated")
if ten_db_location > 0 and twenty_db_location > 0 and ten_db_location != twenty_db_location:
octave_attenuation, decade_attenuation = self.calculateRolloff(ten_db_location, twenty_db_location)
self.db_per_octave_label.setText(str(round(octave_attenuation, 3)) + " dB / octave")
self.db_per_decade_label.setText(str(round(decade_attenuation, 3)) + " dB / decade")
else:
self.db_per_octave_label.setText("Not calculated")
self.db_per_decade_label.setText("Not calculated")
self.result_label.setText("Analysis complete (" + str(len(self.app.data)) + " points)")

Wyświetl plik

@ -0,0 +1,148 @@
# NanoVNASaver
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019. Rune B. Broberg
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt5 import QtWidgets
from NanoVNASaver.RFTools import RFTools
from scipy import signal
import numpy as np
logger = logging.getLogger(__name__)
class PeakSearchAnalysis(Analysis):
class QHLine(QtWidgets.QFrame):
def __init__(self):
super().__init__()
self.setFrameShape(QtWidgets.QFrame.HLine)
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
outer_layout = QtWidgets.QFormLayout()
self._widget.setLayout(outer_layout)
self.rbtn_data_group = QtWidgets.QButtonGroup()
self.rbtn_data_vswr = QtWidgets.QRadioButton("VSWR")
self.rbtn_data_resistance = QtWidgets.QRadioButton("Resistance")
self.rbtn_data_reactance = QtWidgets.QRadioButton("Reactance")
self.rbtn_data_s21_gain = QtWidgets.QRadioButton("S21 Gain")
self.rbtn_data_group.addButton(self.rbtn_data_vswr)
self.rbtn_data_group.addButton(self.rbtn_data_resistance)
self.rbtn_data_group.addButton(self.rbtn_data_reactance)
self.rbtn_data_group.addButton(self.rbtn_data_s21_gain)
self.rbtn_data_vswr.setChecked(True)
self.rbtn_peak_group = QtWidgets.QButtonGroup()
self.rbtn_peak_positive = QtWidgets.QRadioButton("Positive")
self.rbtn_peak_negative = QtWidgets.QRadioButton("Negative")
self.rbtn_peak_both = QtWidgets.QRadioButton("Both")
self.rbtn_peak_group.addButton(self.rbtn_peak_positive)
self.rbtn_peak_group.addButton(self.rbtn_peak_negative)
self.rbtn_peak_group.addButton(self.rbtn_peak_both)
self.rbtn_peak_positive.setChecked(True)
self.input_number_of_peaks = QtWidgets.QSpinBox()
self.input_number_of_peaks.setValue(1)
self.input_number_of_peaks.setMinimum(1)
self.input_number_of_peaks.setMaximum(10)
self.checkbox_move_markers = QtWidgets.QCheckBox()
outer_layout.addRow(QtWidgets.QLabel("<b>Settings</b>"))
outer_layout.addRow("Data source", self.rbtn_data_vswr)
outer_layout.addRow("", self.rbtn_data_resistance)
outer_layout.addRow("", self.rbtn_data_reactance)
outer_layout.addRow("", self.rbtn_data_s21_gain)
outer_layout.addRow(PeakSearchAnalysis.QHLine())
outer_layout.addRow("Peak type", self.rbtn_peak_positive)
outer_layout.addRow("", self.rbtn_peak_negative)
# outer_layout.addRow("", self.rbtn_peak_both)
outer_layout.addRow(PeakSearchAnalysis.QHLine())
outer_layout.addRow("Max number of peaks", self.input_number_of_peaks)
outer_layout.addRow("Move markers", self.checkbox_move_markers)
outer_layout.addRow(PeakSearchAnalysis.QHLine())
outer_layout.addRow(QtWidgets.QLabel("<b>Results</b>"))
def runAnalysis(self):
count = self.input_number_of_peaks.value()
if self.rbtn_data_vswr.isChecked():
data = []
for d in self.app.data:
data.append(d.vswr)
elif self.rbtn_data_s21_gain.isChecked():
data = []
for d in self.app.data21:
data.append(d.gain)
else:
logger.warning("Searching for peaks on unknown data")
return
if self.rbtn_peak_positive.isChecked():
peaks, _ = signal.find_peaks(data, width=3, distance=3, prominence=1)
elif self.rbtn_peak_negative.isChecked():
peaks, _ = signal.find_peaks(np.array(data)*-1, width=3, distance=3, prominence=1)
# elif self.rbtn_peak_both.isChecked():
# peaks_max, _ = signal.find_peaks(data, width=3, distance=3, prominence=1)
# peaks_min, _ = signal.find_peaks(np.array(data)*-1, width=3, distance=3, prominence=1)
# peaks = np.concatenate((peaks_max, peaks_min))
else:
logger.warning("Searching for peaks, but neither looking at positive nor negative?") # Both is not yet in
return
# Having found the peaks, get the prominence data
for p in peaks:
logger.debug("Peak at %d", p)
prominences = signal.peak_prominences(data, peaks)[0]
logger.debug("%d prominences", len(prominences))
# Find the peaks with the most extreme values
# Alternately, allow the user to select "most prominent"?
indices = np.argpartition(prominences, -count)[-count:]
logger.debug("%d indices", len(indices))
for i in indices:
logger.debug("Index %d", i)
logger.debug("Prominence %f", prominences[i])
logger.debug("Index in sweep %d", peaks[i])
logger.debug("Frequency %d", self.app.data[peaks[i]].freq)
logger.debug("Value %f", data[peaks[i]])
if self.checkbox_move_markers:
if count > len(self.app.markers):
logger.warning("More peaks found than there are markers")
for i in range(min(count, len(self.app.markers))):
self.app.markers[i].setFrequency(str(self.app.data[peaks[indices[i]]].freq))
self.app.markers[i].frequencyInput.setText(str(self.app.data[peaks[indices[i]]].freq))
max_val = -10**10
max_idx = -1
for p in peaks:
if data[p] > max_val:
max_val = data[p]
max_idx = p
logger.debug("Max peak at %d, value %f", max_idx, max_val)
def reset(self):
pass

Wyświetl plik

@ -0,0 +1,119 @@
# NanoVNASaver
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019. Rune B. Broberg
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt5 import QtWidgets
from NanoVNASaver.RFTools import RFTools
from scipy import signal
import numpy as np
logger = logging.getLogger(__name__)
class SimplePeakSearchAnalysis(Analysis):
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
outer_layout = QtWidgets.QFormLayout()
self._widget.setLayout(outer_layout)
self.rbtn_data_group = QtWidgets.QButtonGroup()
self.rbtn_data_vswr = QtWidgets.QRadioButton("VSWR")
self.rbtn_data_resistance = QtWidgets.QRadioButton("Resistance")
self.rbtn_data_reactance = QtWidgets.QRadioButton("Reactance")
self.rbtn_data_s21_gain = QtWidgets.QRadioButton("S21 Gain")
self.rbtn_data_group.addButton(self.rbtn_data_vswr)
self.rbtn_data_group.addButton(self.rbtn_data_resistance)
self.rbtn_data_group.addButton(self.rbtn_data_reactance)
self.rbtn_data_group.addButton(self.rbtn_data_s21_gain)
self.rbtn_data_s21_gain.setChecked(True)
self.rbtn_peak_group = QtWidgets.QButtonGroup()
self.rbtn_peak_positive = QtWidgets.QRadioButton("Highest value")
self.rbtn_peak_negative = QtWidgets.QRadioButton("Lowest value")
self.rbtn_peak_group.addButton(self.rbtn_peak_positive)
self.rbtn_peak_group.addButton(self.rbtn_peak_negative)
self.rbtn_peak_positive.setChecked(True)
self.checkbox_move_marker = QtWidgets.QCheckBox()
outer_layout.addRow(QtWidgets.QLabel("<b>Settings</b>"))
outer_layout.addRow("Data source", self.rbtn_data_vswr)
outer_layout.addRow("", self.rbtn_data_resistance)
outer_layout.addRow("", self.rbtn_data_reactance)
outer_layout.addRow("", self.rbtn_data_s21_gain)
outer_layout.addRow(PeakSearchAnalysis.QHLine())
outer_layout.addRow("Peak type", self.rbtn_peak_positive)
outer_layout.addRow("", self.rbtn_peak_negative)
outer_layout.addRow(PeakSearchAnalysis.QHLine())
outer_layout.addRow("Move marker to peak", self.checkbox_move_marker)
outer_layout.addRow(PeakSearchAnalysis.QHLine())
outer_layout.addRow(QtWidgets.QLabel("<b>Results</b>"))
self.peak_frequency = QtWidgets.QLabel()
self.peak_value = QtWidgets.QLabel()
outer_layout.addRow("Peak frequency:", self.peak_frequency)
outer_layout.addRow("Peak value:", self.peak_value)
def runAnalysis(self):
if self.rbtn_data_vswr.isChecked():
suffix = ""
data = []
for d in self.app.data:
data.append(d.vswr)
elif self.rbtn_data_resistance.isChecked():
suffix = " \N{OHM SIGN}"
data = []
for d in self.app.data:
data.append(d.impedance().real)
elif self.rbtn_data_reactance.isChecked():
suffix = " \N{OHM SIGN}"
data = []
for d in self.app.data:
data.append(d.impedance().imag)
elif self.rbtn_data_s21_gain.isChecked():
suffix = " dB"
data = []
for d in self.app.data21:
data.append(d.gain)
else:
logger.warning("Searching for peaks on unknown data")
return
if len(data) == 0:
return
if self.rbtn_peak_positive.isChecked():
idx_peak = np.argmax(data)
elif self.rbtn_peak_negative.isChecked():
idx_peak = np.argmin(data)
else:
logger.warning("Searching for peaks, but neither looking at positive nor negative?") # Both is not yet in
return
self.peak_frequency.setText(RFTools.formatFrequency(self.app.data[idx_peak].freq))
self.peak_value.setText(str(round(data[idx_peak], 3)) + suffix)
if self.checkbox_move_marker.isChecked() and len(self.app.markers) >= 1:
self.app.markers[0].setFrequency(str(self.app.data[idx_peak].freq))
self.app.markers[0].frequencyInput.setText(RFTools.formatFrequency(self.app.data[idx_peak].freq))

Wyświetl plik

@ -0,0 +1,132 @@
# NanoVNASaver
# A python program to view and export Touchstone data from a NanoVNA
# Copyright (C) 2019. Rune B. Broberg
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import logging
import math
from PyQt5 import QtWidgets
from NanoVNASaver.RFTools import RFTools
from scipy import signal
import numpy as np
logger = logging.getLogger(__name__)
class VSWRAnalysis(Analysis):
class QHLine(QtWidgets.QFrame):
def __init__(self):
super().__init__()
self.setFrameShape(QtWidgets.QFrame.HLine)
def __init__(self, app):
super().__init__(app)
self._widget = QtWidgets.QWidget()
self.layout = QtWidgets.QFormLayout()
self._widget.setLayout(self.layout)
self.input_vswr_limit = QtWidgets.QDoubleSpinBox()
self.input_vswr_limit.setValue(1.5)
self.input_vswr_limit.setSingleStep(0.1)
self.input_vswr_limit.setMinimum(1)
self.input_vswr_limit.setMaximum(25)
self.input_vswr_limit.setDecimals(2)
self.checkbox_move_marker = QtWidgets.QCheckBox()
self.layout.addRow(QtWidgets.QLabel("<b>Settings</b>"))
self.layout.addRow("VSWR limit", self.input_vswr_limit)
self.layout.addRow(VSWRAnalysis.QHLine())
self.results_label = QtWidgets.QLabel("<b>Results</b>")
self.layout.addRow(self.results_label)
def runAnalysis(self):
max_dips_shown = 3
data = []
for d in self.app.data:
data.append(d.vswr)
# min_idx = np.argmin(data)
#
# logger.debug("Minimum at %d", min_idx)
# logger.debug("Value at minimum: %f", data[min_idx])
# logger.debug("Frequency: %d", self.app.data[min_idx].freq)
#
# if self.checkbox_move_marker.isChecked():
# self.app.markers[0].setFrequency(str(self.app.data[min_idx].freq))
# self.app.markers[0].frequencyInput.setText(str(self.app.data[min_idx].freq))
minimums = []
min_start = -1
min_idx = -1
threshold = self.input_vswr_limit.value()
min_val = threshold
for i in range(len(data)):
d = data[i]
if d < threshold and i < len(data)-1:
if d < min_val:
min_val = d
min_idx = i
if min_start == -1:
min_start = i
elif min_start != -1:
# We are above the threshold, and were in a section that was below
minimums.append((min_start, min_idx, i-1))
min_start = -1
min_idx = -1
min_val = threshold
logger.debug("Found %d sections under %f threshold", len(minimums), threshold)
results_header = self.layout.indexOf(self.results_label)
logger.debug("Results start at %d, out of %d", results_header, self.layout.rowCount())
for i in range(results_header, self.layout.rowCount()):
self.layout.removeRow(self.layout.rowCount()-1)
if len(minimums) > max_dips_shown:
self.layout.addRow(QtWidgets.QLabel("<b>More than " + str(max_dips_shown) +
" dips found. Lowest shown.</b>"))
dips = []
for m in minimums:
start, lowest, end = m
dips.append(data[lowest])
best_dips = []
for i in range(max_dips_shown):
min_idx = np.argmin(dips)
best_dips.append(minimums[min_idx])
dips.remove(dips[min_idx])
minimums.remove(minimums[min_idx])
minimums = best_dips
if len(minimums) > 0:
for m in minimums:
start, lowest, end = m
if start != end:
logger.debug("Section from %d to %d, lowest at %d", start, end, lowest)
self.layout.addRow("Start", QtWidgets.QLabel(RFTools.formatFrequency(self.app.data[start].freq)))
self.layout.addRow("Minimum", QtWidgets.QLabel(RFTools.formatFrequency(self.app.data[lowest].freq) +
" (" + str(round(data[lowest], 2)) + ")"))
self.layout.addRow("End", QtWidgets.QLabel(RFTools.formatFrequency(self.app.data[end].freq)))
self.layout.addRow("Span", QtWidgets.QLabel(RFTools.formatFrequency(self.app.data[end].freq -\
self.app.data[start].freq)))
self.layout.addWidget(PeakSearchAnalysis.QHLine())
else:
self.layout.addRow("Low spot", QtWidgets.QLabel(RFTools.formatFrequency(self.app.data[lowest].freq)))
self.layout.addWidget(PeakSearchAnalysis.QHLine())
self.layout.removeRow(self.layout.rowCount()-1) # Remove the final separator line
else:
self.layout.addRow(QtWidgets.QLabel("No areas found with VSWR below " + str(round(threshold, 2)) + "."))