micropython/examples/natmod/features1/features1.c

107 wiersze
3.9 KiB
C

/* This example demonstrates the following features in a native module:
- defining simple functions exposed to Python
- defining local, helper C functions
- defining constant integers and strings exposed to Python
- getting and creating integer objects
- creating Python lists
- raising exceptions
- allocating memory
- BSS and constant data (rodata)
- relocated pointers in rodata
*/
// Include the header file to get access to the MicroPython API
#include "py/dynruntime.h"
// BSS (zero) data
uint16_t data16[4];
// Constant data (rodata)
const uint8_t table8[] = { 0, 1, 1, 2, 3, 5, 8, 13 };
const uint16_t table16[] = { 0x1000, 0x2000 };
// Constant data pointing to BSS/constant data
uint16_t *const table_ptr16a[] = { &data16[0], &data16[1], &data16[2], &data16[3] };
const uint16_t *const table_ptr16b[] = { &table16[0], &table16[1] };
// A simple function that adds its 2 arguments (must be integers)
static mp_obj_t add(mp_obj_t x_in, mp_obj_t y_in) {
mp_int_t x = mp_obj_get_int(x_in);
mp_int_t y = mp_obj_get_int(y_in);
return mp_obj_new_int(x + y);
}
static MP_DEFINE_CONST_FUN_OBJ_2(add_obj, add);
// A local helper function (not exposed to Python)
static mp_int_t fibonacci_helper(mp_int_t x) {
if (x < MP_ARRAY_SIZE(table8)) {
return table8[x];
} else {
return fibonacci_helper(x - 1) + fibonacci_helper(x - 2);
}
}
// A function which computes Fibonacci numbers
static mp_obj_t fibonacci(mp_obj_t x_in) {
mp_int_t x = mp_obj_get_int(x_in);
if (x < 0) {
mp_raise_ValueError(MP_ERROR_TEXT("can't compute negative Fibonacci number"));
}
return mp_obj_new_int(fibonacci_helper(x));
}
static MP_DEFINE_CONST_FUN_OBJ_1(fibonacci_obj, fibonacci);
// A function that accesses the BSS data
static mp_obj_t access(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
// Create a list holding all items from data16
mp_obj_list_t *lst = MP_OBJ_TO_PTR(mp_obj_new_list(MP_ARRAY_SIZE(data16), NULL));
for (int i = 0; i < MP_ARRAY_SIZE(data16); ++i) {
lst->items[i] = mp_obj_new_int(data16[i]);
}
return MP_OBJ_FROM_PTR(lst);
} else if (n_args == 1) {
// Get one item from data16
mp_int_t idx = mp_obj_get_int(args[0]) & 3;
return mp_obj_new_int(data16[idx]);
} else {
// Set one item in data16 (via table_ptr16a)
mp_int_t idx = mp_obj_get_int(args[0]) & 3;
*table_ptr16a[idx] = mp_obj_get_int(args[1]);
return mp_const_none;
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(access_obj, 0, 2, access);
// A function that allocates memory and creates a bytearray
static mp_obj_t make_array(void) {
uint16_t *ptr = m_new(uint16_t, MP_ARRAY_SIZE(table_ptr16b));
for (int i = 0; i < MP_ARRAY_SIZE(table_ptr16b); ++i) {
ptr[i] = *table_ptr16b[i];
}
return mp_obj_new_bytearray_by_ref(sizeof(uint16_t) * MP_ARRAY_SIZE(table_ptr16b), ptr);
}
static MP_DEFINE_CONST_FUN_OBJ_0(make_array_obj, make_array);
// This is the entry point and is called when the module is imported
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
// This must be first, it sets up the globals dict and other things
MP_DYNRUNTIME_INIT_ENTRY
// Messages can be printed as usual
mp_printf(&mp_plat_print, "initialising module self=%p\n", self);
// Make the functions available in the module's namespace
mp_store_global(MP_QSTR_add, MP_OBJ_FROM_PTR(&add_obj));
mp_store_global(MP_QSTR_fibonacci, MP_OBJ_FROM_PTR(&fibonacci_obj));
mp_store_global(MP_QSTR_access, MP_OBJ_FROM_PTR(&access_obj));
mp_store_global(MP_QSTR_make_array, MP_OBJ_FROM_PTR(&make_array_obj));
// Add some constants to the module's namespace
mp_store_global(MP_QSTR_VAL, MP_OBJ_NEW_SMALL_INT(42));
mp_store_global(MP_QSTR_MSG, MP_OBJ_NEW_QSTR(MP_QSTR_HELLO_MICROPYTHON));
// This must be last, it restores the globals dict
MP_DYNRUNTIME_INIT_EXIT
}